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Over the last several years, there has been considerable progress in the treatment of cancer
using gene modified adoptiveT cell therapies.Two approaches have been used, one involv-
ing the introduction of a conventional αβ T cell receptor (TCR) against a pepMHC cancer
antigen, and the second involving introduction of a chimeric antigen receptor (CAR) con-
sisting of a single-chain antibody as an Fv fragment linked to transmembrane and signaling
domains. In this review, we focus on one aspect ofTCR-mediated adoptiveT cell therapies,
the impact of the affinity of the αβ TCR for the pepMHC cancer antigen on both efficacy
and specificity. We discuss the advantages of higher-affinity TCRs in mediating potent
activity of CD4 T cells. This is balanced with the potential disadvantage of higher-affinity
TCRs in mediating greater self-reactivity against a wider range of structurally similar anti-
genic peptides, especially in synergy with the CD8 co-receptor. BothTCR affinity and target
selection will influence potential safety issues.We suggest pre-clinical strategies that might
be used to examine each TCR for possible on-target and off-target side effects due to
self-reactivities, and to adjust TCR affinities accordingly.

Keywords: adoptiveT cell therapy,TCR affinity,T cell sensitivity,T cell cross-reactivity, tumor-associated epitopes

INTRODUCTION
Immunotherapies of cancer use either passive or active approaches
to recruit immune cells against tumor cells. Although most passive
strategies to date have involved monoclonal antibodies, a growing
body of work shows that T cells may provide more immediate
and potent anti-tumor cell activity. In the most common adoptive
T cell approaches under investigation, genes that encode a T cell
receptor (TCR) or a chimeric antibody-based receptor (chimeric
antigen receptor, CAR) are introduced into ex vivo activated T cells
from a patient. Both receptors have shown significant promise,
but the properties of these receptors that yield the most effec-
tive responses continue to be explored. In addition, because of
their potency and sensitivity, adoptive T cells can present safety
issues that have not generally been seen with antibodies. Aspects
of TCR-mediated adoptive T cell approaches are reviewed here.

TCR-MEDIATED ADOPTIVE T CELL THERAPIES
It has been a reasonable tenet that the potency of TCR-mediated
adoptive T cell therapies could be improved by using class I-
restricted TCRs that are able to function both in their normal
context, CD8 T cells, and in CD4 T cells. While CD8 T cell activ-
ities against cancer are important, recruitment of CD4 T cells to
the site of a tumor can result in direct tumor control (1) and pro-
vide a cytokine milieu that promotes the function and survival of
CTLs and NK cells (2–9), and CTL proliferation within tumors
(10). CD4 T cells can also take on a cytotoxic phenotype, killing
tumor cells directly (11, 12). Finally, CD4 T cells contribute to
IFNγ-dependent mechanisms of angiogenesis inhibition (13, 14)
and enhanced innate and adaptive responses (15, 16).

The recruitment of CD4 T cells with class I MHC-restricted
TCRs is, however, confounded by the fact that most TCRs with

class I specificity require co-expression of CD8 for full activity.
Nevertheless, some TCRs have been shown to mediate activity
without CD8 suggesting that they have higher “functional avid-
ity” (7, 17–23). Experimental studies using CD8 binding-impaired
MHCs (24) or T cells that do or do not express co-receptor (25, 26)
have defined affinity thresholds above which TCRs can respond
to class I MHC without a requirement for CD8. There are now
many approaches available to isolate or engineer TCRs that exhibit
higher affinities and thus, act independent of CD8 (27–32).

ROLE OF CD8 IN ENHANCING T CELL SENSITIVITY
The dual roles of the CD8 co-receptor in binding to the class I
MHC ligand and in signaling have been the topic of many investi-
gations. The synergy between the TCR and CD8 allows just a few
class I complexes on a target cell to stimulate cytolysis (33, 34).
This exquisite sensitivity has evolved to allow our immune sys-
tem to identify a potential target cell as “foreign” under conditions
where the processed antigen levels are extremely low.

It has been argued that CD8 functions primarily by bringing
the intracellular kinase Lck together with the TCR/CD3 complex
(35). It should also be noted that CD8 binding to non-cognate
pepMHC has a profound impact on increasing T cell sensitivity,
and that the overall surface density of pepMHC is important in
the contribution of CD8 (36, 37). Accordingly, MHC density on
tumor cells can play a role in the function of both CD8 and the
antigen-specific TCR.

Regardless of the exact mechanism, CD8 synergy with the TCR
is so effective that cytolytic activity of CTLs can be induced even
with very low TCR affinities [e.g., 300 µM (38, 39)]. This might be
particularly important in the case of CD8 T cell responses against
self-cancer antigens, where the TCR affinities appear to be lower
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than TCR affinities against foreign antigens (40, 41), most likely
due to negative selection in the thymus. The TCR affinity thresh-
old in the thymus that promotes negative selection is thought to be
set very low in order to reduce the risk of peripheral autoimmune
reactions (42–46). However, the well-known ability of CD8 to
synergize with very low affinity TCRs also presents issues of unde-
sirable autoreactivities against structurally similar self-peptides,
when the affinity of the TCR against the cognate tumor antigen is
increased (see below).

