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A B S T R A C T

The COVID-19 pandemic illustrates the importance of treatment-related decision making in populations. This
article considers the case where the transmission rate of the disease as well as the efficiency of treatments is
subject to uncertainty. We consider two different regimes, or submodels, of the stochastic SIR model, where
the population consists of three groups: susceptible, infected and recovered and dead. In the first regime the
proportion of infected is very low, and the proportion of susceptible is very close to 100the proportion of
infected is moderate, but not negligible. We show that the first regime corresponds almost exactly to a well-
known problem in finance, the problem of portfolio and consumption decisions under mean-reverting returns
(Wachter, JFQA 2002), for which the optimal control has an analytical solution. We develop a perturbative
solution for the second problem. To our knowledge, this paper represents one of the first attempts to develop
analytical/perturbative solutions, as opposed to numerical solutions to stochastic SIR models.
1. Introduction

In December 2019, a novel coronavirus later named severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan,
China, and during January and mid-March 2020 spread rapidly from
its epicenter to other Chinese cities and to over 150 countries across
all continents [1,2]. On March 11 2020, the World Health Organiza-
tion (WHO) declared COVID-19, the disease caused by SARS-CoV2, a
pandemic [3]; six months after its emergence, the number of confirmed
cases of COVID-19 globally exceeded 10 million, with over 500,000
deaths [1]. The pandemic has strained public health and medical
systems internationally, caused global economic activity to stagnate,
and disrupted normal patterns of life across societies [4,5].

Epidemiologically, the rapid and explosive proliferation of SARS-
CoV2 infection following its introduction to human populations is due
the lack of pre-existing immunity to the new virus [6,7]. SARS-CoV2
transmission primarily occurs through person-to-person contact when
a person with COVID-19 coughs, sneezes or talks producing respiratory
droplets containing the virus which reach the nose or mouth of another
person in close proximity allowing for their inhalation [8]. Persons
infected with SARS-CoV2 experience a wide range of clinical manifes-
tations of illness, from asymptomatic to severe disease [9,10]. While
treatment guidelines recommend that patients with mild to moderate
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disease self-manage and monitor their illness at home and/or receive
appropriate care to relieve symptoms, a proportion of patients with
severe COVID-19 will seek medical attention and require hospitaliza-
tion [11]. In the United States, in-patient care for COVID-19 currently
involves supportive management of common complications of severe
disease, as no specific FDA-approved drug is available to treat COVID-
19 to date. A number of therapeutic options of unknown safety and
efficacy are currently under investigation for COVID-19 and are being
administered to hospitalized patients. As is true for the management
of other diseases, the decision to treat COVID-19 involves the patient,
their family and their health care provider, and weighs the potential
benefits and risks of available treatment options. Until one or more vac-
cine is developed for COVID-19, drugs that shorten the infectious period
and reduce transmission of SARS-CoV2 can contribute to controlling the
epidemic within the population in addition to reducing morbidity and
mortality in severely ill patients [12–15].

Mathematical models have long been used in infectious disease
epidemiology for understanding the dynamics of epidemics in popula-
tions and predicting outcomes of effective control strategies [16–19].
In the classic SIR model, one of the most commonly implemented
and the basis for other models, persons within a population move
between three compartments, “Susceptible”, “Infected”, and “Recov-
ered” as a pathogen spreads from person to person [20,21]. Stochastic
https://doi.org/10.1016/j.mbs.2021.108539
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modeling approaches are important when there is uncertainty in model
parameters as would be associated with variability in population de-
mographics that can impact epidemic outcomes [22]. Here we use a
simplified version of the stochastic SIRV (“V”: “Vaccinated”) model
developed by Ishikawa [23] to examine the effect of implementing
treatments of uncertain efficacy to control the COVID-19 epidemic.
Whereas authors like Ishikawa implement a numerical method to de-
termine the optimal control, our goal in simplifying his model was
to obtain tractable solutions, either analytical or perturbative. There
are two main methods in stochastic control: the maximum principle,
and stochastic dynamic programming (DP). In epidemiology, the de-
terministic version of Pontryagin’s maximum principle was used for
instance by Bolzoni et al. [24]. Ishikawa [23] used stochastic DP.
Among others, Cox and Huang [25] pioneered the martingale approach
as an alternative to stochastic DP. Roughly speaking, in stochastic DP
one attempts to first determine the optimal control and then the optimal
state dynamics. In the martingale approach, the order is reversed. We
found it easier to use the martingale approach. In the low infection
case, we show that our model is very similar to the financial model
considered by Wachter [26], who uses the martingale approach. The
same problem was generalized by Liu [27], who uses stochastic DP.

The main novelty of this article is to determine the optimal control
in presence of uncertainty on the treatment recovery rate. We incor-
porate two forms of uncertainty in our model: (i) uncertainty on the
contemporaneous value of the treatment recovery rate (which we will
succinctly call treatment measurement error) and (ii) uncertainty on
the future value of the treatment recovery rate.

We will consider two regimes of our SIR model. In the first regime
the proportion of infected is very low, and the proportion of susceptible
is very close to 100%. This corresponds to a disease with few cases
and deaths, and where recovered individuals do not acquire immunity.
In a second regime, the proportion of infected is moderate, but not
negligible. The main new mathematical result of this article is to
develop a perturbative solution for the second regime. Remarkably,
both regimes (in a first approximation) have the same optimal control
policy, which is independent of both the proportion of infected and
the proportion of susceptible. On a second approximation, the optimal
policy in the second regime is influenced by the latter variables.

Another contribution of this paper is to import from finance to
the epidemiologic literature two different measures which combine
the expected recovery rate of treatment as well as its dispersion. The
first one, the Sharpe ratio, is appropriate when only a single treatment
is available. The second one, the beta of the treatment, extends this
concept to multiple treatments. Indeed, some treatments taken together
can have synergistic effects either in their mean and their dispersion
of the combined recovery rate (positive correlation of the recovery
rates), or both, or can have antagonistic effects in their dispersion of
the combined recovery rate (negative correlation).

The structure of the article is as follows: Section 2 introduces
the stochastic SIR model with treatment uncertainty. In Section 3 we
present our results, both theoretical and numerical for the regime
of low proportion of infected. In Section 4 we present our results
for the regime of moderate proportion of infected. We briefly allude
to the general case in our conclusion. We present in Section 5 an
application to COVID-19. The proof of our main result, Proposition 2,
is in Appendix.

2. A stochastic SIR model with treatment uncertainty

Notation. Let 𝑆∕𝐼∕𝑅 be the proportion of susceptible, infected, recov-
ered. Let 𝛽 be the transmission rate and 𝜇 be the death rate.

In the SIR model, the rate of decrease 𝑑𝑆
𝑑𝑡 of the proportion of

susceptible is equal to the constant transmission rate 𝛽 time 𝑆𝐼 . In a
stochastic model this remains true on average, that is,

𝐸[
𝑑𝑆(𝑡)

] = −𝐸[𝛽𝑆(𝑡)𝐼(𝑡)]

𝑑𝑡

2

We complete this model by adding a noise term 𝜎
√

𝑆𝐼 𝑑𝐵1
𝑑𝑡 , where

𝑑𝐵1
𝑑𝑡 is white noise. This is a simplified version of the model in Ishikawa
23]:

𝑑𝑆
𝑑𝑡

= −𝛽𝑆𝐼 + 𝜎𝑆
√

𝑆𝐼
𝑑𝐵1
𝑑𝑡

(1)

Our noise term is such that, as required, 𝑆(𝑡) remains in the interval
[0, 1]. Indeed, when 𝑆(𝑡) = 0, the rate 𝑑𝑆

𝑑𝑡 is clearly zero, while when
𝑆(𝑡) = 1, we have 𝐼(𝑡) = 0, thus 𝑑𝑆

𝑑𝑡 is also equal to zero.
For simplicity, we label the ‘‘no treatment case’’ by the subscript

𝑖 = 0, and the ‘‘treatment case’’ by the subscript 𝑖 = 1. We call 𝐾𝑖
(𝑖 ∈ {0, 1} ) the recovery rate of treatment 𝑖 and 𝜇𝑖 > 0 (𝑖 ∈ {0, 1}) the
death rate. In Section 3.2 we will generalize this model to the multiple
treatment case, so that treatments recovery rates will be labeled 𝐾𝑖 for
𝑖 ∈ {0,… , 𝑛}.

