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Haematophagous mosquitoes need a blood meal to complete their reproduc-
tive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land
on them and bite. As their eggs mature, they shift attention away from hosts
and towards finding sites to lay eggs. We asked whether females were more
tuned to visual cues when a host-related signal, carbon dioxide, was present,
and further examined the effect of a blood meal, which shifts behaviour to
ovipositing. Using a custom, tethered-flight arena that records wing stroke
changes while displaying visual cues, we found the presence of carbon
dioxide enhances visual attention towards discrete stimuli and improves con-
trast sensitivity for host-seeking Aedes aegyptimosquitoes. Conversely, intake
of a blood meal reverses vertical bar tracking, a stimulus that non-fed females
readily follow. This switch in behaviour suggests that having a blood meal
modulates visual attention in mosquitoes, a phenomenon that has been
described before in olfaction but not in visually driven behaviours.

1. Introduction
Anthropophilic mosquitoes are dangerous vectors of disease—taking a toll of
over 700 000 human lives a year [1]. Mosquito control suffers from shortcom-
ings due to insecticide resistance [2], inefficient repellents [3,4] and the lack of
economical [5] and efficacious adult traps [6]. Adults emerging from aquatic
stages cycle through distinct behavioural phases: nectar foraging, mating,
host-seeking, resting and oviposition. To perform these tasks, they integrate
visual, auditory and chemical stimuli, then make behavioural decisions accord-
ing to the needs of each stage [7]. Newly emerged mosquitoes follow nectar
cues for basic nutrient acquisition [8,9], which include plant semiochemicals
and floral shapes and colours [9]. As they age and become reproductively
mature [10,11], females increase their attraction towards human scent, relying
on carbon dioxide (CO2) emanations, body odour, heat and likely contact
cues found on the skin [7,12]. Once gravid, they are drawn towards standing
water, where they lay eggs [13].

To extract relevant information from complex visual environments, animals
can shift visual attention [14]. This is crucial for airborne animals, who regu-
late flight in response to rapidly changing scenes [15]. They may follow, avoid
or ignore features depending on external factors, such as heat or odour,
internal factors, such as hunger, and reproductive phase [15–17]. Visual
needs vary with light habitat and activity [18], but even within a species ani-
mals may attend to varying elements of their visual landscape [16,19]. Despite
the seeming importance of visual attention in host-seeking mosquitoes, there is
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Figure 1. Flight arena system. (a) Flight arena (left) with a flying mosquito tethered under an infrared beam. CO2 was delivered through each corner of the front
side of the cube (yellow arrows). An oscilloscope (right) recorded insect WBA as voltage (V) and frequency in hertz (Hz) used for analysis. (b) Representative trace of
a mosquito responding to visual simulations. ΔWBA is calculated by subtracting the right WBA from the left. Negative and positive ΔWBA values suggest left and
right steering attempts, respectively. (c) Ae. aegypti average tracking responses ± s.e.m. for each contrast with and without CO2. The bottom bar graph summarizes
the minimum contrast values for which mosquito tracking responses (blue = air, n = 9; green = CO2, n = 16) deviated from 0 ( p-values < 0.05).
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limited knowledge about the relationship between their
reproductive cycle stage and how they process information
from their visual environments.

CO2 is a general activator of mosquito host-seeking behav-
iour, but there is contradicting evidence as to whether it
specifically triggers visual attention [20,21] or not [22] in
host-seeking Ae. aegypti. To address this matter, we delivered
CO2 plumes to rigidly tethered flying mosquitoes and tested
its effects on visual tracking. Next, we compared visual cue
tracking between host-seeking and gravid female mosquitoes.
2. Methods
(a) Insect rearing and preparation
We reared Orlando strain Ae. aegypti and maintained them at
25–28°C, 75% relative humidity under a 14 : 10 light–dark
cycle. Eggs were hatched in hatching broth −1 l of deionized,
deoxygenated water and one pellet of Tetramin fish food (catalo-
gue no. 16152, Tetra, Melle, Germany). We sorted first-instar
larvae (approx. 230 per 2 l of water) and fed them two pellets
of Tetramin. Controlled larval density and food ratio guaranteed
even mosquito sizes. Adult mosquitoes were fed ad libitum on
10% sucrose until experimentation, 6–8 days post-eclosion.

Female subjects were cold anaesthetized for a maximum of
3 min, then glued by the dorsal thorax to a tungsten rod. They
rested holding a piece of tissue paper on their legs, which
stops spontaneous wing beating, for 10–30 min. We suspended
tethered subjects at the centre of the flight arena and removed
the paper to initiate flight. Each insect was tested only once, or
twice if the first trace had poor quality. We blood-fed female
mosquitoes using an artificial feeder consisting of a glass tube
warmed by 37°C running water. Stretched parafilm, scented by
vigorous rubbing against the experimenter’s arm, secured the
blood (sheep blood, Fisher Scientific R54020) to the glass tube
and allowed feeding through the membrane. Engorged females
were separated into a cage 72 h before experiments. A custom
feeder with cut transfer pipettes on the ceiling allowed capillary
delivery of 10% sucrose and prevented females from laying
eggs, ensuring they stayed gravid. Non-gravid females for
these experiments were housed similarly.

