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Long non-coding RNAs (LncRNA) are critical regulators for biological processes,

which are highly related to complex diseases. Even though the next generation

sequence technology facilitates the discovery of a great number of lncRNAs, the

knowledge about the functions of lncRNAs is limited. Thus, it is promising to predict

the functions of lncRNAs, which shed light on revealing the mechanisms of complex

diseases. The current algorithms predict the functions of lncRNA by using the features

of protein-coding genes. Generally speaking, these algorithms fuse heterogeneous

genomic data to construct lncRNA-gene associations via a linear combination, which

cannot fully characterize the function-lncRNA relations. To overcome this issue, we

present an nonnegative matrix factorization algorithm with multiple partial regularization

(aka MPrNMF) to predict the functions of lncRNAs without fusing the heterogeneous

genomic data. In details, for each type of genomic data, we construct the lncRNA-gene

associations, resulting in multiple associations. The proposed method integrates

separately them via regularization strategy, rather than fuse them into a single type

of associations. The results demonstrate that the proposed algorithm outperforms

state-of-the-art methods based network-analysis. The model and algorithm provide an

effective way to explore the functions of lncRNAs.

Keywords: lncRNA, nonnegative matrix factorization, gene ontology, networks, regularization

1. INTRODUCTION

Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs with more than 200 nucleotides
in length, which have very little or no potential to encode proteins (Mercer et al., 2009). In the
past lncRNAs are categorized as “dark matter” and “junks.” However, more and more evidence
demonstrates that lncRNAs are critical regulators for biological processes, such as immune
response, cell development and differentiation, as well as gene imprinting (Morris and Mattick.,
2014; Turner et al., 2014; Ma et al., 2017). Furthermore, lncRNAs are highly related to diseases and
cancers (Zou et al., 2015, 2016; Zhu et al., 2018). Largely due to the high-throughput biological
techniques, particularly the next generation sequence (NGS), large numbers of lncRNAs have been
identified (Iyer et al., 2015; Fang et al., 2018).

Compared to the protein-coding genes (genes for short), the functions of vast majority
of lncRNAs are unknown. Thus, it is promising to predict the functions of lncRNAs, which
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are critical for revealing the underlying mechanisms of gene
regulation. The approaches for annotating the functions of
lncRNAs are classified into two classes: the biological experiment
and computational based methods. Currently, the functions of
some lncRNAs are validated by the biological experiment based
methods. For example, based on the RNA-sequencing data, the
mechanistic analysis reveals that UCA1 physically interacts with
PTBP1 and ALAS2, which stabilizes ALAS2 (Liu et al., 2018).
Li et al. (2016) utilized the RT-PCR to detect the expression
profiles of lncRNA TUG1 in glioma, and found that TUG1 is
involved in the apoptosis and cell proliferation. Based on the cap
analysis of gene expression (CAGE) data, FANTOME generated a
comprehensive atlas of 27919 human lncRNA genes across 1829
samples from the major human primary cell types and tissues
(Hon et al., 2017). Wang et al. (2018) identified the function of
NEAT1 using the enhanced green fluorescent protein reporter in
human cells.

Except the expression profiles, some lncRNAs execute their
functions via interacting with other bio-molecules, such as DNAs,
RNAs and proteins. Mercer and Mattick (2013) focused on the
lncRNAs as epigenetic modulators via binding to chromatin-
modifying proteins and recruiting their catalytic activity to
specific sites in the genome. Efforts is devoted to investigate
the lncRNA-DNA interactions, including the chromatin isolation
by RNA purification (Chu et al., 2012; Nowak et al., 2014).
Furthermore, Ferre et al. (2016) identified the protein-lncRNA
interactions, offering essential clues for a better understanding
of lncRNA cellular mechanisms and their disease-associated
perturbations.

