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Abstract

Understating how antibiotic tolerance impacts subsequent resistance development in the

clinical setting is important to identifying effective therapeutic interventions and prevention

measures. This study describes a patient case of methicillin-resistant Staphylococcus

aureus (MRSA) bacteremia which rapidly developed resistance to three primary MRSA ther-

apies and identifies genetic and metabolic changes selected in vivo that are associated with

rapid resistance evolution. Index blood cultures displayed susceptibility to all (non-beta-lac-

tam) antibiotics with the exception of trimethoprim/ sulfamethoxazole. One month after initial

presentation, during the same encounter, blood cultures were again positive for MRSA, now

displaying intermediate resistance to vancomycin and ceftaroline and resistance to dapto-

mycin. Two weeks later, blood cultures were positive for a third time, still intermediate resis-

tant to vancomycin and ceftaroline and resistant to daptomycin. Mutations in mprF and vraT

were common to all multidrug resistant isolates whereas mutations in tagH, agrB and saeR

and secondary mprF mutation emerged sequentially and transiently resulting in distinct in

vitro phenotypes. The baseline mutation rate of the patient isolates was unremarkable ruling

out the hypermutator phenotype as a contributor to the rapid emergence of resistance. How-

ever, the index isolate demonstrated pronounced tolerance to the antibiotic daptomycin, a

phenotype that facilitates the subsequent development of resistance during antibiotic expo-

sure. This study exemplifies the capacity of antibiotic-tolerant pathogens to rapidly develop

both stable and transient genetic and phenotypic changes, over the course of a single

patient encounter.

Introduction

The emergence of antimicrobial resistance is a well-recognized threat to public health. Decades

of research on antibiotic resistance have provided insight into resistance development and

reinforced the need for proper antimicrobial stewardship. However, the contribution of antibi-

otic tolerance is less clear in the clinical setting. Given a sufficiently large bacterial population
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in vitro, some cells enter a distinct, non-dividing metabolic state and are able to survive tran-

sient exposure to antibiotics without a corresponding change in the population’s minimum

inhibitory concentration (MIC) [1]. These tolerant individuals remain genetically identical to

the overall population and can replenish a dividing population once antibiotic pressure is

removed. Furthermore, a population with a large proportion of antibiotic tolerant bacteria has

a proclivity to rapidly develop resistance to antimicrobials in vitro [2] and may be associated

with persistent infections in vivo [3]. While there exist clear parallels between the two phenom-

ena, antibiotic tolerance is distinct from the concept of heteroresistance where a small subpop-

ulation of bacteria exhibits a different resistance profile and is able to continue growth in the

presence of antibiotics [4].

The idea that tolerance or heterotolerance facilitates resistance development was proposed

as early as the 1980s [5]. This theory has subsequently been validated in vitro in a diverse

assortment of microorganisms and a diverse variety of antibiotics [6–8]. In addition to main-

taining a viable cell reservoir in which mutations can develop, some tolerant microorganisms

demonstrate a higher mutation rate which can further drive resistance development [9].

Indeed, a large array of genetic changes can result in an increased prevalence of tolerant

microbes within a population, typically by prolonging the “lag phase” of bacterial growth or

reducing the exponential growth rate [1]. While this phenomenon has been modeled exten-

sively in both in vitro experiments and mathematical modeling, only one report to date clearly

describes tolerance contributing to resistance development in patients [10].

In this study, we first present a patient case of methicillin-resistant Staphylococcus aureus
(MRSA) bacteremia in which antibiotic tolerance facilitated the development of resistance to

three anti-staphylococcal therapies over a six-week clinical course. We then analyze the genetic

and metabolic evolution of an antibiotic-tolerant isolate of MRSA as it acquired multi-drug

resistance in vivo.