The optimal policy 𝛼 is referred to as the optimal allocation of the
treatment. The product 𝛼(𝑡)𝐼(𝑡)𝐾1(𝑡)𝑑𝑡 corresponds to the proportion of
the population that recovers due to the treatment in period [𝑡, 𝑡+𝑑𝑡]. The
allocation 𝛼 can have two different interpretations. In the first one 𝛼(𝑡)
represents the proportion of infected that undergo treatment, and thus
𝛼(𝑡) ∈ [0, 1]. In the second interpretation, we assume (like in the AIDS
epidemic) that treatment is very expensive, and that recovery depends
linearly (in a first approximation) on how much one spends on the
treatment. In this case 𝐾1 corresponds then to the recovery rate of the
basic dose of the treatment, while 𝛼(𝑡) corresponds to how many doses
he population purchases. The situation 𝛼(𝑡) < 0 corresponds to the case
here treatment is discovered to become harmful and necessitates an
lternative treatment. For simplicity, we will describe our model as a
unction of the first interpretation thereafter but relax the constraint
(𝑡) ∈ [0, 1].1

Depending whether the individual is treated or not, there are then
our different ways for an infected individual to exit the pool of
nfected:

• not treated and recover
• not treated and die
• treated and recover
• treated and die

Thus, the ‘‘out of infection rate’’ will be:
𝑑𝑅(𝑡)
𝑑𝑡

= (1 − 𝛼(𝑡))𝐼(𝑡)𝐾0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

not treated and recover

+ (1 − 𝛼(𝑡))𝐼(𝑡)𝜇0
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
not treated and die

+ 𝛼(𝑡)𝐼(𝑡)𝐾1(𝑡)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

treated and recover

+ (2)

𝛼(𝑡)𝐼(𝑡)𝜇1
⏟⏞⏞⏟⏞⏞⏟

treated and die

− 𝛼(𝑡)𝐼(𝑡)𝜎
𝑑𝐵2
𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
treatment measurement error

For simplicity, we assume that the Brownian motion driving trans-
mission uncertainty (𝐵1) is independent from the Brownian motion
driving treatment uncertainty (𝐵2). We suppose that 𝜇0 ≥ 𝜇1 (people
die faster without treatment than with treatment), but the reader will
not lose any intuition by supposing that 𝜇0 = 𝜇1. Most of the time
𝐾1(𝑡) > 𝐾0 (treatment is better than no treatment), but not necessarily.
We relax this requirement somewhat by requiring:

𝑃 (𝐾0 < 𝐾1(𝑡)) is close to one (3)

We model the treatment rate as an Ornstein–Uhlenbeck process:

𝑑𝐾1(𝑡) = 𝜆𝑘(𝑘̄1 −𝐾1(𝑡))𝑑𝑡 + 𝜎𝑘𝑑𝐵2(𝑡)

1 We will see in the results section that, since 𝛼(𝑡) follows an Ornstein–
Uhlenbeck process, the probability that 𝛼(𝑡) ∉ [0, 1] can be made very small,
so that, even in the first interpretation, our control is quasi-optimal.
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with the mean-reversion rate 𝜆𝑘 > 0 and the long run value of the
reatment rate 𝑘̄1. It is well-known that 𝐾1 is Gaussian, with variance
qual to:

𝑎𝑟[𝐾1(𝑡)] =
𝜎2𝑘
2𝜆𝑘

(1 − 𝑒−2𝜆𝑘𝑡)

Thus, if mean-reversion is large compared to volatility 𝜎𝑘, constraint
(3) is satisfied. We simplify (2) by:
𝑑𝑅(𝑡)
𝑑𝑡
𝐼(𝑡)

= 𝐾0 + 𝜇0 + 𝛼(𝑡)(−𝐾0 +𝐾1(𝑡) − 𝜇0 + 𝜇1) − 𝛼(𝑡)𝜎
𝑑𝐵2
𝑑𝑡

(4)

Putting everything together, the dynamics of the infected is:

𝑑𝐼(𝑡)
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼(𝑡) −
𝑑𝑅(𝑡)
𝑑𝑡

− 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)
𝑑𝐵1
𝑑𝑡

We try to minimize a measure of the infected over our horizon 𝑇 . To
odel risk-aversion to unfavorable treatment decisions, the decision-
aker (for instance, governmental biomedical and public health en-

ities specifying treatment guidelines) is supposed to minimize the
xpected value of a convex and increasing function of 𝐼(𝑇 ). Alternately,

one can maximize the negative thereof, i.e., maximize the expected
value of a concave and decreasing function of 𝐼(𝑇 ). Such a function
𝑢 is called a utility function in financial economics. The policy obtained
in maximizing the expected value of a concave utility function can be
shown, under certain conditions, to maximize the expected value of the
outcome (here −𝐼 ) under a constraint on the dispersion of the outcome.
Out of the universe of concave decreasing utility functions, we choose
the power utility function

𝑢(𝐼) = − 𝐼1−𝛾

1 − 𝛾

The coefficient 𝛾 is often called the risk-aversion parameter. When
𝛾 = 0, the decision-maker is risk-neutral, meaning that the uncertainty
does not have an influence on her decisions. It is straightforward to
check that this power utility function is concave in 𝐼 when 𝛾 < 0,which
we will assume. Taking for instance 𝛾 = −1, we see that the objective
is to

maximize 𝐸[− 𝐼2

2
]

which returns the same policy as:

minimize 𝐸[ 𝐼
2

2
]

The importance of analytic formulations is that other figures of in-
terest in this model, like the expected number of deaths from treatment
can be analytically calculated, and depend on 𝛾. Thus, a decision-maker
can calibrate its risk-aversion parameter 𝛾 on other goals. Expected
number of deaths is only one type of goal and economic factors that
can be easily added. Our controlled SIR model is thus:

max
𝛼(𝑡)

𝐸[−
𝐼(𝑇 )1−𝛾

1 − 𝛾
]

𝑑𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡 + 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) (5)
𝑑𝐼(𝑡) =

(

𝛽𝑆(𝑡) − (𝐾0 + 𝜇0) + 𝛼(𝑡)(𝐾0 −𝐾1(𝑡) + 𝜇0 − 𝜇1)
)

𝐼(𝑡)𝑑𝑡

+ 𝛼(𝑡)𝐼(𝑡)𝜎𝑑𝐵2(𝑡) − 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) (6)
𝑑𝐾(𝑡) = 𝜆𝑘(𝐾̄ −𝐾(𝑡))𝑑𝑡 + 𝜎𝑘𝑑𝐵2(𝑡)

Observation The relative sign of our volatilities 𝜎 and 𝜎𝑘 is impor-
tant. We will assume without loss of generality that 𝜎 < 0. The sign
of 𝜎𝑘 is the sign of covariance between the measured value of today’s
treatment rate and the change in value of the treatment rate between
today and a future date. An example may help illustrate the difference.
Suppose that over a week one performs daily measurements of the
treatment recovery rate as well as daily forecasts of the evolution of the
treatment recovery rate over the next day. The two quantities measured
3

Fig. 1. A stochastic SIR Model.

each day 𝑡 are proportional to the same white noise 𝐵2(𝑡+1 day)−𝐵2(𝑡).
ne then calculates weekly estimates 𝜎̂ of 𝜎 and 𝜎̂𝑘 of 𝜎𝑘 over these
daily observations. Since we arbitrarily choose 𝜎 > 0, a positive

𝜎̂𝑘 shows a correlation of +1 between the measurement (of today’s
reatment rate) and the forecast.

Fig. 1 is a depiction of our model.