Even though the experiment based approaches for the
functions of lncRNAs are reliable, they are criticized by
the expensive cost and complicated operations. Thus, the
computational algorithms for the prediction of lncRNA functions
provide an alternative, which become more and more important.
Based on the assumption that the molecules with the same
or similar functions have the same or similar patterns. Some
efforts explore the co-expression patterns (Lee et al., 2004;
Necsulea et al., 2014). Furthermore, the gene set enrichment
analysis (GSEA) based on the statistics is also adopted to identify
the functions of lncRNAs (Guttman et al., 2009). To explore
the knowledge from genes, (Liao et al., 2011) combined the
expression profiles of lncRNAs and genes to construct a coding
and non-coding gene co-expression network according to the
expression profiles in the GEO database, then predicted the
functions of more than 300 mouse lncRNAs based on the
co-expression modules. In order to make use of the global
information, Guo et al. (2013) constructed a bi-colored network
via integrating the expression profiles of lncRNA and genes,
then provided the lnc-GFP algorithm to predict the functions
of lncRNAs. Jiang et al. (2015) employed the statistical test to
annotate the functions of lncRNAs. Recently, Zhang et al. (2018)
proposed the NeuralNetL2GO algorithm, which uses neural
networks to annotate lncRNAs.

Actually, there are many different genomic data to link the
lncRNA and genes, for example gene co-expression, connection
to the diseases, protein binding sites. The current algorithms
integrate multiple heterogeneous genomic data into a single

network via weighted or unweighted linear functions, which
are criticized for not fully characterizing the links between
lncRNAs and genes. Evidence shows that the linear combination
destroys the patterns in the integrated network (Ma and
Dong, 2017; Ma et al., 2019). In fact, each type of genomic
data provides a perspective of the links between lncRNAs
and genes. The ultimate goal of this study is to provide a
computational method to predict functions of lncRNAs by fusing
heterogeneous data. As shown in Figure 2, we construct multiple
bi-color networks for lncRNAs and genes. Then, the multiple
partial regularized nonnegative matrix factorization (MPrNMF)
algorithm is proposed to simultaneously factorize the multiple
networks. In order to improve the accuracy, the regularization
strategy is adopted, where the factorized feature matrix preserves
the links between lncRNAs and genes. The results demonstrate
that the proposedmethod outperforms these algorithms based on
the single bio-colored network, implying the proposed method is
promising.

The rest of this paper is organized as: section 2 briefly reviews
the related works on the prediction of lncRNAs functions. Section
3 describes the procedure of the proposed method. Section
4 shows the experimental results. Finally, the conclusion is
presented in section 5.

2. RELATED WORKS

In this section, we first introduce the mathematical notations that
are widely used in the forthcoming sections. Then, we review
state-of-the-art methods for the prediction of lncRNA functions.

2.1. Notations
The notations are summarized in Table 1. Let n be the number
of entities in the networks. Generally speaking, let no be the
number of ontological functions in Gene Ontology (GO), ng be
the number of proteins (genes) in the PPI network, nl be the
number of lncRNAs in the co-expression network. Let Gg ,Gl

be the PPI and lncRNA co-expression networks, respectively.
The adjacency matrix for Gg , denoted by Wg , corresponds to a

ng × ng matrix whose element w
[g]
ij is the weight on edge (vi, vj)

in Gg . The degree of vertex vi in Gg is the sum of weights on

edges connecting vi, i.e., d
[g]
i =

∑
j w

[g]
ij . The degree matrix Dg

is the diagonal matrix with degree sequence of Gg , i.e., Dg =
diag(d

[g]
1 , d

[g]
2 , . . . , d

[g]
n ). The Laplacian matrix of Gg is defined

as Lg = I − D
−1/2
g WgD

−1/2
g . Analogously, the adjacent matrix

of Gl is denoted by Wl. Let Ll be the Laplacian matrix for
Gl. The associations between heterogeneous entities are denoted
by matrix. Specifically, let X be the known lncRNA-ontology
associations, Y be the known gene-lncRNA associations, and
Y1(Y2) be the known lncRNA-disease (gene-disease) associations,
respectively.

2.2. Related Algorithms
The label propagation algorithm is successfully applied to predict
phenotype-gene associations with various backgrounds (Li and
Patra, 2010; Vanunu et al., 2010), where the principle of the label
propagation algorithms is illustrated in Figure 1A. In details,
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label propagation assumes that the well connected lncRNAs in Gl

are very likely to be the same label, which leads to the following
objective function

JLP = θ tr(X̂LlX̂
′
)+ (1− θ)‖X̂ − X‖2, (1)

where X̂ is the predicted lncRNA-ontology associations, θ ∈
(0, 1) is the parameter controlling the contributions of two terms
in Equation (1), tr(A) is the trace of matrix A, i.e., tr(A) =

∑
i aii

and ‖A‖ is the l2 norm of matrix A. In Equation (1), the first item
characterizes how the predicted lncRNA-ontology associations X̂
is consistent with the lncRNA co-expressed network, while the
second one measures the good the predicted associations fit the
initial labeling.