As a reference model for our CO2-flight arena system, we also
ran the CO2 experiments using the model insect, Drosophila
melanogaster (electronic supplementary material, figure S1). Fruit
fly subjects were female D. melanogaster from a laboratory colony,
raised on a standard food medium, under a 12L : 12D cycle at
21°C and collected 4–6 days post-eclosion as done previously [19].

(b) Tethered-flight arena and steering responses
Our custom-built flight arena can deliver simultaneous visual and
olfactory stimulation to rigidly tethered insects. Back projection
screen material covers five sides of a 200 mm cube, with the back
open for access, and first-surface mirrors, affixed at 45° to the
sides, allow a front projector to illuminate the five faces
simultaneously [23]. This covers 10.47 steradians of the visual
field to a subject in the centre and displays a perspective-corrected
three-dimensional scene at 360 Hz (figure 1a).

Within the arena, an infrared beam above the insect casts wing
shadows onto two photodiodes below (figure 1a), which
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Figure 2. Visual attention is enhanced in the presence of CO2 and depends on mosquito feeding status. Normalized responses of Ae. aegypti female mosquitoes
(n = 19, green = CO2; n = 17, blue = air) to a star-field (a) and a high-contrast bar (b) For the CO2 trials, the concentration was kept within 2200–2800 ppm. Normal-
ized responses of gravid, blood-fed (n = 21, red) and non-gravid, sucrose-fed (n = 24, blue) Ae. aegypti mosquitoes tracking a star-field (c) and bar (d ) in the absence of
CO2 or air plumes. Positive ΔWBA values (tracking) are wing stroke deviations where mosquitoes attempt to turn towards the stimulus, while negative ΔWBA values
represent turns in the opposite direction as the moving cue. In all line plots, the solid line represents the average response over time in milliseconds, and the shadow
surrounding the line represents the s.e.m. for that treatment. Grey-shaded regions denote the time-frame compared for significance (1000–1250 ms) summarized in the
bar plots ± s.e.m. Asterisks denote a significant difference in ΔWBA between the two treatment groups (one-tailed t-test).
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generates a voltage signal with every wing stroke. The relative
amplitudes of right-wing and left-wing beats (figure 1b) indicate
steering effort [24]. The average ΔWBA is calculated by subtract-
ing the right WBA from the left for each experimental trial,
divided by the total number of trials per group. Tracking values
are deviations in the mean ΔWBA relative to the direction of the
stimulus motion. For instance, an insect steering away from a
stimulus receives a negative ΔWBA, which we call ‘anti-tracking’.
For each experiment in every trial, we averaged ΔWBA between
1000 and 1250 ms (the shaded regions in figures below), which
gave responses time to stabilize. One-tailed t-tests were conducted
to compare the mean ΔWBA between groups of interest as we
expected tracking to be enhanced for one of the treatments only.

(c) Visual and olfactory stimuli
For tracking stimuli, we used star-fields of small points (113
dots sr–1) and frontal moving vertical bars (11 by 100°), both in
open loop. For contrast sensitivity, we used frontal grating,
(0.04 cycles per degree at 10 Hz) at 10 different contrasts, from
0 to 0.95 (Michelson contrast). Each mosquito saw each tracking
stimulus one time for 1250 ms, in random order, in both left and
right directions, interspersed with 3 s bouts of closed-loop bar
fixation. Insects that failed to hold a stable bar between exper-
iments, or failed to beat their wings throughout an experiment,
were eliminated from further analysis.

Clear tubings affixed to each corner of the front screen pro-
vided CO2 to the arena. An airflow meter (VFA-4-SSV Dwyer
Instruments Inc., IN, USA) controlled the delivery rate. We
found flight was stable when CO2 and air were each set at 0.5
standard cubic feet per hour (SCFH), keeping the CO2 at 2200–
2800 ppm and a working value from previous studies [25]. We
monitored CO2 with a meter (catalogue no. CO2-100, Amprobe)
placed at the back of the arena, allowing CO2 to be delivered con-
tinuously throughout the experiment. Control experiments were
done with filtered air set at 1.0 SCFH to maintain the same
airflow in all the assays.
3. Results
(a) CO2 greatly enhances mosquito contrast sensitivity
We assessed Ae. aegypti responses to visual stimuli in the
presence and absence of CO2. Without CO2, mosquitoes
tracked only weakly at all contrasts less than 0.95. When
CO2 was added, their contrast sensitivity increased dramati-
cally. This difference was significant for all contrast gratings
of value 0.43 or greater (air n = 9, CO2 n = 16, figure 1c). To
confirm our assay was robust, we tested Drosophila as well
and found that CO2 only enhanced fly contrast sensitivity
at lower concentrations, in line with previous studies [26]
(electronic supplementary material, figure S1A).