TCR:pepMHC AFFINITIES
Given the central role of TCR affinity in both driving T cell activ-
ity and in conferring the specificity of the reaction, we summarize
concepts of affinity and its measurement here. More thorough
reviews have been published elsewhere [e.g., (40, 47, 48)]. One
straightforward way to describe TCR binding to pepMHC is as
a simple, one-to-one interaction involving a bimolecular binding
reaction:

TCR+ pepMHC
kon


koff

TCR:pepMHC

where kon indicates the association rate of the interaction, and
koff describes the dissociation rate of the interaction. Addi-
tional parameters describing the binding can be determined
from these association and dissociation rates, including the
half-life [t 1/2= ln(2)/koff] and the equilibrium binding constant
(K d= 1/K a= [TCR][pepMHC]/[TCR:pepMHC]= koff/kon). The
equilibrium binding constant may also be measured with equilib-
rium (or estimated from quasi-equilibrium) binding experiments,
using techniques such as Scatchard plots or other fitting of the
bound vs. free equation for K d. In this review, we do not describe
the key role of peptide affinity for the MHC product, but this
parameter is also critical in the assessment of which peptide(s) to
target (49–52).

The bimolecular binding equation above is used to describe the
interaction between two free molecules in solution,with 3D mobil-
ity. Using soluble versions of pepMHC and/or TCR and measure-
ment techniques such as binding to cell surfaces or surface plasmon
resonance, a variety of models relating TCR binding parameters to
T cell triggering have been developed (40). These included models
based on the dissociation rate (kd) such as “kinetic proofread-
ing” (53), which suggested that a critical t 1/2 threshold must be
exceeded for T cell activation to occur. An extension of this model
proposed an “optimal dwell time” (54), incorporating the con-
cept that exceptionally long t 1/2 values would result in reduced
activity at low antigen density as a consequence of reduced serial
triggering of multiple TCRs by each cognate pepMHC molecule
(55). This model, which predicts reduced sensitivity of TCRs with
long half-lives seems to be contradicted by very high-affinity TCRs
engineered via directed evolution that can mediate sensitive T cell
responses to low amounts of antigen (56).

Because the TCR, CD8, and pepMHC all exist as integral
cell surface proteins on opposing cells, each present in vari-
ous numbers, the corresponding multivalent interactions have
been difficult to deconvolute from cell-free affinity measure-
ments. Initial exceptions to the correlation between koff and

activity among TCR:pepMHC pairs led to consideration of the
value of kon in the overall interaction (57–59). In the 2C sys-
tem, which benefits from a large repertoire of reagents, measure-
ments of pepMHC affinities by competition with a TCR clono-
typic antibody on the live T cell surface gave good correlation
with sensitivity and activity of 2C T cells against those targets
(38). This approach allows direct measurement of the cell sur-
face affinities, but unfortunately due to the lack of appropriate
antibody reagents, most TCRs can not be probed in this manner.
More recently, using careful statistical analyses and experimenta-
tion, a confinement time model of TCR triggering highlighted
the contribution of kon and potential re-binding of the same
TCR:pepMHC (60). In situ measurements of TCR:pepMHC bind-
ing to opposing 2D surfaces were also performed, using single-
molecule fluorescence resonance energy transfer (61) or mechan-
ical force and contact surface area measurements (62). These
studies revealed that binding parameters were altered/accelerated
under the more physiological geometries, showing high correla-
tion between faster on-rates, lower 2D-K d values, and more potent
agonist activity.

Regardless of the type of K d measurement, 2D or 3D, or
the involvement of kinetics, it is reasonable to conclude that
TCR:pepMHC systems exhibit a: (1) minimum affinity threshold
required to be stimulated by cognate pepMHC, (2) a maximum
affinity threshold above which there is no longer improvement
in sensitivity (or even a reduction in sensitivity), and (3) that
these affinity-minima and -maxima will have different ranges,
depending on whether the cognate co-receptors (CD8 for a class I
pepMHC and CD4 for a class II pepMHC) are present.

ROLE OF TCR AFFINITY IN MEDIATING ACTIVITY OF CD4 AND
CD8 T CELLS AGAINST A CLASS I MHC ANTIGEN
Class I MHC is engaged by the CD8 co-receptor with relatively
low affinity (K d ∼ 10–200 µM), that varies by allele (35, 63–67).
Nevertheless, CD8 participation can increase sensitivity of a T
cell to its cognate class I pepMHC complex by one-million fold
(56), reviewed in (67). Accordingly, in the targeting of class I
pepMHC, normal wild-type affinity TCRs in the range of 10–
300 µM [reviewed in (40)] are sufficient to provide very sensitive
responses (Figure 1). Indeed, normal CD8 T cells have been shown
to respond to as few as one to three agonist pepMHC complexes
on the surface of a cell (33, 34) due to the synergy with CD8.
The ability of CD8 to synergize with even very low affinity TCRs
[K d > 300 µM (25, 67, 68)] can be advantageous in the normal
anti-tumor setting, as most anti-self (and, hence, anti-tumor)
pepMHC reactive T cells would have been deleted in the thy-
mus if they exhibited even modest affinities. Based on studies
with various TCRs against class I pepMHC, the minimal affin-
ity required for CD8 T cell activity appears to be in the range of
300 µM, whereas the optimal affinity above which there is no addi-
tional in vitro or in vivo improvement is about 10 µM (24, 26, 69,
70). However, there has been some evidence that higher-affinity
TCRs yield faster T cell reactions, but reduced sensitivity at lower
pepMHC densities (71, 72).