However, the number of predicted associations is largely
determined by the sparsity of the known associations in X. When
X is very sparse, the number of predicted associations is limited.
Actually, X is very sparse since the GO functions of vast majority
of lncRNAs are unknown. Fortunately, the GO functions of most
proteins are known. Thus, the available algorithms overcome this
limitation of the label propagation algorithm via integrating the

TABLE 1 | Notations and descriptions.

Symbol Definition and description

no, ng, nl Number of ontological functions, genes and lncRNAs

G graph with vertex set V and edge set E

X Known lincRNA-ontology associations

Y1,Y2 Known lncRNA-gene associations

Gg Protein-Protein interaction (PPI) network

Gl LncRNA co-expression network

Wg Normalized adjacent matrix of the PPI network

Wg = D−1/2WgD
−1/2

W l Normalized adjacent matrix of lncRNA co-expression network

Wg = D−1/2WlD
−1/2

Lg Normalized Laplacian matrix of Gg, i.e., Lg = I−Wg

Ll Normalized Laplacian matrix of Gl , i.e., Ll = I−W l

proteins and lncRNAs as shown in Figure 1B. Specifically, given
the known protein-GO associations X, PPI network Gg , lncRNA
co-expression network Gl and lncRNA-gene associations Y , the
ultimate goal is to predict the lncRNA-ontology associations
via integrative analysis of heterogeneous data. The lnc-GFP
algorithm (Guo et al., 2013) follows the label propagationmethod
by using the bi-colored network, which is defined as

C =

[
Wl Y

Y
′
Wg

]
. (2)

Thus, the objective function in Equation (1) is transformed into

JLP = θ tr(X̂LCX̂
′
)+ (1− θ)‖X̂ − X‖2, (3)

where LC is the Laplacian matrix of the bi-colored network C.
The KATZLGO method (Zhang et al., 2017) predicts the GO
functions of lncRNAs by using the KATZ score of the bi-colored
network, which counts the paths with various lengths in the
bi-colored networks.

The bi-colored based methods make use of lncRNA-gene
associations to predict the functions of lncRNAs. To explore the
knowledge in Gl and Gg , Petergrosso et al. (2017) proposed the
dual label propagation (DLP) to predict the phenotome-genome
associations. Specifically, the objective function in Equation(1)
based on the DLP model can be re-written as

JDLP = ‖X̂ − X‖2 + βtr(X̂LgX̂
′
)+ γ tr(X̂LlX̂

′
), (4)

where β ≥ 0, γ ≥ 0 are tuning parameters. The first item
measures the consistence between the predicted associations and
the bi-colored network, and the last two ones measures the
smoothness in the PPI and lncRNA networks.

Most of the available algorithms for the prediction of LncRNA
functions are based on the bi-colored network model. In this
study, we investigate the possibility to predict the functions of
lncRNAs via integrating multiple networks, where each type of
genomic data is used to construct the lncRNA-gene associations.

FIGURE 1 | The flowchart of the current algorithms based on network analysis: (A) label propagation method based on the lncRNA co-expression network, (B) label

propagation method based on the bio-colored network.
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3. METHODS

The procedure of MPrNMF is illustrated in Figure 2. In this
section, we derive the objective function and optimizing rules of
the proposed algorithm in turns.

3.1. Objective Function
All these bi-colored network based algorithms predict the
lncRNA-ontology associations based on the single bi-colored
network via integrating various genomic data. In this study, we
construct two bi-colored networks, where each one corresponds
to a view of the lncRNA-gene associations. In the first
one, the lncRNA-gene associations are determined by the
pearson correlation coefficient between the expression profiles of
lncRNAs and genes. And, the second lncRNA-gene associations
are determined by the diseases. In details, the lncRNA-gene
association is the Jaccard index of the diseases related to lncRNAs
and genes. The i-th view of the bi-colored network is denoted by

Ci =

[
Wl Yi

Y
′
i Wg

]
, (5)

where Yi(i = 1, 2) is the lncRNA-gene associations in the i-th
view.