. Results in the low infection regime

.1. Single treatment case

We assume 𝑆(𝑡) close to one and 𝜎𝑆 = 0. Thus the term:

= 𝛽𝑆(𝑡) − (𝐾0 + 𝜇0) ≃ 𝛽 −𝐾0 − 𝜇0

s almost constant. We call 𝑟 the risk-free infection rate. Indeed treatment
s risky but, on average has beneficial effects. We also define the impact
f treatment risk 𝑋:

(𝑡) =
𝐾0 + 𝜇0 − 𝜇1 −𝐾1(𝑡)

𝜎
(7)

as well as the long run impact of the treatment risk 𝑋̄ ∶

𝑋̄ =
𝐾0 + 𝜇0 − 𝜇1 − 𝑘̄1

𝜎
(8)

Defining 𝜆𝑥 = 𝜆𝑘, 𝜎𝑥 = 𝜎𝑘∕𝜎, it is straightforward to see that 𝑋(𝑡) is
also an Ornstein–Uhlenbeck process, i.e. :

𝑑𝑋(𝑡) = 𝜆𝑥(𝑋̄ −𝑋(𝑡))𝑑𝑡 − 𝜎𝑥𝑑𝐵2(𝑡)

and condition (3) translates into:

𝑃 (𝐾0 < 𝐾1(𝑡)) =

𝑃 (
𝜇1 − 𝜇0 > 𝑋(𝑡)) is close to one
𝜎
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In Appendix A we develop a comparison between our model and a
odel of optimal investment,

We restate our problem thus as:

max
𝐼(𝑇 )

𝐸[−
𝐼(𝑇 )1−𝛾

1 − 𝛾
] (9)

𝑑𝐼(𝑡) = (𝑟 + 𝛼(𝑡)𝜎𝑋(𝑡))𝐼(𝑡)𝑑𝑡 + 𝛼(𝑡)𝜎𝐼(𝑡)𝑑𝐵2(𝑡) (10)
𝑑𝑋(𝑡) = 𝜆𝑥(𝑋̄ −𝑋(𝑡))𝑑𝑡 − 𝜎𝑥𝑑𝐵2(𝑡) (11)

In this regime our solution will depend on a kernel 𝐻0(𝑋𝑡, 𝑡), while
in the second regime it will also depend on two other kernels 𝐻1(𝑋𝑡, 𝑡)
and 𝐻2(𝑋𝑡, 𝑡) that are closely related. In order to unify notation we
define the kernels 𝐻𝑖(𝑋𝑡, 𝑡) in a unique way.

Definition. the solution kernels 𝐻𝑖(𝑋𝑡, 𝑡) for 𝑖 = 0, 1, 2 are given by:

𝐻𝑖(𝑋𝑡, 𝑡) = exp

(

1
𝛾
(
𝐴𝑖,1(𝜏)𝑋2

𝑡
2

) + 𝐴𝑖,2(𝜏)𝑋𝑡 + 𝐴𝑖,3(𝜏)

)

(12)

For the kernel 𝑖 = 0, we have:

𝐴0,1(𝜏) =
1 − 𝛾
𝛾

2(1 − exp(−𝜃0𝜏))
2𝜃0 − (𝑏0,2 + 𝜃0)(1 − exp(−𝜃0𝜏))

(13)

0,2(𝜏) = 𝜆𝑥𝑋̄ ∫

𝜏

0
exp

(

𝑏0,3𝐴0,1(𝜏 − 𝑠) +
𝑏0,2
2

(𝜏 − 𝑠)
)

𝐴0,1(𝑠)𝑑𝑠 (14)

𝐴0,3(𝜏) = ∫

𝜏

0

𝜎2𝑥
2𝛾

𝐴2
0,2(𝑠) +

(

𝜎2𝑥
2

+ 𝜆𝑥𝑋̄

)

𝐴0,1(𝑠) + (1 − 𝛾)𝑟𝑑𝑠 (15)

where

𝑏0,1 =
1 − 𝛾
𝛾

< 0

0,2 = 2(
𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥)

𝑏0,3 = 1
𝛾
𝜎2𝑥 < 0

𝜃0 =
√

𝑏20,2 − 4𝑏0,1𝑏0,3

Proposition 1. If 𝜎𝑥 < 0 then the problem (9), (10), (11) has a unique
optimal solution given by:

𝐼(𝑡) = (𝑍(𝑡))1∕𝛾𝐻0(𝑋𝑡, 𝑇 − 𝑡) (16)

where
𝑑𝑍(𝑡)
𝑍(𝑡)

= (𝑟 +𝑋2(𝑡))𝑑𝑡 +𝑋(𝑡)𝑑𝐵2(𝑡) (17)

𝑍(0) =
(

𝐼(0)
𝐻0(𝑋(0), 𝑇 )

)𝛾
(18)

oreover the optimal allocation of the treatment 𝛼∗(𝑡) is equal to

0(𝑡) =
𝑋(𝑡)
𝛾𝜎

−
𝜎𝑥
𝛾𝜎

(

𝐴0,1(𝑇 − 𝑡)𝑋(𝑡) + 𝐴0,2(𝑇 − 𝑡)
)

(19)

Sketch of Proof. For existence and uniqueness of the solution, we refer
to Wachter [26]. The key point is to verify that 𝐴0,1 given in (13) is
finite, which occurs if 𝜃0 > 𝑏0,2. Whereas Wachter proved it in the case
𝛾 > 1, in our case 𝛾 < 0. We first rewrite 𝜃20 as:

𝑏20,2 − 4𝑏0,1𝑏0,3 = 4
(

𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥

)2
− 4𝜎2𝑥

1 − 𝛾
𝛾2

= 4(
𝛾 − 1
𝛾

𝜎2𝑥 − 2
𝛾 − 1
𝛾

𝜎𝑥𝜆𝑥 + 𝜆2𝑥)

Recall that, since 𝛾 < 0, 𝛾−1
𝛾 > 1. Thus, if 𝜎𝑥 < 0:

2
0,2 − 4𝑏0,1𝑏0,3 > 4(|𝜎𝑥| + 𝜆𝑥)2

Clearly, if 𝜎𝑥 < 0, then 𝑏0,2 < 0, so that:

> 𝑏
0 0,2

4

Thus show that 𝐴0,1 is finite and thus differentiable. Clearly (14)
and (15) show that both 𝐴0,2 and 𝐴0,3 are finite and differentiable. Let
the operator 𝐿0 be defined by

𝐿0𝐹 = 1
2
𝜎2𝑥

𝜕2𝐹
𝜕𝑋2

+ 1
2
𝑍2𝑋2 𝜕2𝐹

𝜕𝑍2
−𝑍𝑋𝜎𝑥

𝜕2𝐹
𝜕𝑍𝜕𝑋

−𝜇𝑍 𝜕𝐹
𝜕𝑍

+ (𝜆𝑥𝑋̄ + (𝜎𝑥 − 𝜆𝑥)𝑋) 𝜕𝐹
𝜕𝑋

− 𝑟𝐹

The martingale method then results in the Ansatz 𝐼(𝑡) = 𝐹 (𝑍(𝑡),
𝑋(𝑡), 𝑡) where 𝐹 solves the PDE:
( 𝜕
𝜕𝑡

+ 𝐿0

)

𝐹 = 0

hich solution is (16). ■

The advantage of this solution is the remarkably clear interpretation
f (19). To borrow terminology from finance, the optimal 𝛼 is the sum
f:

• the myopic allocation 𝑋(𝑡)
𝛾𝜎

• the hedging allocation 𝜎𝑥
|𝛾|𝜎 (𝐴0,1(𝑇 − 𝑡)𝑋(𝑡) + 𝐴0,2(𝑇 − 𝑡)).

