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Abstract: Herein, MoS2-ZnO heterostructure nanorods were hydrothermally synthesized and
characterized in detail using several compositional, optical, and morphological techniques.
The comprehensive characterizations show that the synthesized MoS2/ZnO heterostructure
nanorods were composed of wurtzite hexagonal phase of ZnO and rhombohedral phase of MoS2.
The synthesized MoS2/ZnO heterostructure nanorods were used as a potent photocatalyst for the
decomposition of methylene blue (MB) dye under natural sunlight. The prepared MoS2/ZnO
heterostructure nanorods exhibited ~97% removal of MB in the reaction time of 20 min with the
catalyst amount of 0.15 g/L. The kinetic study revealed that the photocatalytic removal of MB was
found to be in accordance with pseudo first-order reaction kinetics with an obtained rate constant of
0.16262 min−1. The tremendous photocatalytic performance of MoS2-ZnO heterostructure nanorods
could be accredited to an effective charge transportation and inhibition in the recombination of
photo-excited charge carriers at an interfacial heterojunction. The contribution of active species
towards the decomposition of MB using MoS2-ZnO heterostructure nanorods was confirmed from
scavenger study and terephthalic acid fluorescence technique.

Keywords: MoS2-ZnO heterostructure nanorods; methylene blue dye; solar light irradiation

1. Introduction

Water pollution is a grave environmental concern and perilous to the exquisite essence of the
environment [1]. The release of noxious, persistent, carcinogenic, and mutagenic organic pollutants
into the water bodies adversely affects the quality of water [2–4]. The contaminants discharged from
numerous industries disturb the aquatic ecosystem by blocking the penetration of solar light into
water, and thereby diminishing the photosynthetic activity of marine organisms [5–8]. Methylene
blue (MB), a cationic synthetic dye, was invented by Caro in 1878 and it contains a heterocyclic
aromatic structure with the molecular formula, C16H18N3SCl. It is extensively utilized for dyeing

Materials 2018, 11, 2254; doi:10.3390/ma11112254 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-9266-0628
http://dx.doi.org/10.3390/ma11112254
http://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/11/11/2254?type=check_update&version=2


Materials 2018, 11, 2254 2 of 16

silk, paper, wood, and cotton. The acute inhalation of MB leads to troublesome effects on the human
body; for instance, vomiting, irritation of the eyes, nausea, diarrhoea, cyanosis, jaundice, quadriplegia,
dyspnea, tachycardia, methemoglobinemia, and tissue necrosis [9–11]. Therefore, it is of utmost
importance to eradicate the venomous and persistent organic compounds from the wastewater [12–15].
Advanced oxidation processes, like photocatalysis, photo electro-Fenton, photo-Fenton, ozonation,
sonolysis etc., are gaining increasing attention for the treatment of contaminated water as these
have a tendency to convert recalcitrant organic pollutants into the least toxic compounds [16–18].
Among these methods, heterogeneous photocatalysis is widely used by the scientific community
owing to its eco-friendly nature, cost effectiveness, and ability to completely mineralize the organic
matter [19,20]. Keeping in view, various metal oxides/sulphides, like TiO2 [19], Fe2O3 [21], Bi2O3 [22],
CdS [23], ZnS [24] etc., have been vastly explored as photosensitive heterogeneous catalysts for
environmental remediation. Zinc oxide (ZnO) is an extensively studied semiconductor material
owing to its peculiar characteristics, like high stability, good electron mobility, strong luminescence,
inexpensive, high exciton binding energy, and non-toxicity [25–28]. However, rapid recombination
of photogenerated charge carriers and low quantum efficiency inhibit its applications in the field
of photocatalysis. These problems can be solved by using different approaches, such as coupling
with other semiconductor materials or doping with non-metals/transition metal ions [29–31]. Two
dimensional materials, like molybdenum disulphide (MoS2), have also attracted momentous attention
due to its high absorption capacity, chemical inertness, easy availability, low toxicity, and thermal
stability [32–37]. Various research groups have reported the integration of MoS2 and ZnO to form the
desired heterostructures and further explored their potential applications in different fields. Zhang et al.
fabricated MoS2-coated ZnO nanocomposite via hydrothermal method for the hydrogen production in
the presence of simulated sunlight [38]. Zinc porphyrin dye-sensitized MoS2/ZnO heterostructure was
synthesized by Yuan et al. and further employed in the generation of hydrogen under visible light [39].
Yan et al. hydrothermally prepared heterostructures based on nanoparticles of ZnO and nanosheets
of MoS2, and utilized these for the sensing of ethanol [40]. Ze et al. prepared MoS2@ZnO quantum
dots using a hydrothermal/chemical method, and explored the humidity sensing properties of the
heterostructure [41]. Liu et al. have reported the growth of P-doped ZnO nanosheets decorated with an
atomic MoS2 layer, and applied the prepared material for the sunlight driven photocatalytic application
of MB dye [42]. The prepared P-doped ZnO nanosheets were grown on an Au-coated silicon substrate
by chemical vapor transport and a condensation method at very high-temperatures of ~1000 ◦C.
However, the MoS2 was decorated by the complex liquid exfoliation process with excess sonication
and centrifugation methods. The growth of P-doped ZnO nanosheets decorated with an atomic
MoS2 layer photocatalyst followed a very complicated, high-cost, rigorous, and high-temperature
process [42]. It was observed that ZnO-MoS2 can be an efficient photocatalyst due to the fast charge
transfer from the conduction bands (CBs) of ZnO and MoS2, which reduces the recombination of
carriers, thus enhancing the reaction rate. The presence of MoS2 in the ZnO heterojunction structure can
also enhance light adsorption in the visible range [42]. Therefore, due to the importance of ZnO/MoS2