Given the lncRNAs(genes)-ontology associations X, NMF
aims at obtaining approximation of X via the product of two
nonnegative matrices B1 and Ft (Lee and Seung, 1999), i.e.,

J = ‖X − BF‖2, s.t. B ≥ 0, F ≥ 0, (6)

where B is the basis matrix and F is the feature matrix.
Furthermore, we also expect the feature matrix F also reflects the
topological structure of multiple views of the bi-colored network,

which is implemented via the regularization. To this end, the
Equation (6) is reformulated as

J = ‖X − BF‖2 + α

2∑

i=1

tr(FCiF
′
), s.t. B ≥ 0, F ≥ 0, (7)

where parameter α controls the importance of the regularization
items and tr(A) is the trace of matrix A, i.e., tr(A) =

∑
i aii.

In the bi-colored network, the vertices consist of lncRNAs and
genes. Thus, the feature matrix F is also re-written as F = [Fl, Fg],
where Fl denotes the part for the lncRNAs and Fg for genes. Thus,

tr(FCiF
′
) is reformulated as

tr(FCiF
′
) = tr

(
[Fl, Fg]

[
Wl Yi

Y
′
i Wg

][
F
′

l

F
′
g

]
)

= tr(FgWgF
′
g + FlY

′
iF

′
g + FlYiF

′
g + FlWlF

′

l )

= tr(FgWgF
′
g)+ 2tr(FlY

′
iF

′
g)+ tr(FlWlF

′

l ).

The above equation indicates that the regularization item for the
bi-colored network can be divided into three components: Wg ,
Wl and Yi. In the two views, the only difference is the lncRNA-
gene relations. Thus, we expect the regularization item can fully
relect the lncRNA-gene relations Yi. In this case, the objective
function in Equation (7) is transformed into

min J = ‖X − BF‖2 + α

2∑

i=1

tr(FlYiF
′
g) (8)

s.t. B ≥ 0, F ≥ 0, F
′
1nl+ng = 1nl+ng

where 1n is the column vector with all elements 1. The l1-norm
constraint on matrix Ft is adopted to obtain sparsity solutions.

FIGURE 2 | The flowchart of the MPrNMF algorithm, which consists of three components: network construction, matrix factorization and function prediction. In the

network construction, each type of heterogenous lncRNA-gene associations is used to construct a bi-colored network. The matrix factorization procedure obtains

approximation of lncRNA(gene)-ontology associations X, where the feature matrix F reflects multiple lncRNA-gene associations. The function prediction procedure is

based on the decomposed matrices.
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3.2. Optimization Rules
To optimize the objective function in Equation (8), we derive the
updating rules for matrix B and F. Since the objective function
is non-convex, we update one matrix by fixing the other, which
continues until the termination criterion is reached.

By integrating the sparsity constraint ofmatrix F, the Lagrange
function for objective function is formulated as

L = ‖X − BF‖2 + 2α

2∑

i=1

tr(FgYiF
′

l )+ tr(3(F
′
1nl+ng − 1nl+ng )

(F
′
1nl+ng − 1nl+ng )

′
)

= ‖X − BF‖2 + α

2∑

i=1

tr(FC∗
i F

′
)+ tr(3(F

′
1nl+ng − 1nl+ng )

(F
′
1nl+ng − 1nl+ng )

′
),

where matrix C∗
i is defined as

C∗
i =

[
0 Yi

Y
′
i 0

]
.

The derivative of L on B is calculated as

1

2
∇BL = XF

′
− BFF

′
,

and the derivative of L on F is written as

1

2
∇FL = B

′
X − B

′
BF

′
+ α

2∑

i=1

FC∗
i − 1nl+ng1

′
nl+ng

3.

According to the Karush-Kuhn-Tucker condition, by setting
1
2∇BL=0, we obtain the updating rule for matrix B as

B = B⊙

√
[BFF

′
]

[XF
′
]
, (9)

where ⊙ denotes element-wise product, [·]/[·] denotes
element-wise division and

√
· is the element-wise square

root. Analogously, the updating rule for matrix F is derived as

F = F ⊙

√
[B

′
BF

′
]

[B
′
X + α(FC∗

1 + FC∗
2)]

. (10)

After obtaining matrices B and F, we divide the matrix B =[
Bl
Bg

]
. The prediction of lncRNA-ontology is obtained as BlFl.

The procedure of the proposed algorithm is illustrated in
Algorithm 1. Usually, the number of iterations is 100.