As shown in [28], the myopic allocation is the optimal 𝛼 in a
impler model where the impact of treatment risk is constant, which
eans that, in our model the recovery rate 𝐾1 is a constant 𝑘̄1. It

oincides with the static allocation in a traditional mean–variance
odel of Markowitz [29]. Thus as expected, the myopic allocation can

e decomposed into:
𝑋(𝑡)
𝛾𝜎

= 1
|𝛾|𝜎

𝐾1(𝑡) + 𝜇1 − (𝐾0 + 𝜇0)
𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sharpe ratio

(20)

The Sharpe ratio of a security is a measure of its risk-adjusted
return and characterizes the attractiveness of the security. Conversely
in our model the Sharpe ratio characterizes the potential benefit of
the treatment. The less uncertain the treatment (𝜎 small) the more
the treatment should be recommended. Also, the higher the difference
𝐾1(𝑡) −𝐾0, i.e., the difference of recovery rates between treatment and
no treatment, the more desirable the treatment. Eq. (20) also shows the
importance of the term 1

𝛾 . The more risk-averse the decision maker 𝛾,
the less likely he or she is to opt for the risky treatment.

For a risk-neutral decision maker, 𝛾 = 0. Thus the myopic solution is
simple:

• if 𝑘̄1 + 𝜇1 > 𝐾0 + 𝜇0: treat everybody
• if 𝑘̄1 + 𝜇1 < 𝐾0 + 𝜇0: treat nobody.

We note that the same bang–bang solution obtains in the case of
erfect knowledge of the treatment quality (𝜎 = 0).

Whereas the myopic allocation is a best response to treatment
easurement error, the hedging allocation responds to the (future)

tochastic behavior of the treatment. It is easy to see that both 𝐴0,1
and 𝐴0,2 decrease with time (in absolute value) and are equal to zero
at the horizon 𝑡 = 𝑇 . Moreover, 𝐴0,1 is positive.

Thus the importance of the hedging allocation decreases with time.
This is consistent with the meaning of hedging: hedging is important
at the beginning of treatment, because its effects are felt over a long
period, but when time is close to the horizon, its importance vanishes.

To get a better grasp of the hedging allocation, we rewrite it in two
equivalent expressions. We replace 𝑋(𝑡) by (7) and 𝑋̄ by (8) and write
𝐴0,2(𝜏) = 𝑋̄𝑝(𝜏), where:

𝑝(𝜏) = 𝜆𝑥 ∫

𝜏

0
exp

(

−𝑏0,2𝐴0,1(𝜏 − 𝑠) −
𝑏0,2
2

(𝜏 − 𝑠)
)

𝐴0,1(𝑠)𝑑𝑠 ≥ 0

The first expression for the hedging allocation is then:

𝜎𝑘
|𝛾|𝜎3

⎛

⎜

⎜

⎜

𝐴0,1(𝑇 − 𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(

𝐾1(𝑡) + 𝜇1 − (𝐾0 + 𝜇0)
)

+ 𝑝(𝑇 − 𝑡)
⏟⏟⏟

(𝑘̄1 + 𝜇1 −𝐾0 − 𝜇0)

⎞

⎟

⎟

⎟

⎝ ≥0 ≥0 ⎠
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Fig. 2. Parameters are 𝜇0 = 𝜇1 = 0.1, 𝐾0 = 𝐾1(0) = 1.8, 𝑘̄1 = 2, 𝜎 = 1, 𝜎𝑘 = 0.1, 𝜆𝑘 = 1.

Suppose that 𝜆𝑥 is very small so that 𝑝 is negligible. In that case,
he influence of 𝑘̄1 is negligible. Then assuming treatment is beneficial
both 𝐾1(𝑡) larger than 𝐾0, and 𝜇1 = 𝜇0) the hedging allocation is:

• positive if 𝜎𝑘∕𝜎 < 0
• negative otherwise.

This policy above is consistent with the meaning of hedging. Sup-
ose that today’s measurements are negatively correlated with the
orecast of the recovery rate, i.e., 𝜎𝑘∕𝜎 < 0, then the hedging allocation

should be positive in anticipation of better treatment performance to
come. Conversely, the hedging allocation should be negative when the
forecast is worse than the measurement. To highlight the importance
of the long run value of the treatment 𝑘̄1 when 𝜆𝑥 is larger, we use our
second expression for the hedging allocation:

−
𝜎𝑘

|𝛾|𝜎3
∗ (21)

⎧

⎪

⎨

⎪

⎩

𝑝(𝑡)
⏟⏟⏟

≥0

(𝑘̄1 −𝐾1(𝑡)) (22)

+
(

𝐴0,1(𝑇 − 𝑡) + 𝑝(𝑇 − 𝑡)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

(𝐾1(𝑡) + 𝜇1 − (𝐾0 + 𝜇0))

⎫

⎪

⎬

⎪

⎭

(23)

Consider the case when treatment improves with time, i.e., when
̄ 1 > 𝐾1(𝑡). There are now two subcases. If 𝜎𝑘 has the opposite sign as
, then the hedging allocation increases with (𝑘̄1−𝐾1(𝑡)), in anticipation
f even better results to come. Conversely, if 𝜎𝑘 has the same sign as
, then the hedging allocation decreases with (𝑘̄1 −𝐾1(𝑡)).

Like for the myopic allocation, the absolute value of the hedging al-
ocation is inversely proportional to |𝛾|𝜎2. The higher the risk aversion
|𝛾| high) or the higher the imprecision (𝜎2 high), the smaller should
e the magnitude of the hedging allocation.

Finally, it is remarkable that the value of 𝐼(𝑡) has no impact on the
ptimal treatment policy.

The following figures show how the optimal allocation varies as
function of the risk-aversion parameter 𝛾. Fig. 2 shows the optimal

llocation as a function of the Sharpe ratio for horizon 𝑇 = 5 months
t time 𝑡 = 0.

Figs. 3 to 6 report the expected valued and the standard deviation
f the optimal allocation 𝛼0 as a function of time. As can be seen, since
0 is Gaussian, it is easy to reduce the probability that 𝛼0 is outside the
nterval [0, 1]: one needs only select a lower 𝛾. The parameters for the
 c

5

Fig. 3. Optimal Allocation. See Table 1 for parameter values.

Table 1
Parameters for Figs. 3 to 6.

Treatment parameter Symbol Value

Death rate/no treatment 𝜇0 0.1
Death rate 𝜇1 0.1
Recovery rate/ no treatment 𝐾0 1.8
Recovery rate at time 0 𝐾1(0) 1.8
Long run value of recovery rate 𝑘̄1 2.5
Volatility of the measurement of today’s recovery rate 𝜎 1
Volatility of changes in the recovery rate 𝜎𝑘 0.1
Speed of mean-reversion of the recovery rate 𝜆𝑘 1

four cases below are given in Table 1. We assume that time is measured
in months.

3.2. Multiple treatment case

Generalizing the model above to multiple treatments 𝑖 ∈ {0,… , 𝑛}
oses considerable technical difficulties. We refer the reader to Liu
2007) for a discussion. We consider instead in this section a useful
implification of the model. While the impact of each treatment is
mprecise, each treatment recovery rate 𝐾𝑖 is constant, i.e.:

𝑖 = 𝑘̄𝑖 𝑖 = 0,… , 𝑛

The allocation 𝛼𝑖 ≥ 0, which as explained above can represent the
roportion of the infected undergoing treatment 𝑖 satisfies:
𝑛

𝑖=0
𝛼𝑖(𝑡) = 1

We suppose a normal model, whereby that the covariance between
he treatment recovery rates 𝐾𝑖 and 𝐾𝑗 over a period of time equal to 𝛥𝑡
s given by 𝑣𝑖𝑗 𝛥𝑡. Let (𝜎𝑖,𝑗 ) be a square root of the variance–covariance
atrix 𝐕 = (𝑣𝑖𝑗 ). The equation for the out-of infection rate (4) can thus

e generalized into:

𝑑𝑅(𝑡)
𝐼(𝑡)

= 𝐾0 + 𝜇0 +
𝑛
∑

𝑖=1
𝛼(𝑡)(−𝑘0 + 𝑘̄𝑖 − 𝜇0 + 𝜇𝑖) −

𝑛
∑

𝑖=1
𝛼𝑖(𝑡)

𝑛
∑

𝑗=1
𝜎𝑖𝑗𝑑𝐵𝑗+1 (24)

here (𝐵2,… , 𝐵𝑛+1) are independent Brownian motions. The resulting
roblem is identical to the Merton [28] portfolio problem. We define
he following vectors. Let 𝛼 = (𝛼1,… , 𝛼𝑛) be the allocation, 𝐤̄ =
(𝑘1,… , 𝑘𝑛) be the treatment recovery rate, 𝜇 = (𝜇1,… , 𝜇𝑛) be the death
rate of each treatment, and 𝐞 be the vector of ones. Then the optimal
allocation is:

𝛼 = 1
|𝛾|

𝐕−1(𝐤̄ + 𝜇 − (𝑘̄0 + 𝜇0)𝐞)

The attentive reader will realize that this is a multivariate gener-
lization of the myopic allocation (20). While a good measure of the
fficiency of the treatment is the Sharpe ratio in the single treatment
ase, we suggest that, for multiple treatments, a good measure to
ompare treatments would be the beta of each treatment recovery rate,
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Fig. 4. Optimal Allocation. See Table 1 for parameter values.