Patient case

A male patient in his late-60s presented to our hospital in October 2018 with altered mental

status and methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. The patient history

was significant for end-stage renal disease requiring dialysis, peripheral vascular disease and

insulin-dependent diabetes mellitus. Nasal screening for staphylococcal colonization was not

performed. The patient was treated for diabetic ketoacidosis in the emergency department and

intubated following emergent acute respiratory failure. His intrajugular dialysis catheter was

removed. Arteriovenous HeRO grafts were unremarkable on physical exam and negative for

fluid accumulation by ultrasound and thus retained. Transesophageal echocardiogram was

unremarkable for infective endocarditis. Tagged white blood cell scans failed to identify any

foci of infection. He was determined to be a poor surgical candidate for graft revision and

managed medically. Initial peripheral blood culture bacteria were MRSA susceptible to cef-

taroline (CPT), daptomycin (DAP), linezolid (LZD) and vancomycin (VAN). The patient was

treated empirically with cefepime and VAN (hospitalization days 1–3), and subsequently nar-

rowed to CPT and VAN (days 4–13). Blood cultures cleared day 8 and remained clear on sub-

sequent cultures (days 10 and 11). Week two, following concerns for ventilator-associated

pneumonia, therapy was escalated to broad-spectrum β-lactam (cefepime) plus DAP (days 14–

23) followed by DAP monotherapy (days 23–32). The following month, breakthrough positive

cultures were noted on therapy and displayed non-susceptibility (referred to as resistant

throughout for ease of presentation) or borderline-resistance to CPT, DAP and VAN. Blood

cultures cleared by day 33 and the regimen was switched to CPT plus LZD (days 33–36) and

transitioned to CPT plus DAP for the remainder of the encounter (days 36–46). Peripheral
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blood cultures remained clear until a recurrence day 44. Patient was determined clinically sta-

ble for transfer day 46, discharged with positive blood cultures to a skilled nursing facility and

lost to follow up. A timeline and characterization of isolates from this patient encounter is pro-

vided as Fig 1.

Results and discussion

Genomic assessment

All isolates from patient BSN14 were confirmed to be isogenic (2,956,388 bp chromosome,

Pulse Field type USA300, Multilocus Sequence Type 8 and spa type t064) by whole genome

sequencing, ruling out coinfection or superinfection as potential etiologies. Genetic variations

between serial isolates are reported in Table 1. No sequence variations were noted between

BSN14S1 and BSN14S2. Relative to BSN14S1, BSN14R1 contained sequence variations in

mprF (ntC941T, P314L), vraT (ntG451A, A151T) and tagH (ntG115A, A39T). BSN14R2

Fig 1. Clinical timeline. Patient presented to Emergency Department October 2018 and was discharged on hospitalization day 44 to a skilled

nursing facility. Symbols indicate days of documented positive blood culture (+), negative blood culture (-) or blood culture not collected (�).

Results of susceptibility testing as reported in the patient’s electronic medical record are reproduced below. VAN, vancomycin; FEP, cefepime;

CPT, ceftaroline; DAP, daptomycin; LZD, linezolid. †Values determined by E-test.

https://doi.org/10.1371/journal.pone.0258592.g001
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maintained vraTA151T but reverted to a wild type tagH sequence (T39A). Additionally,

BSN14R2 developed a sequence variation in agrB (ntC341G, P114R) and a new frameshift

mutation in mprF (nt745delG, G249Gfs14). BSN14RB maintained vraTA151T but reverted to a

wild type agrB sequence (R114P) and the intact mprF sequence present in BSN14R1 (P314L).

Additionally, BSN14RB developed a 5 amino acid in-frame deletion in saeR (nt135
delGATATCATGGTACTT).

Patient isolates have a normal baseline mutation rate

One potential rationale for the rapid development of resistance in BSN14 isolates could be an

enhanced baseline mutation rate. Elevated mutation frequencies, observed through spontane-

ous mutations to rifampin in vitro, have been shown to contribute to a more rapid resistance

development to a number of antibiotics in S. aureus, including VAN [11, 12]. The spontaneous

rifampin resistance rate of the index isolate from the current encounter (i.e. BSN14S1) was

determined and compared to the resistance rate of six contemporaneous isolates collected

from separate patients as well as to laboratory strain S. aureus LAC (Fig 2). Strain BSN14S1

had a median of 27 [interquartile range 23–38] rifampin-resistant mutations per 109 cells com-

pared to 34 [22–63] rifampin-resistant mutations in comparator isolates (P = 0.12). These val-

ues are consistent with normal baseline mutation frequencies for rifampin resistance in

Table 1. Mutational differences between serial isolates identified by whole-genome sequencing.