4. RESULTS

4.1. Data
The PPI network is downloaded from the BioGrid database
(https://thebiogrid.org/). We select the maximal connected

Algorithm 1 The MPrNMF algorithm

Input:

Yi(1 ≥ i ≥ n): The multiple views of lncRNA-gene
associations;
X: The known lncRNA(gene)-ontology associations;
k: number of communities;
α: weight for multiple views;

Output:

X̂l: the predicted lncRNA-ontology associations.
Part I: Matrix Decomposition

1: Initialing randomly B and F;
2: Fixed matrix F, update matrix B according to Equation (9);
3: Fixed matrix B, update matrix F according to Equation (10);
4: Continue Step 2 and 3 until the termination criterion is

reached;
Part II: Predicting lncRNA-ontology associations

5: Predicting the lncRNA-ontology associations as X̂l = BlFl;
6: return X̂l.

subgraph in the PPI network for analysis. The lncRNAs
are downloaded from the GENCODE database (https://
www.gencodegenes.org/). The gene-disease associations are
downloaded from the OMIM database (https://omim.org/),
while the lncRNA-disease associations are downloaded from the
LncRNADisease database (http://www.cuilab.cn/lncrnadisease).
The expression profiles are downloaded from the COXPRESdb
database Okamura et al. (2018) (http://coxpresdb.jp/), where the
three preprocessed datasets, including Hsa.c4-1, Hsa2.c2-0, and
Hsa3.c1-0, are used.

Since there is no available public database for the ontology
of lncRNAs, Zhang and Ma (2018) manually curate a set of 55
lncRNAs with 129 GO terms by literature searching. We adopt
this dataset as benchmark to test the performance of the proposed
method.

4.2. Criterion
To predict the lncRNA-ontology associations, the output of
the proposed algorithm is a real value in the interval [0,1].
Hence a threshold is need to determine the final prediction.
Following the NeuraNetL2GO algorithm (Zhang and Ma, 2018),
we use the Recall, Precision and Fmax to quantify the accuracy
of algorithms. Specifically, let t be the threshold, and P(t) be
the set of predicted ontology, and T be the ontology in the
benchmark dataset. For the i-th lncRNA, the true positives (TP),
false positives (FP) and false negatives (FN) are defined as

TPi =
∑

o∈O
I(f ∈ Pi(t) ∧ f ∈ Ti), (11)

FPi =
∑

o∈O
I(f ∈ Pi(t) ∧ f /∈ Ti), (12)

FNi =
∑

o∈O
I(f /∈ Pi(t) ∧ f ∈ Ti), (13)
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where o is an ontology, O denotes the set of all functions, and
I(x) is indicator function with value 1 if x is true, 0 otherwise.
The recall, precision, and Fmax are defined as

Recall =
∑

i TPi∑
i TPi +

∑
i FNi

, (14)

Precision =
∑

i TPi∑
i TPi +

∑
i FPi

, (15)

Fmax = max
t

2Recall(t)Precision(t)

Recall(t)+ Precision(t)
. (16)

4.3. Parameter Selection
There are two parameters involved in MPrNMF: parameter k is
the number of features, and parameter α controls the relative
importance of partial regularization items. On the parameter k,
Wu et al. (2016) proposed the instability based NMF model for
parameter selection. For each k, MPrNMF runs τ times with
random initial solutions and obtains τ basis matrices, denoted
by B1, . . . ,Bτ . Given two matrices B1 and B2, a τ × τ matrixH is
defined where the element hij is the cross correlation between the
i-th column of matrix B1 and the j-th column of matrix B2. The
dissimilarity between B1 and B2 is defined as

diss(B1,B2) =
1

2k
(2k−

∑

j

maxH.j −
∑

i

maxHi.),

where H.j denotes the j-th column of matrix Q. The instability is
the discrepancy of all the basis matrices for k, which is defined as

ϒ(k) =
2

τ (τ − 1)

∑

1≤i<j≤τ

diss(Bi,Bj).

As shown in Figure 3A, the instability of MPrNMF changes as
the number of features k ranges from 40 to 64 with gap 4. When
k <52, the instability decreases, while it increases if k >52. The
reason is that when k is small, the number of features cannot

fully characterize topological structure of associations, while large
k results in the redundance of features. It reaches minimum at
k= 52. Thus, we set k= 52.