Fig. 5. Optimal Allocation. See Table 1 for parameter values.

specially if the number of treatments is large. The beta of a security
s one of the main measures to pick stocks in a financial portfolio. In
ddition to the Sharpe ratio, the beta includes the correlation between
he recovery rate of a single treatment and the recovery rate of a
ombination of optimal treatments. Since space is lacking to define
eta properly, we refer the reader to a financial textbook such as
ngersoll [30].

. Results in the moderate infection regime

For simplicity, we write:

= 𝐾0 + 𝜇0

We restate our problem thus as:

max
𝛼(𝑡)

𝐸[−
𝐼(𝑇 )1−𝛾

1 − 𝛾
] (25)

𝑑𝑆(𝑡) = −𝛽𝑆(𝑡)𝐼(𝑡)𝑑𝑡 + 𝜎𝑆
√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) (26)
𝑑𝐼(𝑡) = (𝛽𝑆(𝑡) − 𝜇 + 𝛼(𝑡)𝜎𝑋(𝑡))𝐼(𝑡)𝑑𝑡 − 𝜎𝑆

√

𝑆(𝑡)𝐼(𝑡)𝑑𝐵1(𝑡) + (27)
𝛼(𝑡)𝜎𝐼(𝑡)𝑑𝐵2(𝑡) (28)

𝑑𝑋(𝑡) = 𝜆𝑥(𝑋̄ −𝑋(𝑡))𝑑𝑡 − 𝜎𝑥𝑑𝐵2(𝑡) (29)

Our solutions are also written as a function of the kernels defined
by the formula (12). For the first kernel 𝐻1, we have:

𝐴1,1(𝜏) = 𝐴0,1(𝜏) (30)

𝐴1,2(𝜏) = 𝐴0,2(𝜏) (31)

𝐴1,3(𝜏) = 𝐴0,3(𝜏) + (1 − 𝛾)(𝜇 − 𝑟)𝜏 (32)

The second kernel 𝐻2, is obtained by replacing 𝛾 by 𝛾∕2 in the first
kernel, that is:

𝐴2,1(𝜏) =
1 − 𝛾∕2 2(1 − exp(−𝜃2𝜏)) (33)

𝛾∕2 2𝜃0 − (𝑏2,2 + 𝜃2)(1 − exp(−𝜃2𝜏))

6

𝐴2,2(𝜏) = 𝜆𝑥𝑋̄ ∫

𝜏

0
exp

(

𝑏3,2𝐴2,1(𝜏 − 𝑠) +
𝑏2,2
2

(𝜏 − 𝑠)
)

𝐴2,1(𝑠)𝑑𝑠 (34)

2,3(𝜏) = ∫

𝜏

0

𝜎2𝑥
2𝛾

𝐴2
2,2(𝑠) +

(

𝜎2𝑥
2

+ 𝜆𝑥𝑋̄

)

𝐴2,1(𝑠) − (1 − 𝛾∕2)𝜇𝑑𝑠 (35)

where

𝑏2,1 =
1 − 𝛾∕2
𝛾∕2

𝑏2,2 = 2(
𝛾∕2 − 1
𝛾∕2

𝜎𝑥 − 𝜆𝑥)

𝑏2,3 = 2
𝛾
𝜎2𝑥

𝜃2 =
√

𝑏22,2 − 4𝑏2,1𝑏2,3

Proposition 2. Let 𝐼(0) = 𝜀. If 𝜎𝑥 < 0 then the problem (25) to (29) has
solution such that

(𝑡) = 𝜀𝑍1∕𝛾 (𝑡)𝐻1(𝑋(𝑡), 𝑇 − 𝑡) + (36)

+𝜀2
𝛽2

2𝛾𝜎𝑆2
𝑍(𝑡)2∕𝛾𝑆(𝑡)∫

𝑇

𝑢=𝑡
𝐻2(𝑋(𝑡), 𝑢 − 𝑡)𝐻1(𝑋(𝑡), 𝑢)2𝑑𝑢 + 𝑂(𝜀3)

here 𝑍(𝑡) satisfies:

𝑑𝑍
𝑍

= (−𝜇 +𝑋2 +
𝛽2𝑆𝐼
𝜎2𝑆

)𝑑𝑡 −
𝛽
√

𝑆𝐼
𝜎𝑆

𝑑𝐵1 +𝑋𝑑𝐵2 (37)

𝑍(0) =
(

𝐼(0)∕𝜀
𝐻1(𝑋(0), 𝑇 )

)𝛾

Moreover the optimal proportion undergoing treatment 𝛼∗(𝑡) is equal to
𝛼0(𝑡) + 𝜀𝛼1(𝑡) + 𝑂(𝜀2), where 𝛼0(𝑡) is given in (19):

Observation: It is remarkable that, as a first order approximation,
he optimal policy is the same in the low and moderate pandemic
egimes. The term 𝛼1(𝑡) can be easily calculated by inserting (36) into
68). Both 𝑆(𝑡) and 𝐼(𝑡) have a non-negligible impact on 𝛼1(𝑡). We leave
more detailed analysis for future work.

. Application to COVID-19

In this section, we assume a low infection regime. We calculated the
ptimal control and infected for two experiments:

• experiment 1: US data set in 2020 with long run value of the
recovery rate (𝑘̄1) estimated from the data

• experiment 2: US data set in 2020 with improved long run value
of the recovery rate (𝑘̄1).

The reason for considering the second dataset is clear, after observ-
ng the results. The value of 𝑘̄1 estimated from the data was very low,

barely better than the no treatment recovery rate (𝐾0). With a constant
value of 𝛽, the pandemic goes beyond control, and the low infection
regime assumption does not hold any more, yielding absurd results.
Multiplying 𝑘̄1 by a factor 10 makes us stay in the low infection regime
in experiment 2.

Results in Section 3 show that for 𝛾 > −5 the probability that
𝛼0(𝑡) ∉ [0, 1] is significant. For this reason, we used lower values of
𝛾 in this section.

In both experiments, we performed a Monte Carlo simulation using
the Euler scheme and 10,000 scenarios, starting at 𝐼(0) = 0.003, or
about 1 million persons in the US.

5.1. Experiment 1: US DataSet in 2020

We calibrated our low infection regime model to weekly US Covid-
19 data from April 12, 2020 to November 8, 2020. To simulate our
model for the US population, we used publicly available data from
the CDC [31] and the COVID Tracking Project [32] on COVID-19
cases and deaths by state over time for the period 4/12/20–11/8/20,
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Fig. 6. Optimal Allocation. See Table 1 for parameter values.

able 2
arameters for Figs. 7 to 10.
Treatment parameter Symbol Value

Death rate/no treatment 𝜇0 0.0575
Death rate 𝜇1 0.0575
Recovery rate/ no treatment 𝐾0 0.2559
Recovery rate at time 0 𝐾1(0) 0.2559
Long run value of recovery rate 𝑘̄1 0.4612
Volatility of the measurement of today’s recovery rate 𝜎 −0.4418
Volatility of changes in the recovery rate 𝜎𝑘 −1.6623
Speed of mean-reversion of the recovery rate 𝜆𝑘 0.7692

mortality estimates from the Coronavirus Resource Center at Johns
Hopkins University [33] and US Census data [34] to estimate the
2020 US population (i.e., denominator data). We supplemented these
data with results from published studies of treated hospitalized COVID-
19 patients [35–38], statistics provided by the CDC for the purpose
of COVID-19 pandemic planning [39], and referenced NIH COVID-19
Treatment Guidelines [40].