heterojunction based photocatalysts, there is a need to develop a facile and simple method to prepare
such catalysts, and, interestingly, we present here a facile, low-cost, and low-temperature method to
synthesise high-quality and large-quantity ZnO-MoS2 heterostructure.

In the current study, MoS2-ZnO heterostructure nanorods were successfully synthesized and
employed as a photocatalyst for the removal of MB dye under natural sunlight. The synthesized
catalysts were extensively characterized by several techniques and are presented in the paper. Further,
the impact of different operational reaction conditions, such as pH, catalyst amount, initial MB
concentration, and scavengers, on the removal extent of MB has also been studied.
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2. Materials and Methods

2.1. Synthesis and Characterizations of ZnO Nanoparticles and MoS2-ZnO Heterostructure Nanorods

Reagents: All the reagents were used as received without any purification. Zinc acetate dihydrate
(Zn(CH3COO)2·2H2O,≥98%), thiourea (CH4N2S, 99%), sodium hydroxide (NaOH,≥97 %), potassium
iodide (KI, ≥99%), formic acid (HCOOH, ≥98%), sodium chloride (NaCl, ≥99%), isopropanol (IPA;
C3H8O, 99%) and methylene blue (C.I. 52015) were procured from Merck, Mumbai, India. Sodium
molybdate dihydrate (Na2MoO4·2H2O, 99.5%) was purchased from Himedia, India. Ethanol (C2H6O,
>99.9%) and terephthalic acid (TPA; C8H6O4, 98%) were obtained from Merck KGaA, Germany
and Sigma Aldrich, respectively. The commercial photocatalyst TiO2 (PC-50) was procured from
Millennium Inorganic Chemicals, Le Havre, France. 1M HCl and NaOH solutions were employed for
the adjustment of pH using Mettler Toledo pH-meter (FEP 20).

ZnO nanoparticles: ZnO nanoparticles were hydrothermally synthesized using Zn(CH3COO)2

·2H2O and NaOH. In the synthesis procedure, 0.25 M (5.487 g) of Zn(CH3COO)2·2H2O was added
to 100 mL of double distilled water and continuously stirred for 30 min. Afterwards, a pH of 11 was
maintained using 1 M NaOH solution and the suspension was poured into a Teflon-lined stainless
steel autoclave kept at 100 ◦C for 15 h. The prepared ZnO was filtered and thorough washing was
done with water/ethanol mixture and dried in an electric oven.

MoS2-ZnO heterostructure nanorods: MoS2-ZnO heterostructure nanorods synthesis was
performed via the hydrothermal approach. For the preparation of MoS2/ZnO heterostructure
nanorods, 4 mmol (0.967 g) of Na2MoO4·2H2O and 10 mmol (0.761 g) of CH4N2S were added
separately to 35 mL of distilled water under continuous stirring. Consequently, 1.6 g of as-formed
ZnO nanoparticles was dispersed in it and the suspension was magnetically stirred. After the stirring
process, the suspension was transferred to Teflon-lined stainless steel autoclave for hydrothermal
treatment, which was heated to 180 ◦C for 38.5 h. After completing the hydrothermal reaction, the
vessel was cooled to room temperature and the obtained product was filtered and washed with
alcoholic mixtures. The material was finally dried in an electric oven and then ground in order to
obtain the fine powder.

