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In this mini-review I aim to make the case that operons might be the most powerful source for predicted associ-
ations among gene products. Such associations can help identify potential processeswhere the products of unan-
notated genesmight play a role. The power of the operon for providing insight into functional associations stems
from four features: (1) on average, around 60% of the genes in prokaryotes are associated into operons; (2) the
functional associations between genes in operons tend to be highly conserved; (3) operons can be predicted
with high accuracy by conservation of gene order and by the distances between adjacent genes in the same
DNA strand; and (4) operons frequently reorganize, providing further insight into functional associations that
would not be evident without these reorganization events.
© 2015 Moreno-Hagelsieb. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
2. Genes without functions and the panorama of potential interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
3. Operons can be predicted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

3.1. Predicting operons by intergenic distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
3.2. Predicting operons by conservation of gene order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

4. Most genes in prokaryotes are in operons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
5. Operons display highly conserved functional associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
6. Rearranged operons: a large window into functional associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7. Caveats and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
1. Introduction

Operons, were first defined as a set of genes transcribed from an
operator [1]. By extension, here I define them as two or more adjacent
genes in the same strand transcribed into a single messenger RNA
(a polycistronic mRNA). It is somewhat expected, as it has been corrob-
orated [2,3], that most genes transcribed into a polycistronic mRNA
should code for products that work together. Given the traditionally
perceived importance of operons in co-regulating genes whose
ier B.V. on behalf of the Research Ne
y/4.0/).
products functionally interact, they have been central in the field of
comparative genomics aiming at predicting functional associations. In
this mini-review, I attempt at further justifying this focus. I also attempt
at providing evidence that predicted operons in one organism can give
clues to functional associations in another organism. Because of the
potential transference of functional associations from operons in one
organism into genes found in another organism, the power of predicted
operons for providing potential associations expands exponentially.

This review is not intended to be a comprehensive view on the
methods for predicting functional associations, nor is it intended as a
comprehensive view at methods for predicting operons. For further
learning about predicting functional associations by genomic context,
twork of Computational and Structural Biotechnology. This is an open access article under
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Fig. 1. Intergenic distances. (A) Representation of a directon, a stretch of adjacent genes in
the same strand with no intervening gene in the opposite strand. The figure shows an
operon within the directon, pairs of genes in operons (WO) and transcription unit bound-
aries (TUB). (B) The distances between genes in operons tend to be short compared to
those between genes in different transcription units. The distances were binned at ten
base intervals to calculate relative frequencies.
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and derived methods, the reader can consult such works as [4–8]. For
methods on operon predictions the reader can check [9–12] among
others.

2. Genes without functions and the panorama of
potential interactions

Since the very first genome sequences became available, researchers
noticed that a large amount of genes could not be functionally annotated
by looking for homologues (see for example [13]). Case in point, a third
of the genes in themodel organism Escherichia coliK-12MG1655 remain
functionally uncharacterized [14] (this is still true today). Inspired by
this fact, scientists started proposing methods for predicting operons
bymethods other than those based in direct homology (for example [15]
and references therein).

Predicting functions by methods other than direct homology
involves the finding of interactions with the expectation that interac-
tions between unannotated genes and genes with characterized func-
tions (or functionally-annotatable by direct homology), would help
predict the functions of the uncharacterized genes. The idea behind
transference of functions has been aptly called “guilt by association”
[16]. Threemain ideas for predicting functions by association appeared:
(i) phyletic patterns or phylogenetic profiles [17,18], based on the
expectation that if the products of two genes functionally interact,
then the genes should co-occur, since the product of one gene would
be expected to be useless without the product of the other; (ii) conser-
vation of adjacency [19,20,21], where genes remaining next to each
other across genomes are expected to functionally interact; and
(iii) gene fusions [22,21], where, if two separate genes in one genome
appear as a single fused gene, they might functionally interact.

To put the above ideas in perspective, it is useful to think of the prob-
lem of predicting functional interactions as the problem of finding actu-
al interacting pairs among the maximum number of pairs available for
exploration in a genome. This exploratory space (E) can be calculated
from the total number of annotated genes (N) as:

E ¼ N N−1ð Þ
2

: ð1Þ

Let us consider the case of E. coli K12 MG1655 as an illustration. The
version of the genome available by November 2014 contains 4138 cod-
ing genes. This translates into an exploratory space of 8,559,453 pairs.
Considering that the genome consists of a circular chromosome, the
maximum number of pairs that could be explored by conservation of
gene order would be 4138 (the same as the number of genes), less
than 5% of the exploratory space. In theory, the exploratory potential
would be much larger for gene fusions, since genes do not have to be
adjacent in a genome of interest in order to find them fused in another
genome. However, in practice we have found few fused genes (Fig. 4B).
The potential for phylogenetic profiles would appear to be the largest.
After all, there is no need for the genes to be adjacent in any of the
genomes analyzed. However, co-occurrence analyses seem to produce
few high-quality annotations (Fig. 4B), perhaps precisely because the
background is the total exploratory space, which might consist of a
large fraction of true negatives. Thus the question becomes: is it possible
to expand on high-quality functional interactions and avoid the enor-
mous number of potential negatives in the exploratory space? The
answer seems to be the analyses of operon rearrangements.