Position Mutation Gene Function BSN14S1 BSN14S2 BSN14R1 BSN14R2 BSN14RB

710,607 A39T tagH Teichoic acid export ✓

780,975..89 delD46..L50 saeR Response regulator ✓

1,439,232 G249Gfs14 mprF Phosphatidylglycerol lysyltransferase ✓

1,439,429 P314L mprF Phosphatidylglycerol lysyltransferase ✓ ✓ ✓

2,070,976 A151T vraT Regulator of vraSR ✓ ✓ ✓

2,233,269 P114R agrB Accessory gene regulator B ✓

https://doi.org/10.1371/journal.pone.0258592.t001

Fig 2. Antimicrobial tolerance. (A) Increased survival of BSN14S1 in daptomycin exposure assay. Cultures in exponential growth phase were

adjusted to 108 CFU/mL and exposed to 10 mg/L daptomycin. Data are the means and standard deviations of three independent replicates.

Gray markers (dashed lines), BSN14S1; white marker (dotted line), comparator isolate C4. All other replicates were indistinguishable and

represented by solid markers and lines. Detection limit, 100 CFU/mL. (B) Number of spontaneous mutations conferring resistance to rifampin

per 109 colony-forming units, median [interquartile range]. †Comparator isolate C2 recovered from an unrelated patient is identified as a

hypermutator strain (>100×10−9). �Strain LAC had a significantly shorter doubling time versus comparators (P = 0.007).

https://doi.org/10.1371/journal.pone.0258592.g002

PLOS ONE Rapid resistance development

PLOS ONE | https://doi.org/10.1371/journal.pone.0258592 October 20, 2021 4 / 15

https://doi.org/10.1371/journal.pone.0258592.t001
https://doi.org/10.1371/journal.pone.0258592.g002
https://doi.org/10.1371/journal.pone.0258592


staphylococci (<10−7) and lower than those seen in strains exhibiting a hypermutable pheno-

type (>10−7) [12–14]. We note that one of the comparator isolates was found to exhibit a

hypermutable phenotype and a refinement removing this strain from analysis again demon-

strated that the mutation rate in BSN14S1 was unremarkable (31 [21–49] rifampin-resistant

mutations in comparator isolates, P = 0.27).

Index patient isolate BSN14S1 is antibiotic tolerant

The rapid development of antibiotic resistance in this patient isolate with an unremarkable

mutation rate caused us to suspect a high level of tolerance in the population [2]. DAP exhibits

a pronounced difference in its rate of bacterial killing against tolerant staphylococci making it

an ideal antibiotic for their identification [15, 16]. Isolate BSN14S1, the six comparators

described previously and S. aureus LAC were cultivated in liquid culture, exposed to DAP and

viability determined at pre-defined intervals. All comparator isolates had a DAP MIC of 0.5

mg/L. Results are provided in Fig 2. Based on standardized definitions, BSN14S1 is antibiotic

tolerant at baseline [1]. The fourth comparator isolate (C4) exhibited biphasic killing but only

after a 4-log reduction in viability was achieved. Therefore, based on the definitions by Balaban

et al, none of the comparator strains were tolerant or heterotolerant. While the doubling time

of control strain LAC was significantly shorter than that of clinical isolates (29 ± 0.7 m vs.

34 ± 2.5 m, P = 0.007), there were no significant differences in doubling time between clinical

isolates (Table 2, P = 0.344). Therefore, differences in DAP killing were not due to differences

in isolate growth rates. Upon further analysis with other anti-MRSA antibiotics, isolate

BSN14S1 likewise demonstrated reduced killing by both CPT and VAN at 24 hours compared

to MIC-matched comparators (CPT 20 mg/L, 1.0 ± 0.04 vs. 2.2 ± 0.50 log viability reduction,

P< 0.001; VAN 35 mg/L, 1.7 ± 0.08 vs. 2.2 ± 0.40 log viability reduction, P = 0.033). Thus,

despite a favorable susceptibility profile based on the organism MIC, antimicrobial tolerance

could limit the effectiveness of antistaphylococcal antibiotic therapy and promote the develop-

ment of antimicrobial resistance.