(b) CO2 affects mosquito bar, but not star-field visual
tracking

During star-field optical flow, CO2 elicited little effect on mos-
quito tracking (air n = 17, CO2 n = 19, p = 0.32, figure 2a).
However, mosquitoes tracked a bar much more strongly
with added CO2 (air n = 17, CO2 n = 19, p < 0.001, figure 2b).
When CO2 was delivered to Drosophila at the same rate as
we used for mosquitoes (2200–2800 ppm), it substantially
reduced fruit fly tracking during star-field optical flow as
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well as bar tracking, nearly disrupting Drosophila flight
completely (air n = 11, CO2 n = 15, p < 0.001, electronic
supplementary material, figure S1B,C).

(c) The blood-fed group of mosquitoes reversed rigidly
tethered bar tracking

Finally, to assess the dramatic state change that occurs in the
days following a blood meal, we examined the tracking of
sucrose-fed female mosquitoes, with identically aged females
that had ingested a blood meal 72 h before. For star-field flow,
the blood treatment resulted in a visibly reduced tracking, but
that was not statistically significant at our sample size (sucrose
n = 24, blood n = 21, p = 0.098, figure 2c). For moving bars,
however, sucrose and blood-fed mosquitoes displayed oppo-
site responses, with the sucrose group tracking and the
blood group anti-tracking—moving opposite to the bar
motion, an effect we had not seen in other experiments,
(sucrose n = 24, blood n = 21, p = 0.015, figure 2d ).
0270
4. Discussion
Drosophila melanogaster has been studied under restricted
flight conditions for decades [27], and we took advantage
of this assay to explore the effects of CO2 in mosquito
visual attention. Here we used contrast as a general metric
of stimulus strength required for steering, star-fields as a
measure for course correction and bars as a measure of
target fixation, a cue that may resemble a host. Our findings
align with others showing CO2 guides mosquitoes by enhan-
cing object salience. When vision is impaired, as in Ae. aegypti
op1, op2 double mutants, mosquitoes lose tracking behaviour
towards black spots with CO2 plumes [28]. CO2 is a food cue
for vinegar flies as well [29] and reduced the contrast at
which they followed a grating (electronic supplementary
material, figure S1A). Nonetheless, the valence of fruit fly
responses to CO2 varies depending on context (such as feed-
ing state or CO2 concentration) [30], modulating the neural
processing pathways that determine attractive and aversive
behaviours [31].

The CO2 signals emitted by a vertebrate’s breath reach
mosquitoes at intermittent and variable doses, which triggers
upwind flight to search for potential hosts [20,29,32]. Because
tethered mosquitoes are flying when tested, we cannot credit
CO2 as a general flight activator. But by enhancing bar track-
ing and not star-field tracking, it appears to depend on
context, similar to how it enhances Ae. aegypti attraction for
specific colours and not others [33]. We also explored if
CO2 affected contrast sensitivity, the ability to discriminate
an object from its background, a critical visual property,
especially for crepuscular and nocturnal insects [34]. The
eye anatomy of Ae. aegypti suggests that they have relatively
poor resolution but may adequately detect contrast changes
typical of sunset hours [35]. Since they also prefer to land
on low-reflectance and high-contrast objects, and are
specifically attracted to visual patterns with high vertical
contrast [36], we speculate that CO2 alerts them to find landing
targets. And although another study found no CO2 enhance-
ment of tracking in tethered flight [22], that study used a
free-yaw tether, in which an insect turning might rapidly
affect the odour concentration the insect experiences, while
the rigid tether assay here is open loop, keeping concentration
constant throughout the experiment.

The multi-modal nature of host-seeking has generated
extensive research into olfaction and CO2 sensing
[12,25,37,38], but after a satisfactory blood meal, females
become refractory to both host volatiles and CO2 [39]. Such
changes in behaviour are in tune with transcriptional regu-
lation of genes in blood-fed Ae. aegypti [40] and Anopheles
gambiae [41]. In addition to olfactory genes, visual genes
such as opsins are transcriptionally downregulated following
blood-feeding in An. gambiae [42]. In behavioural assays,
blood-fed Ae. aegypti lose interest in their hosts [13,40,43].
The bar avoidance in our blood-fed group could be a defen-
sive strategy to avoid hosts when the priority is ovipositing,
which could be further explored in free-flight assays [44].
Testing whether mosquitoes recover their bar tracking ability
after laying eggs could provide additional evidence that
visual attention depends on the female reproductive stage.
This is the first study, to our knowledge, that presents a
shift in visual attention for gravid females, and we expect
the roles of CO2 sensing and blood-fed status in the modu-
lation of visual attention to be largely conserved across
haematophagous mosquitoes.
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