As indicated, it has been shown that CD4 T cell responses
against tumors are very beneficial, a process that can be achieved
by transducing CD4 T cells with TCRs that have higher affinities
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Stone and Kranz T cell receptor affinity

FIGURE 1 | Relationship betweenT cell activities andTCR affinities for
a class I pepMHC antigen, in either CD8 or CD4T cells. Various TCRs
whose affinity for their target class I pepMHC complexes have been
measured are depicted on an affinity scale (K d). The relative activity ranges
for those receptors are listed for those TCRs expressed in CD8 (left) and

CD4 (right) T cells. The activity boundaries are approximated from the
best-known systems. Sensitivity at low TCR affinities is achieved due to
TCR synergy with the CD8 co-receptor. This same principle can yield
CD8-dependent, undesirable cross reactivities with structurally similar
self-peptides.

(K d < 10 µM) against a class I MHC tumor antigen (25, 29, 73)
(Figure 1). Even for CD4 T cells, however, there seems to exist
an affinity threshold for class I pepMHC above which T cell acti-
vation occurs in the absence of the cognate peptide, as was seen
for a picomolar-affinity TCR against HLA-A2/NY-ESO-1 (157–
165) (73). This CD4 T cell activation appears to be due to the
interaction of the affinity-engineered TCR with one or more self-
pepMHC complexes with affinities above the CD8-independent
threshold (i.e., K d < 10 µM).

Raising the affinity of a TCR in order to achieve optimal CD4 T
cell activity (i.e., CD8 independence) also increases the risk that the
same TCR, in a CD8 T cell, will mediate activity against structurally
related self-peptides. In this scenario, TCR affinities for such a self-
peptide-MHC that were below the threshold (e.g., K d > 300 µM,
in the presence of CD8) for the wild-type TCR may now be ele-
vated to <300 µM with the affinity-enhanced TCR. In summary,
in CD4 T cells a high-affinity TCR against a cognate pepMHC
would need to cross-react with a structurally related self pepMHC
at an affinity of at least 10 µM to stimulate autoreactivity, whereas
in CD8 T cells a high-affinity TCR against a cognate pepMHC
would need to cross-react with a structurally related self pepMHC

at an affinity of only 300 µM to stimulate autoreactivity, due to
the synergy of CD8.

The consequences of these self-peptide cross-reactions can be
varied. In one case (see 2C system below), a higher-affinity TCR
introduced into CD8 T cells resulted in self-peptide reactivity and
rapid deletion of the transduced CD8 T cells. While increased
cross-reactivity by the mouse high-affinity TCR m33 in CD8 T
cells resulted in deletion (74–76), several clinical trials in humans
resulted in dangerous pathologies caused by the introduced T cells.
The reasons for the difference in outcome are not entirely clear.
One possibility is that the expression pattern of the cross-reactive
epitope influences the outcome; for example, one cross-reactive
epitope with the high-affinity m33 TCR, dEV8, is expressed ubiq-
uitously, possibly overwhelming the introduced CD8 T cells and
leading to AICD or even fratricide. By contrast, for cross-reactive
epitopes that are tissue restricted (see below), the T cells may be
able to persist and ultimately to mediate localized tissue destruc-
tion. Using appropriate animal models with tissue-restricted anti-
gens, and adoptively transferred T cell with higher-affinity TCRs,
it should be possible to investigate systematically the cause for
different outcomes.
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AFFINITY OF THE TCR CORRELATES WITH REACTIVITY FOR
STRUCTURALLY RELATED PEPTIDES
Given the central role of the TCR:pepMHC interaction in activity
and specificity it is not surprising that significant efforts have gone
into dissecting the interface, often residue by residue. Of particu-
lar relevance is the role that TCR affinity plays in the recognition
of structurally similar peptides, as such peptides could represent
potential off-target safety issues. In order to consider this issue,
we provide below a non-exhaustive review of several systems:
the mouse class I pepMHC-specific TCR (2C), a mouse class II
pepMHC-specific TCR (3.L2), and human TCRs against the can-
cer antigens MART-1, NY-ESO, MAGE-A3, and WT1. We focus
on the activities mediated against the cognate peptides and, where
available, structurally related peptides.

MOUSE 2C TCR AGAINST CLASS I ANTIGENS
The murine 2C T cell system (77, 78) has been studied exten-
sively, from the level of central tolerance (79), to the level of
structure/function (80–82), to its use in many tumor models (76,
83, 84). The CD8 T cell clone 2C was induced in a BALB.B mouse
(H-2b) by an alloresponse to the H-2d tumor P815 (85). The 2C
TCR was shown to mediate positive-selection by Kb (79), and a
potential self-peptide, called dEV8, involved in this selection has
been identified (86, 87). A synthetic peptide, called SIY, that acts
as a strong agonist in the context of Kb was also identified (88).