We assumed that there was no treatment before May 30, 2020, and
an average treatment rate of 25% afterwards. The number of recovered
in the period before May 30 was used to estimate 𝐾0. The transmission
rate 𝛽 was assumed to be constant over the period. Likewise, since
the treatment did not show consistent benefit on reducing deaths for
patients with COVID-19, we set 𝜇0 = 𝜇1 and chose the whole period to
estimate it.

Taking the logarithm of the series and applying proper differencing,
we obtained an ARMA(1,1) model for the period after May 30, 2020,
which we estimated using the Econometric Toolbox in Matlab, which
gave us all the other parameters. We set 𝐾1(0) = 𝐾0.

We obtained the following parameters shown in Table 2.
Figs. 7 and 8 show the expected value and the standard deviation

of the optimal allocation 𝛼0 as a function of time. As before, a lower
𝛾 reduces the dispersion of 𝛼0 as well as its mean. The optimal control
increases with time on average, since the average recovery rate 𝐸[𝐾1(𝑡)]
ncreases with time. However, Figs. 9 and 10 show that after about-15
0 weeks the pandemic leaves the low infection regime. Results are
hen absurd,2 and are showed only for the sake of completeness.

.2. Experiment 2: US DataSet in 2020 with improved Treatment

We took the same parameters as in experiment 1, except for 𝑘̄1.
Figs. 10 and 11 show the expected value and the standard deviation

f the optimal allocation 𝛼0 as a function of time. As before, a lower

2 Another reason why our simple estimation does not reflect reality is that
e assumed a constant value of 𝛽 over the period. Adoption of measures of

social distancing as well as greater proportion of the population spending time
outdoors resulted in a decrease of 𝛽 over the summer 2020, and a flattening
of the epidemic.
7

Fig. 7. Optimal Allocation. See Table 2 for parameter values.

Table 3
Parameters for Figs. 11 to 14.

Treatment parameter Symbol Value

Death rate/no treatment 𝜇0 0.0575
Death rate 𝜇1 0.0575
Recovery rate/ no treatment 𝐾0 0.2559
Recovery rate at time 0 𝐾1(0) 0.2559
Long run value of recovery rate 𝑘̄1 4
Volatility of the measurement of today’s recovery rate 𝜎 −0.4418
Volatility of changes in the recovery rate 𝜎𝑘 −1.6623
Speed of mean-reversion of the recovery rate 𝜆𝑘 0.7692

𝛾 reduces the dispersion of 𝛼0 as well as its mean. The optimal control
increases with time on average, since the average recovery rate 𝐸[𝐾1(𝑡)]
increases with time. Compared to experiment 2, the long run value
of the recovery rate is sufficient to keep the epidemic in check, and
the allocation is larger, since the treatment is better. The results are
relatively insensitive to the value of 𝛾, for −10 > 𝛾 > −20. For higher
values of 𝛾, the optimal allocation is often larger than 1.

6. Conclusion

We obtained in this paper a series of analytical expressions for the
optimal proportion of infected undergoing treatment in a pandemic.
We analyzed the low infection regime, where the pandemic statistics
and dynamics do not have an impact. We then analyzed the moderate
infection regime, where pandemic statistics and dynamics have a sec-
ond order impact on the optimal decision. The main technical result of
this article is Proposition 2. It is indeed remarkable that, while the SIR
model with treatment uncertainty has no clear analytical solution that
we know of, the optimal policy is tractable.

Many important problems remain to be solved. The first one consists
in delimiting the frontier between the moderate infection and the high
infection regimes. The solution technique used from Proposition 2 can
be expanded to higher orders, but one needs to verify whether the
solution is meaningful, i.e., if 𝐼(𝑡) remains between zero and one. If not,
then we reach the catastrophic high infection regime. Separating the
differential operator acting on 𝐼 into two differential operators 𝐿1 and
𝐿2 (see (53) and (54)) is qualitatively important. While the operator
𝐿1 is a traditional semilinear parabolic operator, the operator 𝐿2 is a
uasilinear operator that resembles the operator in the nonlinear traffic
quation. We may thus expect the catastrophe to arise from a shock
ave, which would dominate the diffusive effects.

The multiple treatment situation deserves further attention. Indeed,
ur analysis in this article was restricted to the low infection regime
ith no uncertainty over the evolution of the treatment recovery rate.
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One should generalize our solution technique to the moderate infection
regime, and possibly consider uncertainty over the forecast of the
recovery rate.

Finally, we believe that the martingale approach of optimal control
can be fruitfully applied to analytically characterize optimal vaccina-
tion schemes.
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Appendix A. Relation with the financial investment problem

The following table maps out the correspondence in variable names
between the investment problem considered by Wachter [26] and our
controlled stochastic SIR model.

Consumption/investment model Controlled stochastic SIR model

Wealth 𝑊 (𝑡) ∶ maximize Infected 𝐼(𝑡): minimize
Risk-free interest rate 𝑟 > 0 Risk-free infection rate 𝑟

Risky asset allocation 𝛼 Proportion undergoing risky
treatment 𝛼

Price of market risk 𝑋 (usually
≥ 0)

Impact of treatment risk 𝑋
(usually ≤ 0)

Risk aversion coefficient 𝛾 > 0 Risk aversion coefficient 𝛾 < 0

Appendix B. Proof or Proposition 2

We introduce two Radon–Nikodym derivatives 𝑍̃1 and 𝑍̃2:

𝑍̃1 =
𝛽
√

𝑆𝐼
𝜎𝑆

𝑍̃1𝑑𝐵1

𝑑𝑍̃2 = −𝑍̃2𝑋𝑑𝐵2

By Girsanov theorem, the measure P̃ defined by:

P̃(𝐴) = ∫𝐴
𝑍̃1(𝑇 , 𝜔)𝑍̃2(𝑇 , 𝜔)𝑑P(𝜔)

for all 𝐴 in the filtration generated by (𝐵1, 𝐵2) is such that:

𝐵̃1(𝑡) ≡ 𝐵1(𝑡) − ∫

𝑡

0

𝛽
√

𝑆(𝑠)𝐼(𝑠)
𝜎𝑆

𝑑𝑠 (38)

̃2(𝑡) ≡ 𝐵2(𝑡) + ∫

𝑡

0
𝑋(𝑠)𝑑𝑠 (39)

re P̃-Brownian motions. We defined a stochastic process 𝜙 such that
̃1𝜙𝐼 becomes a P-martingale, with:

𝜙 = 𝜇𝜙𝑑𝑡 −𝑋𝜙𝑑𝐵
2 𝐼
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Fig. 8. Optimal Allocation. See Table 2 for parameter values.

Fig. 9. Optimal Infected. See Table 2 for parameter values.