How the parameter α effects the performance of MPrNMF is
illustrated in Figure 3B, where the Fmax changes as α increases
from 0.1 to 2 with a gap 0.2. It is easy to assert that, when
α increases from 0.1 to 1, the performance also improves. The
accuracy of the proposed algorithm is robust when α > 1. The
reason is that when α is small, the objective function is dominated
by the associations between lncRNA(gene)-ontology diseases.
As α increases, the contribution of the regularization items
for the multiple views of lncRNA-gene associations increases,
improving the accuracy. Therefore, we set α = 1 since it reaches a
good balance between lncRNA(gene)-ontology associations and
lncRNA-gene associations.

4.4. Performance
To fully validate the performance of MPrNMF, three algorithms
are selected for a comparison, including lnc-GFP (Guo et al.,
2013), Lnc2Function (Jiang et al., 2015) and NeuraNetL2GO
(Zhang and Ma, 2018, because of their excellent performance. In
this study, we only focus on the biological process of GO terms.

FIGURE 4 | The performance of various algorithms on the prediction of

ontology of lncRNAs in terms of Recall, Precision and Fmax.

FIGURE 3 | Parameter selection: (A) how instability changes as the number of features k increases, and (B) how the parameter α effects the performance of the

proposed algorithm.
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FIGURE 5 | The number of lncRNAs that are correctly annotated by various algorithms.

The accuracy of various algorithms is shown in Figure 4,
where recall, precision and Fmax are adopted for measuring
the performance. These result demonstrate that: (i) MPrNMF
achieves the best performance on the recall; (ii) MPrNMF
outperforms the lnc-GFP and Lnc2Function; (iii) MPrNMF is
inferior to the NeuraNetL2GO. There two possible reasons why
the proposed method is superior to lnc-GFP and Lnc2Function.
First of all, MPrNMF integrates multiple heterogeneous genomic
data via the matrix factorization, which is more accurate to
characterize lncRNA-ontology associations. Second, the multiple
heterogeneous genomic data are regularized separately, rather
than fusing them via a linear function. However, the proposed
algorithm is inferior to NeuraNetL2GO. In detail, the Fmax for
MPrNMF is 0.309, while that of NeuraNetL2GO is 0.336. There
also two possible reasons. First of all, the MPrNMF algorithm
is also a network-based method, requiring the networks are
connected, which excludes away many lncRNAs or genes for
analysis. The second reasons is that MPrNMF does not fully
explore the topological information of networks, while the
NeuraNetL2GO makes use of graph embedding features from
networks.

Furthermore, we also compare these algorithms in terms
of the number of lncRNAs that are annotated with a least
one biological process GO term. As shown in Figure 5, 47
lncRNAs are correctly annotated by the proposed method, which
is significantly higher than lnc-GFP and Lnc2Function. Even
though it is not as high as that of NeuraNetL2GO, the difference
is not significant (p-value = 0.387, Fisher Exact Test).

In MNrNMF, multiple views of lncRNA-gene associations are
used. Then, we investigate the performance of each view of the
associations. The Fmax of the proposed algorithm based on co-
expression lncRNA-gene associations is 0.242, while that based
on the disease lncRNA-gene associations is 0.278. These results
indicate that the effective integration of heterogeneous genomic
data is promising on the prediction of lncRNA-ontology.

4.5. Case Study
In this subsection, we apply MPrNMF to lncRNA instance to
show the application of the proposed algorithm. HOTAIRM1 is
an intergenic lncRNA between HOXA1 and HOXA2. Evidence
shows that HOTAIRM1 is a critical regulator for the expression
level of HOXA1 and HOXA4 (Zhang et al., 2009, 2014), which

is involved in cell growth in leukemia cells. We apply the
MPrNMF algorithm to predict the functions of HOTAIRM1, and
it discovers 5 ontology functions: biological regulation, cellular
process and signal transduction. These functions have been
validated by the previous studies, indicating that the proposed
method is applicable to predict the ontological functions of
lncRNAs.

5. CONCLUSION

More and more lncRNAs have been identified in the past few
years. However, the functions of vast majority of lncRNAs are
poorly characterized. In this study, we propose a novel algorithm
to predict the functions of lncRNAs via integrating multiple
types of genomic data. The results demonstrate that the proposed
algorithm is superior to the network-analysis based methods.
However, the proposed method has some limitations. First, only
the expression and disease data are used to construct the lncRNA-
gene associations, which cannot fully characterize the relations.
However to construct more reliable lncRNA-gene associations
is promising in predicting the functions of lncRNAs. Second,
the proposed method cannot fully make use the topological
information in the multiple networks, such as graph embedding
features. In the further studying, we will investigate how to solve
these two issues.
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