The known reactions of 2C with a variety of ligands (Kb, Ld,
and Kbm3) have provided a model system to study TCR degen-
eracy (89). Affinities for the allogeneic ligands [p2Ca/Ld and
QL9/Ld K d ∼ 1 µM (90, 91)], the putative positive-selection lig-
and [dEV8/Kb, K d ∼ 80 µM (90)], and the strong agonist ligand
[SIY/Kb, K d ∼ 30 µM (26, 90, 91)] have been measured by various
methods. The structure of this receptor in complex with dEV8/Kb

was the first mouse TCR:pepMHC to be determined (80). Since
then, the structures of the 2C TCR in complex with Ld ligands
(81, 82) and Kb ligands (80, 92) have been solved, showing how
the complementarity determining regions (CDR) accommodate
the various ligands. CD8 2C T cells, have also been used to probe
the exquisite sensitivity of T cells, suggesting that only a few ago-
nist pepMHC molecules (or even one) on a target cell can mediate
activity (33, 34). Finally, the 2C system and the strong agonist pep-
tide SIY was used by Schreiber and colleagues to reveal the process
of tumor antigen cross-presentation on stroma (83, 93, 94), and
more recently the system has been exploited by Jacks and col-
leagues to reveal aspects of peripheral tumor tolerance (84) and the
importance of mutated peptide antigens in immunoediting (95).

In the context of the present review, the 2C TCR (K d= 1 µM for
QL9/Ld, and 30 µM for SIY/Kb) was also the first to be engineered
for higher affinity by directed evolution, first against QL9/Ld (96)
and then against SIY/Kb (71). A yeast display library of CDR3α

mutants in the 2C single-chain TCR (scTCR) were selected with
QL9/Ld to yield various mutants, including m6 with a K d value
of 10 nM (91, 96, 97). The same 2C scTCR library, selected with
SIY/Kb, yielded various mutants including m33 with a K d value
of 30 nM (26, 71, 91). Stimulation of a T cell hybridoma express-
ing the higher-affinity TCR variants showed that they exhibited
increased sensitivity to agonist peptide presentation (71, 97). In
addition to sensitive agonist responses, binding of high-affinity

TCR variants to structurally related pepMHC complexes were also
increased (Figure 2A) (39, 71, 96, 97).

In addition to a broader range of reactivity with single-amino
acid substitutions in the agonist peptide, the higher-affinity TCR
m33 (isolated against the ligand SIY, with 1000-fold higher affin-
ity) also showed CD8-dependent activity against the structurally
similar self-peptide dEV8 (71). Although the m33 TCR only exhib-
ited about a twofold increase in affinity for the self-pepMHC
dEV8/Kb, this increase was sufficient for CD8 T cells expressing
m33 to be stimulated by both exogenous dEV8 and endogenous
peptides presented by H-2b cells such as C57BL/6 splenocytes
(71). While the sequence of dEV8 only contains two amino acids
in common with the strong agonist SIY (SIY: SIYRYYGL; dEV8:
EQYKFYSV), they are very similar structurally (Figure 2B), and
can be considered to be analogous to single-amino acid substi-
tutions of agonist peptides. This notion forms the basis of the
more detailed discussion below concerning the examination of
structurally similar self-peptides.

It is important to point out that in contrast to an increase in
affinity for structurally similar pepMHC complexes (i.e., m6 TCR
with QL9 and its variants, or m33 TCR with SIY and dEV8), the
affinities of engineered 2C variant TCRs were not increased toward
structurally dissimilar ligands. For example, the high-affinity TCRs
m6 and m13 selected against the allogeneic ligand QL9/Ld, had
reduced affinities for the syngeneic ligand SIY/Kb (91).

MOUSE TCR 3L2 AND ITS LIGANDS
Similar effects of increased affinity were observed for the class
II-restricted TCR system called 3.L2 (98, 99). The 3.L2 TCR was
derived from a CD4 T cell clone against a peptide from the minor
d allele of the b chain of mouse hemoglobin, presented in complex
with I-Ek. The 3.L2 TCR was engineered by yeast surface display
for increased affinity to the Hb/class II pepMHC complex. A panel
of TCRs with an affinity range from the wild-type 3.L2 [K d 20 µM
(99, 100)] to the highest affinity variant, m15 (K d 25 nM) were iso-
lated (99). In the case of these higher-affinity TCR variants, there
were no apparent increases in CD4 T cell activity for the ago-
nist pepMHC. This may be a result of a wild-type affinity already
above the optimal activation threshold for this complex. However,
the ability to respond to single-amino acid substitutions of the Hb
peptide was much broader for the TCRs with increased affinity (99,
101). A recent study showed that even a TCR (m2) with a modest
improvement in affinity (twofold) for Hb/I-Ek mediated broader
peptide reactivity, and enhanced thymic negative selection (102).
Thus, like the 2C system, the 3.L2 system also showed that struc-
turally similar peptides have a higher probability of stimulating T
cells that express affinity-enhanced TCRs.