Characterizations: The phase structure was determined by PANalytical X’Pert PRO diffractometer
(Malvern Panalytical, Almelo, The Netherlands) and X-ray diffraction (XRD) patterns were obtained
in the 2θ range from 20◦–80◦ using Cu Kα radiations (λ = 1.54056 Å). The identification of
functional groups was performed on a Nicolet iS50 FT-IR (Thermo Scientific, Waltham, MA, USA)
spectrophotometer. The fluorescence (FL) spectrophotometer (Hitachi F-7000, Hitachi, Tokyo, Japan)
was used for the measurement of FL emission spectrum at a room temperature. The diffuse reflectance
spectrum (DRS) was taken on a UV-2600 (Shimadzu, Kyoto, Japan) UV-vis spectrophotometer using
BaSO4 as a reference material. The general morphologies were observed by transmission electron
microscope (TEM; Hitachi H-7500, Tokyo, Japan). The high resolution transmission electron microscope
(HRTEM) and selected area electron diffraction pattern (SAED) of MoS2-ZnO heterostructure were
analyzed by FEI Technai F20 microscope (FEI, Eindhoven, The Netherlands). The specific surface area
was obtained from nitrogen adsorption-desorption isotherm using a Quantachrome Nova 2000e BET
(Boynton Beach, FL, USA) and pore size distribution analyzer. The sample was pre-heated at 150 °C
prior to BET measurements. The ultraviolet-visible (UV-vis) absorbance spectra were collected on a
Systronics-2202 UV-vis spectrophotometer (Uvsar India, Ghaziabad, India).

2.2. Photocatalytic Degradation of MB Based on MoS2-ZnO Heterostructure Nanorods

The catalytic ability of the MoS2-ZnO heterostructure nanorods was explored for the
decomposition of MB dye under natural sunlight. The light intensity of 65–75 Klux (Latitude 30◦45′34′′

N and Longitude 76◦46′14′′ E) was recorded on a CHY-332 digital light meter. For photocatalytic
reactions, a specific amount of catalyst was dispersed into 100 mL of MB solution and kept in a dark
environment under stirring for 30 min to achieve an adsorption/desorption equilibrium. Then, the
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solution was placed under solar light irradiation and aliquots (2 mL) were extracted from the beaker
at specified time intervals. The catalyst was separated by filtering the solution through a 0.45 µm
Chromafil syringe filter and the absorbance of the filtrate was monitored at λmax = 664 nm on a UV-vis
spectrophotometer. The degradation (%) was computed from Equation (1):

Degradation (%) = [(C0 − C)/C0] × 100 (1)

where, C0 is the MB concentration at the initial state and C is the MB concentration after illuminating
with solar light at a specified time.

The role of reactive oxygen species in the removal of MB using MoS2/ZnO heterostructure
nanorods was ascertained from a scavenger study. For this, 0.01 M of scavengers, such as HCOOH, KI,
NaCl, and IPA, were added into the MB solution prior to the addition of the MoS2/ZnO heterostructure.
The role of hydroxyl radicals (·OH) was validated using the terephthalic acid fluorescence technique.
For the photocatalytic reaction, 5 × 10−4 M of TPA was added to 2 × 10−3 M NaOH solution. Then,
0.15 g/L of the synthesized catalyst, i.e., MoS2/ZnO heterostructure, was then dispersed into 100 mL
of TPA solution and it was placed under solar light. At specified time periods, samples were collected,
filtered through Chromafil syringe filter, and measured using FL spectrophotometer at λexc = 315 nm.