By Ito’s lemma:

𝑑(𝑍̃1𝜙𝐼) = 𝑍̃1𝜙

(

(𝐼
𝛽
√

𝑆𝐼
𝜎𝑆

− 𝜎𝑆
√

𝑆𝐼)𝑑𝐵1 + (𝛼𝜎𝐼 −𝑋𝐼)𝑑𝐵2

)

− 𝑍̃1𝜙𝑌 𝑑𝑡

(40)

Observe that 𝑍̃1𝑆 is also a P-martingale. Defining the Lagrange
multipliers 𝑙 and 𝑘, the martingale method consist in first solving the
following problem:

max
𝐼(𝑇 )

𝐸[−
𝐼(𝑇 )1−𝛾

1 − 𝛾
+ 𝑙

(

𝑍̃1(𝑇 )𝜙(𝑇 )𝐼(𝑇 ) − 𝐼0
)

+ 𝑘(𝑍̃1(𝑇 )𝑆(𝑇 ) − 𝑆(0))]

Since the last term does not contain 𝐼(𝑇 ), the optimal 𝐼(𝑇 ) satisfies
(𝑇 ) = (𝑙𝑍̃1(𝑡)𝜙(𝑡))−1∕𝛾 . For convenience, we introduce a process 𝑍 ≡
𝑙𝑍̃1𝜙)−1, thus

(𝑇 ) = (𝑍(𝑇 ))1∕𝛾 (41)

By Ito’s lemma, the SDE (37) for 𝑍 obtains. Since 𝑍̃1𝜙𝐼 is a P-
artingale, and since 𝑋𝑡, 𝑍𝑡, 𝑆𝑡 are sufficient statistics for the filtration
𝑡

(𝑡) = 𝑍(𝑡)𝐸[(𝑍(𝑇 ))1∕𝛾−1|𝑋𝑡, 𝑍𝑡, 𝑆𝑡] (42)

This, we posit a function 𝐹 such that the optimal 𝐼 satisfies:

(𝑡) = 𝐹 (𝑍 ,𝑋 , 𝑆 , 𝑡)
𝑡 𝑡 𝑡



N.M. Gatto and H. Schellhorn Mathematical Biosciences 333 (2021) 108539

𝑑

𝑑

0

𝐸



d

Fig. 10. Optimal Infected. See Table 2 for parameter values.

Fig. 11. Optimal Allocation. See Table 3 for parameter values.

While 𝐼 is not a P̃ - martingale, the process defined 𝑊 defined by:

𝑊 (𝑡) ≡ 𝐼(𝑡)𝑒𝜇𝑡 (43)

is a P̃ - martingale. Indeed:

𝑑𝑊 = 𝑒𝜇𝑡(−𝜎𝑆
√

𝑆𝐼𝑑𝐵̃1 + 𝛼𝜎𝐼𝑑𝐵̃2) (44)

By Ito’s lemma applied to (43), we see that:

𝑊 =

(

𝜕𝐹
𝜕𝑆

𝜎𝑆
√

𝑆𝐼 − 𝜕𝐹
𝜕𝑍

𝛽
√

𝑆𝐼𝑍
𝜎𝑆

)

𝑒𝜇𝑡𝑑𝐵̃1−
( 𝜕𝐹
𝜕𝑍

𝑋𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥
)

𝑒𝜇𝑡𝑑𝐵̃2

(45)

Comparing (27) and (45), we see that:

−𝜎𝑆
√

𝑆𝐼 =

(

𝜕𝐹
𝜕𝑆

𝜎𝑆
√

𝑆𝐼 − 𝜕𝐹
𝜕𝑍

𝑍
𝛽
√

𝑆𝐼
𝜎𝑆

)

(46)

𝛼𝜎𝐼 =
( 𝜕𝐹
𝜕𝑍

𝑋𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥
)

(47)

Thus (27) becomes:

𝐼 = 𝐸𝑡[𝑑𝐼] +

(

𝜕𝐹
𝜕𝑆

𝜎𝑆
√

𝑆𝐼 − 𝜕𝐹
𝜕𝑍

𝑍
𝛽
√

𝑆𝐼
𝜎𝑆

)

𝑑𝐵1 +
( 𝜕𝐹
𝜕𝑍

𝑋𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥
)

𝑑𝐵2

(48)
9

Since 𝐸̃𝑡[𝑑(𝐼(𝑡)𝑒𝜇𝑡)] = 0, substituting (38) and (39) in (48) results in:

= 𝐸̃𝑡[𝜇𝐼𝑑𝑡 + 𝑑𝐼] = 𝜇𝐼𝑑𝑡 + 𝐸𝑡[𝑑𝐼] +

(

𝜕𝐹
𝜕𝑆

𝛽𝜎𝑆𝐼 − 𝜕𝐹
𝜕𝑍

𝛽2𝑍𝑆𝐼
𝜎2
𝑆

)

𝑑𝑡 (49)

−
( 𝜕𝐹
𝜕𝑍

𝑋2𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥𝑋
)

𝑑𝑡

Dividing (46) by
√

𝑆𝐼 , we obtain:

𝜕𝐹
𝜕𝑆

= 𝜕𝐹
𝜕𝑍

𝑍
𝛽
𝜎2𝑆

− 1

This relation will allow us to replace all the partial derivatives with
respect to 𝑆 by derivatives with respect to 𝑍:

𝜕2𝐹
𝜕𝑆2

=

(

𝛽
𝜎2𝑆

)2
(

𝜕2𝐹
𝜕𝑍2

𝑍2 + 𝜕𝐹
𝜕𝑍

𝑍
)

𝜕2𝐹
𝜕𝑍𝜕𝑆

=
𝛽
𝜎2𝑆

(

𝜕2𝐹
𝜕𝑍2

𝑍 + 𝜕𝐹
𝜕𝑍

)

𝜕2𝐹
𝜕𝑋𝜕𝑆

=
𝛽
𝜎𝑆2

𝜕2𝐹
𝜕𝑋𝜕𝑍

𝑍

With these substitutions, the Dynkin operator  defined by 𝐹𝑑𝑡 =
𝑡[𝑑𝐹 ] can thus be rewritten:

𝐹 = 1
2
𝜕2𝐹
𝜕𝑋2

𝜎2𝑥 +
1
2
𝜕2𝐹
𝜕𝑍2

(

𝛽2𝑆𝐹𝑍2

𝜎2𝑆
+𝑋2𝑍2

)

× 1
2

(

𝜕2𝐹
𝜕𝑍2

𝑍2 + 𝜕𝐹
𝜕𝑍

𝑍
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1
2
𝜕2𝐹
𝜕𝑆2

(

𝛽
𝜎2𝑆

)2

𝜎2𝑆𝑆𝐹 (50)

− 𝜕2𝐹
𝜕𝑋𝜕𝑍

𝑍𝑋𝜎𝑥 −
𝛽
𝜎2𝑆

(

𝜕2𝐹
𝜕𝑍2

𝑍 + 𝜕𝐹
𝜕𝑍

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕2𝐹
𝜕𝑍𝜕𝑆

𝛽𝑍𝑆𝐹+ (51)

+ 𝜕𝐹
𝜕𝑋

𝜆𝑥(𝑋̄ −𝑋) + 𝜕𝐹
𝜕𝑍

𝑍

[

(−𝜇 +𝑋2 +
𝛽2𝑆𝐹
𝜎2𝑆

)

]

+

(

𝜕𝐹
𝜕𝑍

𝑍
𝛽
𝜎2𝑆

− 1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝐹
𝜕𝑆

(−𝛽𝑆𝐹 )

We can thus rewrite (49) as:

1
2
𝜕2𝐹
𝜕𝑋2

𝜎2𝑥 +
1
2
𝑍2𝑋2 𝜕2𝐹

𝜕𝑍2
−𝑍𝑋𝜎𝑥

𝜕2𝐹
𝜕𝑍𝜕𝑋

(52)

−

(

1
2

(

𝛽
𝜎𝑆2

)2
𝜎2𝑆𝑆𝐹𝑍 + 𝜇𝑍

)

𝜕𝐹
𝜕𝑍

+ (𝜆𝑥𝑋̄ + (𝜎𝑥 − 𝜆𝑥)𝑋) 𝜕𝐹
𝜕𝑋

+ 𝜕𝐹
𝜕𝑡

+ 𝜇𝐹 = 0

We do a perturbation expansion of (52) to the second order by
efining two operators: 𝐿1, which does not contain 𝑆 terms and 𝐿2,

which does. The operator 𝐿1 will be more important than the operator
𝐿2 in a moderate pandemic regime, as we shall see below. Defining:

𝐿1𝐹 = 1
2
𝜎2𝑥

𝜕2𝐹
𝜕𝑋2

+ 1
2
𝑍2𝑋2 𝜕2𝐹

𝜕𝑍2
−𝑍𝑋𝜎𝑥

𝜕2𝐹
𝜕𝑍𝜕𝑋

(53)

−𝜇𝑍 𝜕𝐹
𝜕𝑍

+ (𝜆𝑥𝑋̄ + (𝜎𝑥 − 𝜆𝑥)𝑋) 𝜕𝐹
𝜕𝑋

+ 𝜇𝐹

𝐿2𝐹 = −1
2

𝛽2

𝜎𝑆2
𝑍𝑆𝐹 𝜕𝐹

𝜕𝑍
(54)

Thus (52) can be written

𝜕𝐹 +
(

𝐿1 + 𝐿2
)

𝐹 = 0 (55)

𝜕𝑡
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Fig. 12. Optimal Allocation. See Table 3 for parameter values.