HUMAN TCRs
A prioritized list of cancer-associated peptide antigens has been
compiled, setting quantitative values on various properties, includ-
ing antigenicity, relationship to oncogenicity, and specificity (103).
Among the panel of peptides, some have been the antigenic pep-
tides targeted by TCRs in adoptive T cell therapies. These include,
most prominently, MART-1 (29), NY-ESO-1 (104, 105), MAGE-
A3 (106), and WT1 (107, 108). Various strategies to improve the
affinity, and it is hoped thus the efficacy, of TCRs for the adoptive
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FIGURE 2 |T cell receptor affinity, specificity, and cross-reactivity in the
2CTCR system. (A) The m6α TCR engineered from the 2C TCR for increased
affinity for QL9/Ld exhibited more sensitive reactivity with structurally related
peptides with single-amino acid substitutions. Sensitization doses of various
QL9 position 5 variant peptides for IL-2 production by CD8-negative TCR
transfectants are shown. The log of the SD50 value was plotted for each of the
peptides used to stimulate 2C TCR (yellow bars) and m6α TCR (blue bars)
transfectants [*Reproduced with permission from Ref. (56)]. (B) The 2C TCR
reacts with the agonist SIY peptide/Kb complex and the putative
positive-selecting peptide dEV8/Kb complex with K d values of 30 and 80 µM,
respectively. While the sequences share only two amino acids in common,

they are structurally very similar [shown here aligned from their H2-Kb-bound
structures, SIY in blue and dEV8 in red; PDB IDs 1G6R (92) and 2CKB (173)].
(C) Performing a protein BLAST search of the mouse proteome with the SIY
peptide sequence string and an Expect value cut off of 5.0 yielded only two
sequence-similar peptides. (D) Performing a proteome scan to find
sequences similar to SIY, based in part on alanine scan data of the peptide
epitope, and the tolerance for mutations at each position yielded 43 peptides
considered to be similar (only 33 sequences predicted to bind with SYFPEITHI
scores >16 are shown). Using this technique, the putative positive-selecting
peptide, and the self-peptide that reacts with the higher affinity TCR m33 (71),
called dEV8 was identified (shown in bold, highlighted in yellow).

T cell therapy trials have been taken. While anti-tumor responses
have been observed, there have been serious adverse events with
MART-1 TCRs due to on-target/off-tumor activity (109), and
lethal events with MAGE-3 TCRs due apparently to off-target
cross-reactivity with structurally similar epitopes (110, 111). For
these reasons, we summarize below various aspects of reactivities
mediated by TCRs against four of the candidates for adoptive T
cell therapies (MART-1, MAGE-A3, NY-ESO-1, and WT1).

MART-1
MART-1, a differentiation antigen upregulated on the surface
of melanoma cells, contains the well-studied HLA-A2-restricted
peptide epitope AAGIGILTV [27–35] (112) and its N-terminal
extended variant EAAGIGILTV [26–35] (113). CD8 T cell clone
M1F12 (now called DMF4) against this peptide was isolated from
a patient with an anti-tumor response (114). The DMF4 TCR has a
relatively low affinity (K d 170 µM) for the predicted endogenous
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epitope, AAGIGILTV/HLA-A2 (115). The DMF4 TCR was used
in one of the first trials of gene modified adoptive T cell transfer
in humans (116). While relatively low overall response rates were
reported [4/31, or 13%, with 17 patients reported in the original
publication (109, 116)], the study represented an important step
toward proof of concept for TCR gene therapies.

In an attempt to improve the efficacy of MART-1-directed TCR
gene therapy, a second generation T cell clone called DMF5, with
higher functional avidity and detectable activity in CD4 T cells, was
isolated (117). The affinity of DMF5 (K d 40 µM) (115) was higher
than DMF4, but interestingly still lower than the murine wild-type
receptor 2C (K d 30 µM) [Note: like DMF5, the 2C TCR exhibited
some activity in CD4 T cells in vitro, although in vivo anti-tumor
activity of CD4 T cells with the 2C TCR was less effective than
the higher-affinity TCR m33, with a K d of 30 nM (76)]. Similarly,
because DMF5 showed greater in vitro activity than DMF4 in CD4
T cells, it was hypothesized that DMF5-transduced T cells might
mediate improved anti-melanoma responses (109). Indeed, objec-
tive response rates were higher in the DMF5 trial (30 vs. 13%).
However, unlike patients treated with DMF4, patients treated with
DMF5 experienced a marked cytokine (IFN-γ) spike and seri-
ous skin rashes 3–5 days after T cell transfer. The cytokine spike
induced was ∼9-fold higher for patients treated with the affinity-
enhanced DMF5 TCR when compared with previous patients who
received cells with the DMF4 TCR, suggesting that the TCR reac-
tivity was related to these results. Furthermore, since IFN-γ is
produced by activated T cells, and patients were lymphodepleted
prior to transduced T cell infusion (and still showed signs of lym-
phodepletion at the 3- to 5-day time point), it is likely that the
cytokines were derived from the transferred cells. Importantly,
DMF5 also mediated high rates of anterior uveitis, hearing loss,
and dizziness, presumably due to reactions to MART-1 expressed
in the normal eye and ear (109). Accordingly, these responses were
characterized as on target/off tumor, and were only revealed by the
potency of T cells transduced with the higher-affinity DMF5 TCR.