Recurrent bacteremia isolates contain mutations in mprF and vraT
Antimicrobial therapy was initially successful at clearing the MRSA bloodstream infection.

However, within three weeks MRSA were again present in surveillance blood cultures. All iso-

lates collected from the patient after initial presentation in October 2018 were genetically

Table 2. Antimicrobial tolerance.

Strain Name Genetics DAP MDK99 TBA MDK99.99

C1 ST3390-MRSA-II CC5. spa t1062. agr type 2 0.5 1 ± 0.1h 2 ± 0.1h 2 ± 0.1h

C2 ST8-MRSA-IVa CC8 spa t008. agr type 1. 0.5 1 ± 0.0h 1 ± 0.0h 2 ± 0.0h

C3 ST5-MRSA-IVg CC5 spa t688. agr type 2 0.5 1 ± 0.0h 1 ± 0.0h 2 ± 0.1h

BSN14S1 ST8-MRSA-IVg CC8 spa t064. agr type 1 0.5 2 ± 0.0h�� 5 ± 0.8h� 27 ± 2.1h��

C4 ST5-MRSA-II CC5 spa t002. agr type 2 0.5 1 ± 0.0h 1 ± 0.1h 2 ± 0.3h

C5 ST8-MRSA-IVa CC8 spa t008. agr type 1 0.5 1 ± 0.1h 1 ± 0.1h 1 ± 0.2h

C6 ST8-MRSA-IVa CC8. spa t008. agr type 1 0.5 1 ± 0.0h 1 ± 0.1h 2 ± 0.3h

LAC ST8-MRSA-IVa CC8. spa t008. agr type 1 0.5 1 ± 0.0h 1 ± 0.1h 2 ± 0.2h

Isolates from seven consecutive patients with DAP-susceptible MRSA bacteremia were assessed. BSN14S1 demonstrated significantly prolonged MDK99 and MDK99.99

values compared to contemporaneously collected patients with identical DAP MICs, indicating tolerance. TBA, time to bactericidal activity, i.e. MDK99.9.

�P�0.05 by one-way ANOVA and post-hoc Student’s t-test.

��P�0.01 by one-way ANOVA and post-hoc Student’s t-test.

https://doi.org/10.1371/journal.pone.0258592.t002
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related to the initial isolate but now contained mutations in both mprF and vraT. MprF is a

lysylphosphatidylglycerol transferase/flippase that modifies membrane phospholipids with

lysine and translocates them to the outer leaflet of the membrane [17]. Mutations in MprF are

common in DAP-resistant clinical isolates and result in increased presentation of lysylpho-

sphatidylglycerol on the cell surface and decreased DAP activity [18]. The specific P314L

mutation in MprF maps to the flippase domain and was one of the first DAP resistance-confer-

ring mutations identified during the clinical trial resulting in DAP’s approval [19]. VraT is a

component of the VraTSR three-component regulatory system responsible for regulating cell

wall synthesis [20, 21]. Mutations in this system are common in VAN resistant clinical isolates

and contribute to both DAP and VAN resistance while conferring collateral susceptibility to β-

lactams [22, 23]. The specific A151T mutation identified in VraT is an established contributor

to the VISA phenotype and has been identified in reference VISA strains including NRS283

and NRS79 with VAN MICs of 2 and 4, respectively [24]. Consistent with this, most isolates

collected during and after the recurrent bacteremia have elevated MICs to both DAP and

VAN and population analysis profile (PAP) analysis confirmed that strains with a VAN MIC

of 2 had transitioned from VAN-susceptible S. aureus (VSSA) to heterogeneous VAN-inter-

mediate resistant S. aureus (hVISA).