Writing 𝐼(0) = 𝜀, we will assume that 𝐼(𝑡) will remain of order 𝜀 in
𝐿2. We define 𝑓 by:

𝑓 = 1
𝜀
𝐹 (56)

Since 𝐿1 is linear and 𝜕
𝜕𝑡 are linear, equation (55) can be rewritten:

𝜕𝑓
𝜕𝑡

+ 𝐿1𝑓 + 1
𝜀
𝐿2𝐹 = 0

However 𝐿2 is quadratic, thus 𝐿2𝐹 = 𝐿2(𝜀𝑓 ) = 𝜀2𝐿2𝑓 , and (55)
ecomes:
𝜕
𝜕𝑡

+ 𝐿1 + 𝜀𝐿2)𝑓 = 0 (57)

Our asymptotic expansion consists in:

𝑓 = 𝑓1 + 𝜀𝑓2 + 𝑂(𝜀2)

which we insert in (57) to find:

0 = ( 𝜕
𝜕𝑡

+ 𝐿1 + 𝜀𝐿2)(𝑓1 + 𝜀𝑓2 + 𝑂(𝜀2))

= ( 𝜕
𝜕𝑡

+ 𝐿1)𝑓1 + 𝜀(𝐿2𝑓1 + ( 𝜕
𝜕𝑡

+ 𝐿1)𝑓2) + 𝑂(𝜀2)

The first two terms of our asymptotic expansion are thus determined
y:
𝜕
𝜕𝑡

+ 𝐿1

)

𝑓1 = 0 (58)

( 𝜕
𝜕𝑡

+ 𝐿1)𝑓2 = −𝐿2𝑓1 (59)

Solution of (58)
Recall the differential operator 𝐿0 which we defined in order to

characterize the solution of the low pandemic mode. We remark that:

(𝐿0 − 𝐿1)𝐹 = −(𝑟 + 𝜇)𝐹

Thus equation (58) has the same solution as Wachter [26], provided
we do the substitution 𝑟 ⟷ −𝜇, and set 𝜌 = 0. Since we obtain
slightly different results for 𝐴0,2 from Wachter, we provide details of
our solution. We postulate that the solution 𝑓1 to (58) is separable:

𝑓1(𝑍,𝑋, 𝑡) = 𝑍1∕𝛾𝐻1(𝑋, 𝑇 − 𝑡) (60)

Substitution in (58) shows that 𝐻1 solves:
( 𝜕
𝜕𝑡

− 𝐿𝛾
)

𝐻1 = 0 (61)

𝐻 (𝑋, 0) = 1
1

10
Fig. 13. Optimal Infected. See Table 3 for parameter values.

here the operator 𝐿𝛾 is defined by:

𝐿𝛾𝐻 ≡ 1
2
𝜎2𝑥

𝜕2𝐻
𝜕𝑋2

+
(

(
𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥)𝑋 + 𝜆𝑥𝑋̄
)

𝜕𝐻
𝜕𝑋

+
(

𝑋2
(

1
2
1
𝛾
( 1
𝛾
− 1)

)

+ 𝜇(1 − 1
𝛾
)
)

𝑓

Using the Ansatz (12), we can rewrite the LHS of (61) into:

𝐶1(𝑡)𝑋2 + 𝐶2(𝑡)𝑋 + 𝐶3(𝑡))𝐻∕𝛾 = 0

Clearly all terms 𝐶1, 𝐶2, 𝐶3 must be identically zero. The equation
1 = 0 becomes:

𝑑𝐴1,1

𝑑𝑡
=

𝜎2𝑥
𝛾
𝐴2
1,1 + 2(

𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥)𝐴1,1 +
1 − 𝛾
𝛾

The equation 𝐶2 = 0 is:

𝑑𝐴1,2

𝑑𝑡
=

𝜎2𝑥𝐴1,1

𝛾
𝐴1,2 +

(

𝛾 − 1
𝛾

𝜎𝑥 − 𝜆𝑥

)

𝐴1,2 + 𝜆𝑥𝑋̄𝐴1,1

The equation 𝐶3 = 0 is:

𝑑𝐴1,3

𝑑𝑡
=

𝜎2𝑥
2

(

𝐴1,1 +
𝐴2
1,2

𝛾

)

+ 𝜆𝑥𝑋̄𝐴1,2 − 𝜇(1 − 𝛾)

which admit the solutions (30),(31),(32).
Solution of (59)
The second equation can be rewritten

( 𝜕
𝜕𝑡

+ 𝐿1)𝑓2 = −𝐿2(𝑍1∕𝛾𝐻1(𝑋, 𝑇 − 𝑡)) (62)

= 1
2

𝛽2

𝜎𝑆2
𝑍𝑆𝑍1∕𝛾𝐻1(𝑋, 𝑇 − 𝑡) 𝜕𝑍

1∕𝛾

𝜕𝑍
𝐻1(𝑋, 𝑇 − 𝑡) (63)

= −1
2

𝛽2

𝛾𝜎𝑆2
𝑍2∕𝛾𝑆𝐻1(𝑋, 𝑇 − 𝑡)2 (64)

The trick is to consider 𝜕
𝜕𝑡 + 𝐿1 to be a linear operator applied not

to a function 𝑓2 ∶ R4 → R but to a stochastic field:

𝑓2(𝑍(𝑡, 𝜔), 𝑋(𝑡, 𝜔), 𝑡, 𝜔)

We try the Ansatz:

𝑓2(𝑍(𝑡), 𝑋(𝑡), 𝑡) = 𝑍(𝑡)2∕𝛾𝑆(𝑡)𝑔(𝑋(𝑡), 𝑡) (65)

By the same reasoning as before, the terms 𝑍(𝑡)2∕𝛾𝑆(𝑡) can be
anceled out from (62) provided the terminal condition (41) holds:

𝜕
𝜕𝑡

− 𝐿𝛾∕2
)

𝑔(𝑋, 𝑡) = −1
2

𝛽2

𝜎𝑆2
𝐻1(𝑋, 𝑇 − 𝑡)2

𝑔(𝑋, 𝑇 ) = 0
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𝑔

R

Fig. 14. Optimal Infected. See Table 3 for parameter values.

Clearly, 𝑓 (𝑋, 𝑡) ≡ 𝐻2(𝑋, 𝑇 − 𝑡) given by (12),(33),(34) and (35)
solves
( 𝜕
𝜕𝑡

− 𝐿𝛾∕2
)

𝑓 = 0 (66)

𝑓 (𝑋, 𝑇 ) = 1

Thus:

(𝑋, 𝑡) = 1
2

𝛽2

𝛾𝜎𝑆2 ∫

𝑇

𝑢=𝑡
𝑓 (𝑡 − 𝑢)𝐻1(𝑋, 𝑢)2𝑑𝑢

= 1
2

𝛽2

𝛾𝜎𝑆2 ∫

𝑇

𝑢=𝑡
𝐻2(𝑋, 𝑢 − 𝑡)𝐻1(𝑋, 𝑢)2𝑑𝑢 (67)

The optimal solution (36) results from assembling (56), (57), (65),
and (67). The optimal policy is given by (47):

𝛼∗ = 1
𝜎𝐹

( 𝜕𝐹
𝜕𝑍

𝑋𝑍 − 𝜕𝐹
𝜕𝑋

𝜎𝑥
)

(68)
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