MAGE-A3
MAGE-A3 is a cancer-testis antigen and a member of a larger
MAGE family. A related family member, MAGE-A1, was the first
immunogenic gene found to elicit a natural CTL response in a
melanoma patient (118). MAGE-A3 was identified several years
later (119) and is one of the most commonly expressed MAGE
family genes in cancers of different epithelial origins [reviewed in
(120)]. Several peptide epitopes from MAGE-A3 have been iden-
tified, restricted by various MHC alleles. Here, we focus on the
HLA-A2-restricted epitope, MAGE-A3 [112–120]: KVAELVHFL,
which was the epitope targeted in a recent trial that resulted in
the deaths of two patients (111), although a recent clinical trial
with a MAGE-A3 epitope (EVDPIGHLY [161–169]) restricted by
HLA-A1 also showed cross-reactivity, cardiovascular toxicity, and
lethality in a clinical trial (110).

A high-avidity TCR was generated by vaccinating an HLA-A2
transgenic mouse with the MAGE-A3 [112–120] peptide (106). As
murine CD8 does not bind efficiently to HLA-A2, T cells gener-
ated against peptide/HLA-A2 complexes in these mice presumably
have affinities above the CD8 independence threshold, and would
be sufficient to recruit CD4 as well as CD8 T cells. Human CD8,

but not CD4, T cells expressing the MAGE-A3 [112–120]-specific
TCR stained with soluble pepMHC tetramers, and were activated
in vitro by MAGE-expressing tumor cells. To identify a TCR with
even higher avidity, various point mutations in the CDR3α were
examined for improved T cell activity (29), revealing an A118T
variant that raised the functional avidity of the TCR, and mediated
improved CD4 T cell activity (106). T cells transduced with these
MAGE-A3/HLA-A2 TCRs were also screened against structurally
similar peptides from other MAGE family members. An epitope
from MAGE-A12 (differing only by a Val to Met substitution
at position 2) was recognized indistinguishably from MAGE-A3,
and detectable responses were seen with similar peptides from
MAGE-A2 and MAGE-A6.

The MAGE-A3 A118T TCR was recently used in adoptive
T cell therapy in nine melanoma patients (111). Five patients
experienced objective regression of their tumors, including one
complete response and one durable partial response that persisted
for over 12 months. However, unexpected neurological toxicity
was observed in three MAGE-A3 patients, resulting in two patient
deaths. High levels of CD4 T cells with the murine TCR were
detected in the cerebrospinal fluid of the patients that experienced
toxicity, although brain infiltrating T cells were predominantly
CD8 (CD4 T cells were rare). Cells expanded from the cere-
brospinal fluid of one of the patients who succumbed showed spe-
cific IFN-γ release when stimulated with MAGE-A3+/HLA-A2+

tumor cells.
To identify potential cross-reactive epitopes that might have

accounted for these toxicities, a BLAST search of the MAGE-A3
peptide, KVAELVHFL, was conducted with the human genome,
revealing various candidates (111). The peptides were synthesized
and tested for their ability to stimulate CD8 T cells transduced
with the MAGE-A3 A118T TCR. One peptide (SAAELVHFL from
EPS8L2, for epidermal growth factor receptor kinase substrate 8-
like protein 2) was reactive, but transfection of the full EPS8L2
gene into HLA-A2-positive cells did not stimulate activity. How-
ever, staining of brain sections with anti-MAGE family antibodies,
as well as testing with Q-RT-PCR, revealed a subset of neurons that
expressed MAGE genes, including MAGE-A12 (111). Thus, it was
suggested that T cell recognition of the structurally similar peptide
from MAGE-A12 likely accounted for the neuronal toxicity.

NY-ESO-1
NY-ESO-1 (or LAGE-1) is also a cancer-testis antigen that
is expressed on a variety of tumors from different origins
[reviewed in (121)]. An NY-ESO-1 peptide (NY-ESO-1 [157–
165], SLLMWITQC) restricted by HLA-A2 was identified using
CTL lines from a melanoma patient (122). A CD8-dependent TCR
called 1G4 that is specific for this epitope was shown to have K d

value of 15 µM for the NY-ESO/A2 complex (104, 105).
As the native NY-ESO peptide bound poorly to HLA-A2, and

was less active in solution due to reactions of the C-terminal
cysteine (123), there have been efforts to design improved pep-
tide analogs. Toward this effort, a positional alanine scan (124)
indicated that P3-Leu, P4-Met, P5-Trp, P7-Thr, and P8-Gln were
important for T cell recognition, while a crystal structure of the
HLA-A2-bound peptide (125) showed that P2-Leu, P3-Leu, P6-Ile,
and P9-Cys were unlikely to contact the TCR directly. To eliminate
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the problems with the cysteine at P9, and to improve HLA-A2
binding, various P9 substitutions have been tested (104, 123, 125).
A peptide with a valine substitution (SLLMWITQV) bound bet-
ter to A2, was more stable in solution (123), and stimulated 1G4
T cells more effectively than the wild-type peptide in vitro (104).
However, vaccination strategies with the C165V peptide did not
lead to efficient cross-reactivity with the wild-type peptide (126),
likely due to a repositioning of the peptide main chain with the
different anchor residue at P9 (127).