The first isolate from the recurrence exhibits impaired TagH activity. The patient’s ini-

tial recurrence of bacteremia lasted for four days. In addition to changes to mprF and vraT dis-

cussed above, the first isolate from this recurrence, BSN14R1, had developed a mutation in

tagH. TagGH/TarGH is a membrane-bound component of the teichoic acid translocation sys-

tem and the last committed step in wall teichoic acid synthesis. Counterintuitively, decreased

TagGH activity can lead to thickened cell walls due to autolysin sequestration [25] but a com-

plete loss of TagGH function is lethal [26]. Thickened cell walls is a common feature of DAP-

and VAN-resistant staphylococci [27, 28] resulting from changes to one or more of several

global regulators (graRS, vraSR, walKR) or cell wall biosynthetic machinery [29]. In contrast to

other potential contributors to cell wall thickening, TagGH activity was specifically associated

with the ability of staphylococci to induce biofilm production in the presence of bile compo-

nents [30]. Therefore, we examined the response of study isolates to biofilm induction with

either bovine bile or deoxycholate. Results are presented in Fig 3A. Strain BSN14R1 was

unique in its response to challenge, demonstrating no biofilm induction by deoxycholate and a

reduction of biofilm in the presence of bile salts. This suggests that the TagHA39T mutation

represents a reduction in function. After collection of isolate BSN14R1, the patient’s antimi-

crobial regimen was transitioned from DAP/VAN-based to CPT/LZD-based therapy. This

may have selected for the loss of the tagH mutation in subsequent isolates as reduced TagGH

activity is associated with increased susceptibility to beta lactam antibiotics [31].

The final isolate from the initial recurrence exhibits impaired MprF activity. Isolate

BSN14R2 was collected on the fourth and final day of the patient’s recurrent bacteremia (hos-

pital day 31). In this isolate, a second mutation had occurred in mprF resulting in a truncated

protein and a reversion from hVISA back to VSSA. Interestingly, the timing of this loss-of-

function mutation corresponded to a transition from DAP/VAN-based therapy to CPT/LZD-

based therapy. In vitro studies suggest that second-site mutations in mprF are selected when

exposures are switched from DAP-based to β-lactam-based [32, 33]. The identification of an

additional frameshift mutation in mprF for isolate BSN14R2 was unanticipated as the suscepti-

bility report for this isolate in the patient chart was indistinguishable from the isolate collected

three days prior. MprF activity is highly linked to changes in DAP susceptibility and a frame-

shift mutation would be predicted to decrease DAP resistance [34]. Indeed, repeat susceptibil-

ity testing of our BSN14R2 isolate demonstrated markedly different DAP minimum inhibitory

concentrations than those reported in the patient record. Isolate BSN14R2 lacking functional
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MprF demonstrated a remarkable drop in DAP MIC from 4 mg/L to 0.25 mg/L. MprF is

thought to modulate DAP susceptibility by altering the charge on the bacterial cell surface by

modification of membrane phospholipids with cationic lysine [18]. BSN14R2 demonstrates

significantly more binding of cationic cytochrome C than other isolates suggestive of a more

negatively charged cell envelope (Fig 3C). As mentioned previously, this loss of MprF function

may again have been selected by the change in pharmacotherapy from a DAP/VAN-based to a

CPT-based regimen [32] and the fitness cost of maintaining DAP resistance [35]. In addition

to the changes in mprF, BSN14R2 contains a mutation in agrB. Although AgrB is part of a viru-

lence trait regulon that is frequently mutated in clinical isolates [36–38], the mutation maps to

the extracellular interface of a transmembrane alpha helix in a location not thought to be

involved in autoinducer binding, processing or transport [39, 40]. Consistent with this, strain

BSN14R2 did not exhibit a defect in agr-regulated traits including hemolysis or biofilm pro-

duction (Fig 3B and 3D) [41].