3. Operons can be predicted

The problem of predicting operons could be conceptualized as the
problem of finding transcription unit (TU) boundaries within a stretch
of adjacent genes in the same strand with no intervening genes in the
opposite strand. We call these stretches of genes in the same strand
“directons” [2] (Fig. 1A).
3.1. Predicting operons by intergenic distances

An initial assumption about genes in operons was that, since there
is no need for signals between co-transcribed genes, the distances be-
tween genes in the same operon would be shorter than those between
genes in different TUs (Fig. 1). The assumptionwasfirst confirmed using
known operons gathered from the literature as found in RegulonDB
[23], mapped into the genome of Escherichia coli K12 to find boundaries
between TUs [2]. The finding was key in the success of operon predic-
tions from thefirst time itwasused [2,24]. Intergenic distance continues
to be the most informative feature for operon predictions [25–27,12].

3.2. Predicting operons by conservation of gene order

Another initial assumptionwas that operonswould have a tendency
to be conserved across prokaryotic organisms. Accordingly, some early
results in comparative genomics found that adjacent genes in the
same strand tend to be better conserved next to each other across ge-
nomes than adjacent genes in opposite strands [19,28]. Furthermore,
the comparison of conservation of genes in the same strand against
that of genes in different strands allowed for high-confidence prediction
of operons in genomeswith no experimental information on TU organi-
zation [29], and for the confirmation that genes in operons have the
same tendencies for short intergenic distances among prokaryotes as
that observed in Escherichia coli [30,24,31].

4. Most genes in prokaryotes are in operons

Some years ago, Cherry [32] published operon estimates based on
very simple assumptions. For example, if TUs can be found on either
DNA strand, then approximately one fourth of all TUs should be in a
strand by themselves. That is, their neighboring TUs would be found
in the opposite strand (Fig. 2A). Since there is no reason to expect the
length of the TU to influence which ones would be found in a directon



Fig. 2. Proportion of genes in operons. (A) The number of genes surrounded by genes in
the opposite direction should be approximately equal to 25% of the genes in single-gene
transcription units (TUs). Thus, the proportion of genes in operons, TUs with more than
one gene, can be estimated from the difference between the total number of genes and
those in single-gene TUs. (B) There is variation in the proportion of genes in operons
across genomes. The figure shows calculations for a non-redundant collection of complete
genomes from NCBI's RefSeq [33] available by November 2014. Overall, the proportion
averages 60% overall (60% in Bacteria, and 47% in Archaea).
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Fig. 3. Comparing evolutionary conservation. Mutual information measures the codepen-
dence of two variables. Higher values indicate stronger codependence, which makes
mutual information useful for measuring gene co-occurrence across genomes [3,46]. To
compare the co-occurrence of pairs of geneswith different kinds of functional interactions,
the figure shows the proportion of gene pairs left in each category as themutual informa-
tion threshold increases. Genes in operons have a higher tendency to co-occur across
genomes than genes associated in other ways. The higher co-occurrence can be interpreted
as a higher tendency towards conservation of the implied functional interaction.
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by themselves, it follows that one fourth of the subset of TUs producing
monocistronic RNAs should be found surrounded by TUs in the opposite
strand. These single-gene TUs would be evident as single-gene directons
(singletons). Thus, the proportion of genes transcribed intomonocistronic
RNAs should be approximately equal to the number of singletons multi-
plied by four. If we thenwanted to know the number of genes in operons,
we would only have to subtract this number from the total number of
genes (Tgenes). Thus, the proportion of genes in operons would be calcu-
lated as:

Popn ¼ Tgenes− 4� Nsingletons
� �

Tgenes
: ð2Þ

Of course, the formula assumes that the only reason why there
would be a tendency for adjacent genes to remain in the same directon
is if they are in operons. Such might not be the case. For example, a
tendency towards staying in the leading strand has been observed for
genes close to origins of replication. However, careful analyses of
operons in Escherichia coli K12, has shown that, if operons are not the
only reason for adjacent genes to remain in the same strand, then they
might be the main reason, with no noticeable influence from other
factors at the genomic scale [31].

Using the formula above, I have continued to calculate the propor-
tion of genes in operons as the database of prokaryotic genomes
has grown [31] (https://microbiome.wordpress.com/research/operon-
estimates/). For this mini-review, I used the complete prokaryotic
genomes available at NCBI's RefSeq [33] by November 2014. I kept
1408 non-redundant genomes by clustering the original 2765 using
DNA tetra-nucleotide signature distances [34]. The cutoff threshold
was a distance of 0.04, which roughly corresponds to a species level
[34]. Since the first calculation [31], the average proportion of genes in
operons across prokaryotes has remained at around 0.60 (Fig. 2B).
Therefore, most genes in prokaryotes might be associated into operons.
Operons might be the most common way in which genes whose prod-
ucts functionally interact are transcribed together.