3. Results and Discussion

3.1. Characterization of As-Formed ZnO Nanoparticles and MoS2-ZnO Heterostructure Nanorods

The purity and structural characteristics of the synthesized materials were studied by the XRD
technique. Figure 1 depicts the XRD diffractograms of pure ZnO nanoparticles and MoS2-ZnO
heterostructure nanorods. Pure ZnO nanoparticles exhibited distinctive peaks appeared at 2θ = 31.8◦,
34.4◦, 36.2◦, 47.6◦, 56.6◦, 62.8◦, 66.3◦, 67.9◦, 69.1◦, 72.6◦, and 77.0◦ corresponded to (100), (002), (101),
(102), (110), (103), (200), (112), (201), (004), and (202) crystallographic planes of ZnO, respectively. The
XRD analysis of ZnO nanoparticles exhibited full consistency with the crystallographic planes of the
wurtzite hexagonal phase of ZnO (Joint Committee on Powder Diffraction Standards) JCPDS card
No. 36-1451) [43]. The typical XRD diffractograms of MoS2-ZnO heterostructure nanorods showed
well defined peaks of ZnO along with MoS2 at 2θ = 29.1◦,33.1◦, 38.8◦, 40.7◦, and 48.5◦, which can
be ascribed to the (006), (101), (104), (015), and (107) lattice planes of the rhombohedral phase of
MoS2, respectively. The XRD diffraction peaks of MoS2 are well matched with the reported JCPDS
card No. 17-0744 and reported literature [44]. The XRD diffractogram of MoS2-ZnO heterostructure
nanorods clearly revealed the existence of individual components of MoS2 and ZnO in the synthesized
heterostructure nanorods. The crystallite size of ZnO and MoS2-ZnO heterostructure were computed
from the most intense peak of the XRD pattern using Scherrer’s equation (Equation (2)):

D = 0.9 λ/βcosθ (2)

where, D is the crystallite size, λ refers to the wavelength of X-rays, β belongs to the full width at the
half maxima value, and θ is considered as the Bragg’s angle. According to the above equation, the
calculated crystallite size of pure ZnO nanoparticles and MoS2-ZnO heterostructure nanorods were
~38.45 nm and 33.52 nm, respectively.
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Figure 2. (a,b) Typical TEM images of pure ZnO nanoparticles. 

Figure 1. Typical XRD diffraction patterns of synthesized ZnO nanoparticles and MoS2-ZnO
heterostructure nanorods.

The morphological features of synthesized ZnO and MoS2-ZnO heterostructure were investigated
using TEM. Figure 2a,b depicts the TEM micrographs of bare ZnO, which clearly demonstrate that the
prepared sample possesses particle like morphologies, and, due to nanosize dimensions, it was termed
as “nanoparticles”. Further, because of the dense growth, some agglomeration in the nanoparticles
is also seen in the micrographs. Figure 3a–d shows the TEM images of synthesized MoS2-ZnO
heterostructure nanorods. The TEM images clearly reveal the deposition of ZnO nanoparticles on
the outer surfaces of the MoS2 nanorods. The synthesis of such MoS2-ZnO nanorods resulted in
heterojunction formation, which is vital for the efficient charge transportation across the interface and
leads to the high photocatalytic activity for the targeted dye. The high resolution transmission electron
microscopy (HRTEM) images of the MoS2-ZnO heterostructure nanorods are shown in Figure 4a,b.
The inter-planar spacing of 0.27 nm and 0.26 nm was observed for MoS2-ZnO heterostructure nanorods
(Figure 4b). The lattice spacing of 0.27 nm can be indexed to the (101) crystallographic plane of pure
MoS2 nanorods, however, the spacing of 0.25 nm matched well with that of the (101) plane of ZnO
nanoparticles. The selected area electron diffraction (SAED) displayed a well-defined ring spot pattern,
depicting the high crystallinity of the synthesized MoS2-ZnO heterostructure nanorods (Figure 4c).
The HRTEM analysis confirmed the heterojunction formation between MoS2 and ZnO components
and also showed full consistency with the obtained XRD results.
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The presence of various functional groups was examined by FT-IR spectroscopy. Figure 5 displays
the FT-IR patterns of bare ZnO nanoparticles and MoS2/ZnO heterostructures. The FT-IR pattern of
ZnO nanoparticles displayed well defined absorption peaks at 539, 886, 1405, 1634, and 3390 cm−1.
The characteristic peaks observed at 539 cm−1 and 886 cm−1 were due to the stretching and bending
vibrating modes of Zn–O, respectively [45,46]. A peak at 1405 cm−1 might be accredited to the
C=O bonding [47]. The broad peaks at 1634 cm−1 and 3390 cm−1 were related to the bending
and stretching frequencies of the hydroxyl group, respectively [48,49]. The distinct FT-IR peaks
of the MoS2/ZnO heterostructure were observed at 435, 568, 686, 864, 1397, 1502, and 3398 cm−1.
A peak of Mo-S stretching vibration mode was found at 435 cm−1 [47,50]. A peak at 686 cm−1