In order to rationalize the discrepancies between susceptibility values reported in the

patient chart and those performed by our group, we repeated CPT, DAP, LZD and VAN MIC

testing for all other patient isolates collected. All susceptibility values were within 1 doubling

of values reported in the patient chart with the exception of isolate BSN14R2 which consis-

tently demonstrated a low DAP MIC of 0.25 (S2 Table). Our group received a subculture of

the isolate used by the clinical lab for susceptibility testing which may not have been represen-

tative of the overall population. To assess this, our group identified an investigator that makes

similar requests for patient isolates and maintains a separate biorepository of staphylococcal

bloodstream isolates. We identified his request for the same isolate, BSN14R2, made on a

Fig 3. Phenotypic characterization of BSN14 mutants. (A) tagH mutation present in BSN14R1 alters biofilm production in the presence

of bile salts. (B) agrB mutation present in BSN14R2 does not alter hemolytic activity. (C) mprF mutation present in BSN14R2 alters whole-

cell binding of cytochrome C (D) saeR mutation present in BSN14RB reduces biofilm production (E) saeR mutation present in BSN14RB

impairs whole blood killing. †† P value< 0.01 compared to same isolate in unsupplemented media. �� P< 0.01 compared to isolate

BSN14S1.

https://doi.org/10.1371/journal.pone.0258592.g003
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separate day from our group. Susceptibility testing of this independent sample collected from

the patient on the same day demonstrated the same MICs as performed by our group. Further-

more, we identified duplicate subcultures of BSN14S2, BSN14R1 and BSN14RB. Susceptibility

testing and whole genome sequencing of these isolates resulted in indistinguishable MICs and

sequences, respectively, to those generated from our collection. We conclude that BSN14R2

represented a mixed population of DAP-susceptible and DAP-resistant bacteria and clinical

testing selected for a minority subpopulation that retained the original antibiotic resistant

phenotype.

The first isolate from the second recurrence exhibits altered SaeR

regulation

As before, within two weeks of documented negative blood cultures following the initial recur-

rence, MRSA were again present in the patient’s surveillance blood cultures. Isolate BSN14RB,

collected hospital day 44 during the patient’s second episode of recurrent/relapse bacteremia,

contained an internal deletion within the SaeR receiver domain immediately preceding the site

of phosphorylation. The SaeR regulon consists of two promoter classes. Class I (high-affinity)

promoters regulate factors such as hemolysins and can bind SaeR regardless of phosphoryla-

tion status. In contrast, Class II (low-affinity) promoters regulate factors such as coagulase and

fibronectin binding protein and require phosphorylated SaeR [42]. As shown in Fig 3B and

3D, BSN14RB has wild-type hemolysin activity but is impaired for biofilm production suggest-

ing its SaeR mutation maintains regulation of Class I promoters but not at Class II. In staphy-

lococci, coagulase production regulated by Class II SaeR promoters decreases survival in

human blood [43]. Consistent with this, BSN14RB is uniquely able to survive in heparinated

human blood compared to other isolates (Fig 3E). Host factors contribute significantly to the

resolution of staphylococcal infection [44]. Staphylococci respond to the presence of neutro-

phils and defensins by modulating the classical SaeR-regulated production of virulence factors,

paradoxically increasing pathogenicity by reducing immune recognition of cytotoxins [45, 46].

Therefore, the five amino acid deletion in SaeR may represent an adaptive trait to promote sur-

vival as the organism transitions from an acute to a persistent infection.

Tolerance accelerates in vitro resistance development

The rapid adaptability of BSN14S1 to changing selective pressures supports the body of litera-

ture that antibiotic tolerance facilitates the subsequent development of resistance [47]. In

order to simulate such selective pressures in vitro we subjected BSN14S1 and comparator

strains to serial passage in the presence of increasing concentrations of DAP. Each day of serial

passage would assess the ability to grow in double the DAP concentration that supported

growth on the previous day as DAP resistance typically occurs by the stepwise acquisition of

multiple mutations, each contributing to clinically meaningful resistance [48]. Therefore, the

minimum time necessary to observe DAP resistance in serial passage (i.e. growth in 4 mg/L

DAP) would be three days. Replicates of patient isolate BSN14S1 took a median of 3 (range:

3–4) days from growth in 0.5 mg/L DAP to support growth in 4 mg/L DAP. In contrast, com-

parator isolates took a median of 5 days (range: 4–7) to adapt from growth in 0.5 mg/L DAP to

growth in 4 mg/L DAP (Fig 4, P = 0.001). Therefore, despite equivalent basal mutation rates,

BSN14S1 develops antibiotic resistance more rapidly than comparator isolates in vitro.