While vaccination for NY-ESO-1 remains challenging, adop-
tive T cell therapy for this epitope has been shown to be effective
and safe, even with a higher-affinity TCR variant of 1G4. Several
single-site CDR mutants of the 1G4 TCR increased affinity and
mediated improved activity of CD4 T cells (29). The 1G4-α95LY
TCR has been tested clinically in melanoma and synovial cell sar-
coma with a significant benefit (overall response rate of 45 and
67%, respectively), and a good safety profile has been reported for
the 17 treated patients (128).

In a separate strategy, the 1G4 TCR has been modified for higher
affinity by phage display yielding affinities as high as 26 pM (129,
130). The highest affinity TCRs yielded self-reactivity in both CD8
and CD4 T cells (73) (Figure 1). A high-affinity (50 pM) variant
generated by phage display has also been produced as a soluble, bis-
pecific fusion with anti-CD3 to redirect T cells to NY-ESO in vitro
and in a human xenograft model in mice (131, 132).

WT1
Wilms’ tumor antigen (WT1) is a zinc-finger transcription fac-
tor that plays a significant role in embryogenesis but is mini-
mally expressed in normal adult tissues. It is overexpressed in
most leukemias, and in several other tumor types [reviewed in
(133, 134)]. The recent prioritization of tumor-associated peptides
(103) ranked WT1 as the top target due to its immunogenicity,
restricted expression in normal tissues, and a strong correlation
with tumorigenesis. An immunogenic HLA-A2-restricted epitope,
WT1 [126–134]: RMFPNAPYL has been characterized (107, 135).
Interestingly, the identical peptide sequence is present in the mouse
WT1 homolog, and has been shown to be an immunogenic epi-
tope in the context of H2-Db (136, 137). [Note: a TCR targeting
WT1 [235–243], restricted by HLA-A*2402 (138), is also being
explored for adoptive immunotherapy, with reported efficacy and
safety in pre-clinical systems (139); this peptide and TCR are not
discussed further here.]

To date, several WT1 vaccination trials in mice and humans
have been undertaken, showing excellent safety profiles but low
response rates [reviewed in (140)]. A recent study (141) showed
that only clones of low functional avidity for HLA-A2:WT1 [126–
134] could be isolated from HLA-A2-positive individuals, while
clones of higher functional avidity could be obtained from HLA-
A2-negative individuals through allogeneic stimulation in vitro.
However, the allogeneic clones showed promiscuous reactivity to
different HLA-A2-bound peptides (141), highlighting that cau-
tion should be taken when taking advantage of allogeneic stim-
ulation to isolate tumor-specific TCRs of improved affinity. A
limited trial where anti-WT1 CTL clones were elicited ex vivo
from patients, in the presence of IL-21, and re-introduced showed
substantial persistence of the WT1-specific T cells (108). The

results also suggested an improved response over WT1 vaccines,
while maintaining favorable safety. Looking toward adoptive T cell
therapy, a WT1 [126–134]/A2-specific TCR isolated from peptide-
specific, allo-induced CTLs (107, 142), exhibited good anti-tumor
responses in a mouse xenograft model with TCR-transduced T
cells (143, 144). A more recent study targeting WT1 for adoptive
T cell therapies described a novel strategy to reduce endogenous
TCR levels by using a targeted zinc-finger nuclease, followed by
introduction of their WT1-specific TCR. This approach resulted
in enhancement of overall functional avidity due to the higher T
cell surface levels of the exogenous WT1-specific TCR (145).

With the possibility for improvement of anti-WT1 CD4 T cell
responses with higher-affinity TCRs, our lab, working with Green-
berg and colleagues has previously engineered an enhanced affinity
(CD8-independent) TCR against the murine WT1/Db complex
(137, 146), and we have recently engineered a higher-affinity
human TCR against WT1/HLA-A2 (unpublished). The mouse and
human TCRs are being tested in mouse models with analysis of
potential on-target/off-tumor responses, or cross-reactivity with
structurally related pepMHCs (see below). Adoptive transfer stud-
ies with CD8 T cells and the mouse TCR against WT1/Db have
shown no signs of toxicity in the mouse models (146).