might be related to the asymmetric vibration of the Mo-O group [51]. The peaks at 568 cm−1

and 864 cm−1 revealed the existence of stretching and bending vibration modes of Zn–O bond,
respectively [46,49]. The bands observed at 1397 cm−1 and 1502 cm−1 corresponded to the C=O and
C–O absorption, respectively [47,52]. A peak at 3398 cm−1 was due to the presence of surface bounded
water molecules [49]. Thus, the FT-IR spectrum of MoS2/ZnO heterostructures indicated the successful
coupling of MoS2 and ZnO in the prepared heterostructure.
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The FL technique provides valuable information about the direct recombination of photoinduced
charge carriers. Figure 6a illustrates the FL plots of ZnO nanoparticles and MoS2/ZnO heterostructure.
Upon excitation at 290 nm, pure ZnO displayed emission peaks at 472 nm (blue-green band), 498 nm,
and 533 nm (green band). An emission peak located at 472 nm was assigned to the band edge bound
excitons [53]. The FL emission peaks at 498 nm and 533 nm were related to the defect emissions of
ZnO, oxygen interstitials, and surface defects [38,49,54,55]. It was observed that FL emission intensity
for the MoS2/ZnO heterostructure was remarkably quenched with respect to bare ZnO nanoparticles,
depicting the reduction in the recombination rate of electron and hole pairs and thereby being
responsible for the outstanding photocatalytic activity of the prepared MoS2/ZnO heterostructure.

The photo-absorption tendency of as-formed materials was explored using UV-vis DRS
spectroscopy. The band gap was measured from the classical Tauc’s relation using Equation (3):

(αhν) = A(hν − Ebg)n (3)

where α, h, ν, A, and Ebg represent the absorption coefficient, Planck’s constant, frequency of light,
proportionality constant, and energy band gap, respectively. The energy band gap was found to be
3.22 eV and 3.12 eV, respectively, for ZnO nanoparticles and the MoS2/ZnO heterostructure (Figure 6b).
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A decrease in the band gap was observed for the MoS2/ZnO heterostructure with respect to pure ZnO
nanoparticles, indicating the better photo-absorption capacity of the prepared heterostructure.

The textural properties of the as-synthesized MoS2/ZnO heterostructure were studied using N2

adsorption/desorption isotherm and the pore size distribution (Figure 7a,b). The specific surface
area and the total pore volume of the MoS2/ZnO heterostructure were estimated to be 8.132 m2/g
and 6.590 × 10−2 cm3/g, respectively. The density functional theory (DFT) method was opted
to find the average pore diameter and it was found to be around 2.74 nm for the synthesized
MoS2/ZnO heterostructure.
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3.2. Investigation of MoS2/ZnO Heterostructure for the Removal of MB under Natural Sunlight

The catalytic performance of the synthesized MoS2/ZnO heterostructure was measured for the
oxidation of MB dye under natural solar light. A chain of experiments was conducted to examine the
impact of pH on the decomposition of MB by altering the pH from 3 to 11 using a catalyst dose of
0.15 g/L and substrate concentration of 10 mg/L as shown in Figure 8a. It was found that MB removal
was enhanced from 63% to 66% with the increase in pH from 3 to 6. The removal efficiency was
enhanced up to 78% after changing the pH to 9. The maximum decomposition rate for MB was found
at pH 11 and about 97% decomposition of MB was acquired in the time period of 20 min. The impact of
catalyst loading towards oxidation of MB was investigated by performing the reactions with different
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MoS2/ZnO heterostructure doses (pH 11 and dye concentration 10 mg/L). From Figure 8b, it was
observed that on increasing the MoS2/ZnO heterostructure dose from 0.05 g/L to 0.15 g/L, the removal
efficacy was enormously enhanced from 61% to 97%, owing to the existence of more reactive sites on
the MoS2/ZnO heterostructure surface, resulting in the better adsorption of the dye molecules.
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the degradation of MB under solar light using MoS2/ZnO heterostructure and (d) time dependent
UV-vis absorbance spectra of MB over the synthesized MoS2/ZnO heterostructure under solar light
illumination (catalyst amount: 0.15 g/L, pH: 11, and MB concentration: 10 mg/L).