Conclusion

This study links an observed patient case with potential mechanistic understating of how anti-

microbial tolerance can facilitate rapid resistance development and adaptation to a new host
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environment. Further work is warranted to establish the prevalence and significance of antimi-

crobial tolerant microbes in resistant and recurrent infection.

Materials and methods

Ethics statement

This study was approved by the Detroit Medical Center (IRB 14539) and Wayne State Univer-

sity (IRB 014518M1E). Patient history and clinical course were abstracted from the patient’s

electronic medical record and patient identifiers removed as outlined in the above IRB approv-

als. Both review boards provided waivers of informed consent.

Bacterial isolates, antimicrobials and media

Patient isolates were obtained from the Microbiology Core facility at the Detroit Medical Cen-

ter. All antibiotics used in this study were purchased commercially as the clinical formulation

from West-Ward Pharmaceuticals (Eatontown, NJ, USA, Cefazolin) or Mylan (Canonsburg,

PA, USA, Daptomycin and Vancomycin). Activity was confirmed by quality control suscepti-

bility testing against S. aureus ATCC 29213 per Clinical and Laboratory Standards Institute

(CLSI) guidelines, version M100 ED29:2019 [49]. Mueller-Hinton Broth II (MHB) (BD,

Sparks, MD, USA) supplemented with 25 mg/L calcium (as CaCl2) and 12.5 mg/L magnesium

(as MgCl2) was used to grow S. aureus in liquid culture. All DAP assays used MHB with 50

mg/L calcium as recommended [49]. Population analysis profiling to detect hVISA was per-

formed as described previously using strain Mu3 as the reference standard [50].

DNA extraction

Isogenic colonies were grown overnight at 37˚C to late exponential phase. The cells were pel-

leted by centrifugation and resuspended in 500 μL SETS buffer (75 mM NaCl, 25 mM EDTA

pH 8, 20 mM Tris-HCl pH 7.5, 25% sucrose). RNAse A (10 mg/mL, 5 μL) and lysozyme (25

mg/mL, 10 μL) were added and the sample was incubated at 37˚C for 60 min. Proteinase K (20

mg/mL, 14 μL) and 20% SDS (30 μL) were added, the sample was mixed gently by inversion

Fig 4. Daptomycin serial passage. Time-to-event analysis of tolerant clinical isolate BSN14S1 versus comparator clinical isolates.

Comparator strain C2 was excluded from analysis due to its hypermutator phenotype.

https://doi.org/10.1371/journal.pone.0258592.g004
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and incubated at 55˚C for 2 h, inverting occasionally. NaCl (5 M, 200 μL) was added and the

sample mixed thoroughly by gentle inversion. Chloroform (500 μL) was then added and the

sample mixed by gentle inversion for 30 min at room temperature. Following centrifugation

for 15 min at 4,500 × g at room temperature, the upper aqueous phase was transferred to new

1.5 mL tube and another round of chloroform extraction was performed. The upper aqueous

phase was transferred to new 1.5 mL tube. The volume was measured and 1/10 that volume of

3 M sodium acetate was added to the sample. DNA was precipitated with 0.7 volumes of iso-

propanol and the sample was placed on a slow rocker for 5 min. The filamentous genomic

DNA precipitate was fished out with a Pasteur pipette, formed into a hook and sealed with a

flame, and transferred to a series of 3 microcentrifuge tubes containing 1 mL 70% ethanol

each. The final tube was centrifuged to pellet the DNA and the ethanol was removed with a

pipette. The pellet was air dried for several minutes and resuspended in nuclease-free water. A

Nanodrop was used to assess the quality of the genomic DNA prep, Qubit BR assay to check

the concentration and Agilent TapeStation to check the size distribution.

Whole genome sequencing

Hybrid assembly of Nanopore MinION and Illumina (150bp PE) reads was performed using

Unicycler (v0.4.2) to assemble a complete closed genome. Genomes were annotated using

PROKKA (v1.12). Breseq (v0.31.0) was run on BSN14S1 Illumina reads to identify inter-isolate

mutations. Default parameters were used for Breseq SNP calling. Sequences have been depos-

ited to GenBank under PRJNA745996.