5. Operons display highly conserved functional associations

A comparison of the conservation of experimentally-known
functional associations of Escherichia coli K12 has found that genes in
operons tend to have the most evolutionary stable functional associa-
tions [3]. Evolutionary conservation was measured as the tendency of
associated genes to co-occur across prokaryotic genomes. The method
is called p-cubic, because it consists of the comparison of curves derived
from the mutual information of phylogenetic profiles, in other words,
profiles of phylogenetic profiles (p-cubic). Essentially, the tendency for
a group of gene pairs to co-occur contrasts with the lack of such tenden-
cy in another group, because the curve of the former runs above the
curve in the latter (Fig. 3). This is very similar to curves used in previous
studies [35].

The experimentally-determined functionalmodules comparedwere
pairs of genes in the same operon, genes coding for products working in
the same biochemical pathway, genes coding for proteins that physical-
ly interact, and genes associated via proteins that regulate transcription
[3]. The work found that genes in the same operon had the p-cubic
curve showing the highest tendency for co-occurrence. This result
holds with current datasets (Fig. 3).

It is therefore tempting to conclude that operons might reveal func-
tional associations that tend to be conserved across prokaryotes.

6. Rearranged operons: a large window into functional associations

Early in comparative and functional genomics, Galperin and Koonin
[36] suggested that, if operons frequently rearranged, then predicting
operons could potentially be a powerful source for predicted functional
associations. They pointed out that no successful method existed yet for
predicting operons. Close to that time, a successful method for predicting
operons appeared in the literature [2]. The idea for expanding predictions
beyond those produced within a single genome works as follows
(Fig. 4A): genes separated in a genome of interest (or target genome),
could be inferred to functionally interact if their orthologs were found
to be in the same operon in some other genomes (the informative
genomes). This idea has been implemented on the basis of operons pre-
dicted by conservation of gene order [37–39], and was later expanded
to include operons predicted by intergenic distances [40].

https://microbiome.wordpress.com/research/operon-estimates/
https://microbiome.wordpress.com/research/operon-estimates/


Fig. 4. Predictions and operon rearrangements. (A) Operons in informative genomes help predict interactions between separated genes in a target genome. The dotted arrows between
geneB, geneD and geneE show predicted interactions in the target genome. These interactionswere transferred by orthology from the predicted operon B′D′E′ in the informative genome to
the corresponding genes in the target genome. (B) The number of predicted interactions increases substantially when predictions based on operons in informative genomes (rearrangements)
are added to those based on operons in the target genome alone (internal).
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It is to be expected that operon rearrangements increase the number
of available predicted functional associations. Actually, the number of
predictions increase several fold (Fig. 4B). Putting together all the infor-
mation presented in this mini-review, if operons represent the most
evolutionarily stable functional associations, and if they can be predicted
with high accuracy, and if they rearrange in a functionally-meaningful
way, then operons are a very powerful source of information for
predicting functional associations in prokaryotes.

7. Caveats and future directions

As mentioned above, methods for predicting functional associations
based on operon rearrangements have been successful in assigning
functions to previously uncharacterized genes [14]. The quality of
predictions has also been demonstrated [40,14,41,42]. However, as
more genomes are sequenced, there is a danger that false positives
might be enough in number to lower the quality of overall predictions.
Since genome rearrangements are frequent, the potential for non-
interacting genes to appear adjacent and have intergenic distances
proper of operons in at least some genomes increases. Some solutions
to the problemmight be provided by using the structure of the predict-
ed network of interactions. For example, bymaking sure that connected
genes share most other connections to other genes [14,41,42].

It would also be advisable to investigate further methods for
predicting operons. For example, the intergenic distancemethodmostly
presented here has a maximum accuracy of around 0.82 correct predic-
tions as evaluated in both Escherichia coli and Bacillus subtilis [24]. Other
methods claim accuracies above 0.90 [10]. Such methods should be
further evaluated and explored so as to improve predictions and better
access the power of rearranged operons for predicting functional associ-
ations. Improved operon predictions across prokaryotes will be
highly dependent on the development of databases containing high-
throughput operon mappings across organisms, such as those derived
from RNA-seq analyses present in the DOOR database [43].

Another problem is that genome annotations might contain several
false genes, which might artificially interrupt a director, and thus
break an operon. Related to this point, some operons have been reported
to contain genes in opposite strands (for example: [44,45]). Both these
problems, however, might be compensated by the presence of similar
operons in other genomes that do not contain the interrupting gene.

Other problems with genome annotations is the potential for
mistaken start codons. The first predictions based on intergenic
distances in Escherichia coli did not produce positive predictive values,
proportion of true positives in predicted operon gene pairs, above
0.86. After genome resequencing and reannotations, the method has
produced positive predictive values above 0.90 (author's unpublished
observation).

Further complications arise from the presence of nested and over-
lapping TUs. These constitute around 10% of the TUs reported in
RegulonDB [23], and around 20% of those reported in DBTBS [45]. The
distances between genes in nested TUs tend to be at the zone where
predictions are less confident. Again, it is possible that less complex
operons might exist in other genomes and thus compensate for this
problem.

Overall, the case for operons as a powerful source for predicting
functional associations seems to be well founded. However, some con-
siderations, like those listed above, stillmake it afield in need for further
development, development that seems to be worth pursuing.
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