The degradation rate was decreased to 93% with increased catalyst loading up to 0.25 g/L,
depicting the optimum MoS2/ZnO heterostructure amount to be 0.15 g/L for the catalytic reactions.
The influence of the initial MB concentration towards the removal of MB was explored at optimized
pH and catalyst dose conditions (Figure 8c). The removal rate of 97% was attained at 10 mg/L
MB concentration. The degradation rates were diminished to 69% and 50% for 20 and 30 mg/L
dye concentrations, respectively. Thus, from the series of experiments performed, it was clearly
noticed that the maximum decomposition of MB was found at pH 11, catalyst amount of 0.15 g/L,
and substrate concentration of 10 mg/L. Figure 8d depicts the UV-vis absorbance spectra for the
oxidation of MB over the MoS2/ZnO heterostructure with respect to time (pH: 11, catalyst dose:
0.15 g/L, dye concentration: 10 mg/L). It was found that with the increase in illumination time,
there was a reduction in the absorbance maximum (λmax = 664 nm) of MB and 97% degradation was
accomplished in 20 min. A blank experiment was performed under sunlight without the addition
of the MoS2/ZnO heterostructure. The effect of photolysis is shown in Figure 9a and insignificant
decomposition (8%) of MB was observed in the reaction time of 20 min. An adsorption experiment
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was performed with the addition of the MoS2/ZnO heterostructure without sunlight illumination and
the obtained results are described in Figure 9a. Approximately, a 32% removal of MB was achieved
using the MoS2/ZnO heterostructure. The kinetics of the reaction for the decomposition of MB over
the MoS2/ZnO heterostructure was analyzed by a pseudo first-order kinetic model (Equation (4)):

ln(C0/C) = kt (4)

where C0 and C are the concentrations of MB before and after exposure to natural sunlight, k is
the reaction rate constant acquired from the slope of the graph, and t is the irradiation time for the
reaction. A graph between ln(C0/C) and t described that the oxidation of MB using the MoS2/ZnO
heterostructure was found to be fitted well with the pseudo first-order reaction kinetics model, and a
rate constant of 0.16262 min−1 was computed (Figure 9b).
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The degradation extent of the MoS2/ZnO heterostructure was compared with pure ZnO
nanoparticles and commercial TiO2 (PC-50) (Figure 10). The synthesized MoS2/ZnO heterostructure
exhibited enhanced photocatalytic performance (97%) than pure ZnO (89%) and TiO2 PC-50 (83%)
under identical reaction conditions.
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3.3. Role of Reactive Oxygen Species for the Removal of MB Using MoS2/ZnO Heterostructure

Various quenchers were chosen to determine the role of active species involved in the
photocatalytic decomposition of MB. Different quenchers, like KI (quencher for holes, h+, and surface
bounded hydroxyl radicals, ·OHs), NaCl (quencher for h+), HCOOH (quencher for electrons, e−), and
IPA (quencher for hydroxyl radicals, ·OH), were chosen to study their inhibitory effects. The results for
the MB degradation using different scavengers over synthesized MoS2/ZnO photocatalyst under solar
light are described in Figure 11a. It was found that the photocatalytic efficiency was reduced from
97% (without scavenger) to 16.8%, 86.8%, 87%, and 61.4% upon addition of HCOOH, NaCl, IPA, and
KI, respectively, which verified the pivotal contribution of e−, h+, ·OH, and ·OHs in the degradation
process. The formation of ·OH during the course of the photocatalytic reaction was verified using the
terephthalic acid fluorescence technique. The reaction of TPA with ·OH resulted in the generation of
2-hydroxyterephthalic acid (HTA), which is a highly fluorescent material, and showed an emission
peak at around λmax = 425 nm. The FL emission intensity of HTA is directly proportional to the
formation of ·OH. As shown in Figure 11b, there was an enhancement in FL emission intensity with
the progress in the photocatalytic reaction, verifying the pivotal role of ·OH towards the oxidation of
MB dye [43].
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3.4. Proposed Photocatalytic Degradation Mechanism

The conduction band (CB) and valence band (VB) potentials of MoS2 and ZnO can be calculated
from Equations (5) and (6):