Antimicrobial tolerance assays

Study bacteria with identical DAP MICs were adjusted to a McFarland Standard of 0.5 in pre-

warmed MHB50 and cultivated with shaking (37˚C, 180rpm) for 1h resulting in an inoculum

of ~1×108 CFU/mL. Following the 1 h recovery, DAP was added to a final concentration of 10

mg/L. Samples were removed for colony enumeration via dilution plating immediately prior

to addition of DAP and at set intervals after antibiotic challenge. The minimum durations to

2-log, 3-log and 4-log viability reduction (MDK99, TBA and MDK99.99, respectively) were

determined individually per replicate via linear extrapolation between the timepoints immedi-

ately preceding and following the indicated log10 unit reduction from baseline. All analyses

were performed in triplicate. Between-group differences were assessed by one-way ANOVA

and post-hoc Student’s t-test. A significant difference in MDK99 defines “tolerance” whereas a

significant difference in MDK99.99 without significantly differing MDK99 defines “heterotoler-

ance” [1].

Mutation rate assays

Seven biological replicates of each strain were cultivated overnight with shaking in 1 mL of

Mueller Hinton broth. The number of spontaneously rifampin-resistant colonies were enu-

merated in triplicate by dilution plating on media containing 25 mg/L rifampin. The number

of mutations present per culture were estimated using the Drake formula of the median [51].

Daptomycin resistance development assay

Three biological replicates of each strain were cultivated overnight with shaking in 1 mL of

Mueller Hinton broth. Overnight cultures were subcultured 1:100 into tubes containing 0.25

mg/L or 0.5 mg/L DAP and returned to overnight incubation. Each day the tube with the high-

est concentration that supported growth was subcultured into tubes containing 1× or 2× DAP
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and returned to overnight incubation. Time to DAP resistance was defined as the number of

days from growth in 0.5 mg/L DAP until the first day of growth in 4 mg/L DAP. Pairwise com-

parisons between BSN14S1 and comparators were calculated using the Mann-Whitney U test.

An additional independent passage of three biological replicates was performed for BSN14S1

to assess the reproducibility of the findings.

Phenotypic assays

Bacterial growth rate was determined from serial optical density measurements (600 nm)

recorded during exponential growth in Tryptic Soy Broth. Qualitative evaluation of α-, β-, and

δ-hemolytic activity was evaluated on Sheep Blood Agar as described previously [41]. S. aureus
RN4220 was included as a prototypical β-hemolysin-producing strain. Biofilm polystyrene

attachment assay was performed in Trypticase Soy Broth with 0.1% dextrose in tissue culture

treated 24 well plates (Costar, Corning, NY, USA) and measured using crystal violet as

described previously [52]. Biofilm production media was fortified with bovine bile (0.03%,

Sigma-Aldrich) or sodium deoxycholate (100μM, Sigma-Aldrich) as indicated [30]. Bacterial

survival in heparinated human blood (Zenbio) was determined by dilution plating following

1h and 3h exposure as described previously [43]. Whole-cell binding of cationic cytochrome C

was determined spectrophotometrically at 530nm as described previously [53].

Statistical analysis

DAP MIC results and time-to-event analyses were evaluated using Wilcoxon rank sum test.

Two-tailed Student t-test was used for statistical analysis of all other quantitative data. Spear-

man r was used to determine antibiotic susceptibility correlations. P values of�0.05 defined

significance.

Supporting information

S1 Table. Population analysis profiling. Vancomycin concentrations, dilutions tested and

interpretations were performed based on the method of Sader et al. [50]. PAP/AUC ratios (test

values relative to Mu3) <0.9, 0.9 to 1.3, and >1.3 are defined as VSSA, hVISA and VISA,

respectively. Area under the viability-concentration curve (AUC) was determined using

Microsoft Excel software and the trapezoidal method.

(DOCX)

S2 Table. Confirmatory susceptibility testing. Minimum inhibitory concentrations were ver-

ified for each clinical isolate alongside identical clinical isolates from another biorepository.

(DOCX)
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