EVB = X − Ee + 0.5 Eg (5)

ECB = EVB − Eg (6)

where X refers to the absolute electronegativity of the material; Ee represents the energy of free electrons
on a hydrogen scale (~4.5 eV); and Eg corresponds to the band gap. The value of X for MoS2 and ZnO
was reported to be 5.32 eV and 5.79 eV in the literature [56,57]. Figure 12 depicts the band gap of pure
MoS2 and it was measured to be around 1.35 eV. The CB and VB potentials for MoS2 were measured to
be 0.14 eV and 1.49 eV, respectively [58]. The corresponding CB and VB potentials for ZnO were found
to be −0.32 eV and +2.9 eV, respectively.

The plausible mechanism for the catalytic oxidation of MB over the MoS2/ZnO heterostructure
under solar light is depicted in Figure 13. When sunlight was irradiated on the MoS2/ZnO
heterostructure, both MoS2 and ZnO could be excited to yield e−/h+ pairs. The photogenerated
e− will shift from the CB of ZnO to the CB of MoS2 as the CB potential of ZnO is more negative
than that of MoS2. Also, the photoinduced h+ will rapidly migrate from the VB of MoS2 to the VB
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of ZnO. The photoexcited e− were captured by adsorbed molecular oxygen (O2) to yield superoxide
anion radicals (O2

−). MoS2 can capture e− due to its high conductivity, and thus suppressed the
recombination rate of photoexcited charge carriers [59,60]. The photo-generated h+ also reacted with
OH− or H2O, resulting in the production of ·OH, which are accountable for the decomposition of
noxious organic contaminants. Thus, the prepared MoS2/ZnO heterostructure was utilized as a potent
catalyst for the decomposition of MB under natural solar light. Different oxidation and reduction
reactions (Equations (7)–(10)) that occurred over the MoS2/ZnO heterostructure surface under natural
sunlight irradiation for the generation of reactive species are given below:

ZnO + hν→ e−CB + h+
VB (7)

MoS2 (e−CB) + O2 → O2
− (8)

ZnO (h+
VB) + OH− →·OH (9)

·OH + MB→ CO2 + H2O + simpler molecules (10)
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Table 1 demonstrates the comparison of the MoS2/ZnO heterostructure for the decomposition of
various pollutants under different light sources and it could be inferred that the present work offered
excellent catalytic behavior for the removal of harmful organic contaminants.

Table 1. Comparison of photocatalytic efficiency of MoS2/ZnOheterostructures for the degradation of
pollutants in the presence of different light sources.

Catalyst Target
Pollutant Light Source Reaction Time Degradation (%) Reference

MoS2-RGO doped ZnO
(1 wt % of MoS2-RGO

in ZnO)

MB and
carbendazim Natural solar light 60 min 98% for MB and 97% for

carbendazim [50]

MoS2/ZnO Rhodamine B Simulated solar
light 90 min 91.4% [61]

MoS2/ZnO Phenol red
UV and visible

light

50 min under UV
light 93%

[62]
80 min under
visible light 90%

P-doped ZnO nanosheets
decorated MoS2

MB Natural solar light 6 min for MB 95% [42]

ZnO-g-C3N4
(50%)/MoS2 (1%)

MB and
atrazine

UV-visible light
30 min for MB 99.5% for MB

[63]300 min for
atrazine 84.9% for atrazine

MoS2/ZnO MB Natural solar light 20 min 97% This work

4. Conclusions

In summary, MoS2/ZnO heterostructure was prepared through a facile hydrothermal route
and extensively characterized in detail by spectroscopic and analytical techniques. The synthesized
MoS2/ZnO heterostructure showed excellent catalytic behavior for the decomposition of MB under
natural solar light. Approximately, 97% decomposition of MB was obtained at pH 11 with a
catalyst dose of 0.15 g/L. The FL intensity of MoS2/ZnO heterostructure was strongly quenched as
compared to pure ZnO, thereby increasing the photochemical quantum efficiency of the heterostructure.
The superior photocatalytic efficacy of the MoS2/ZnO heterostructure could be assigned to the
effective charge transportation of photoinduced e−/h+ pairs. The present study demonstrated that
the MoS2/ZnO heterostructure can be employed as a marvelous photocatalytic material for the
deterioration of noxious contaminants in terms of environmental restoration.
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