DOES THE ADVANTAGE OF HIGHER-AFFINITY TCRs IN CD4 T
CELLS OUTWEIGH THE POTENTIAL DISADVANTAGE WITH
SELF-REACTIVITY?
Given the connection between sensitivity and cross-reactivity with
TCRs in CD8 T cells, it is reasonable to ask if the recruitment of
CD4 T cells with higher-affinity TCRs is worth the risk of self-
reactivity (by transducing all peripheral T cells including CD8
T cells). As described above, redirected CD4 T cells provide an
opportunity for direct destruction of the tumor by the effector
CD4 T cells. Our recent findings (76) and results from others (75)
suggest that nanomolar affinity TCRs are more potent in CD4
T cells than wild-type TCRs. In fact, the only treatment which
resulted in long-term control of established tumors, with no out-
growth, was CD4 T cells transduced with the 30-nM affinity TCR
m33 (76).

We suggest that the major importance of CD4 T cell recruit-
ment will be that they provide a cytokine milieu that facilitates
the generation of endogenous responses against multiple class I
MHC-restricted cancer antigens. These antigens might include
individual unique peptides with tumor-specific, patient-specific
mutations. Such mutated peptides have recently been shown to
represent the dominant epitopes of an effective immune response
that drives immunoediting (95, 147). Accordingly, it will be impor-
tant to identify strategies that allow TCRs to mediate CD4 T cell
activity, ultimately enabling a broad anti-cancer immune response.
Since adoptive T cell therapies currently are configured to intro-
duce the same TCR into both CD4 and CD8, an important issue is
whether it is possible to improve current pre-clinical approaches
to assess potential self-reactivity and consequent toxicity.

One possible strategy to take advantage of high-affinity TCRs
in immunotherapy would be to separate CD4 and CD8 T cells
ex vivo for transduction with separate TCR variants, as has been
done in mouse studies (74–76). The CD4 T cells could be trans-
duced with nanomolar affinity TCRs, while the CD8 T cells could
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be transduced with a reduced affinity version of the receptor. The
method for creating a lowered affinity version of a TCR is fairly
straightforward, as conserved residues in the CDR2 loops may be
substituted, reducing the overall binding affinity of the TCR while
maintaining the peptide specificity. Using a library of receptors
with different residues at a single CDR2β position in the m33 and
2C TCRs, we recently showed that a range of binding affinities were
achieved by the resulting receptor variants, and certain variants
were sufficiently lowered in affinity to minimize cross-reactivity
in CD8 T cells, but retain CD4 T cell activity (74). Several con-
served positions in TCRs have been characterized [reviewed in
(148)] which could be mutated to achieve lower-affinity variants
of an anti-tumor TCR.

It is of course possible that adoptive T cell therapy could be
combined with checkpoint blockade treatment to interfere with
negative signals transmitted to T cells, for example from inter-
actions of molecules such as CTLA-4 or PD-1 and their ligands,
B7 and PD-L1 or PD-L2, respectively [reviewed in (149)]. With
the advent of checkpoint blockade treatments, including antibod-
ies that inhibit CTLA-4 (FDA-approved Ipilimumab) and PD-1
(or its ligand PD-L1), it is possible that lower-affinity TCRs
will have improved efficacy in adoptive T cell therapies. Clin-
ically, checkpoint blockade [reviewed in (150)] has been used
to enhance endogenous T cell responses against a tumor. In
melanoma patients, ipilimumab treatment showed a survival ben-
efit, either alone or with a gp100 peptide-based vaccine, over the
peptide vaccine alone (151). Patients treated with ipilimumab
often exhibited tissue restricted, immune-related adverse autoim-
mune effects. Recently, there has been considerable excitement
about blocking PD-1 signaling. As the PD-1 ligands, PD-L1 and
PD-L2, are specifically upregulated at sites of inflammation and
on many tumors (149), PD-1 blockade may more directly tar-
get immunosuppression in the tumor with fewer side effects
than with CTLA-4. PD-1 blockade, currently in clinical trials in
the form of several different antibodies (152–155), has shown
promising response rates [up to 52% objective response rate in
advanced melanoma patients treated with the MK-3475 (lam-
brolizumab) PD-1 blocking antibody (155)], but these treatments
were also associated with immune-related adverse effects, although
at lower rates than CTLA-4 blockade. In combination with check-
point blockade, it is possible that a lower-affinity TCR could
act with higher potency in an adoptive T cell therapy setting,
as has been seen in a mouse model (156). It remains to be
seen if this may have similar safety concerns as with higher-
affinity TCRs, in terms of cross-reactivity, or on-target/off-tumor
responses.

POTENTIAL STRATEGIES TO EVALUATE SELF-REACTIVITY
RISKS ASSOCIATED WITH HIGHER-AFFINITY TCRs
Along with the promise of adoptive therapy with engineered
TCR-transduced T cells has come the very real dangers of on-
target/off-tumor toxicity (as seen in the MART-1 trial) and cross-
reactivity with similar epitopes in normal tissues (as seen in the
MAGE-A3 trial). Several important techniques are already in use
to check for cross-reactivity, including in vitro screening of CD4
and CD8 T cells transduced with tumor-specific TCRs, using as
antigen-presenting cells various lines derived from normal tissues.

However, to safely take advantage of this therapeutic strategy
and avoid serious adverse effects, it will be imperative to develop
expanded strategies to screen candidate TCRs for safety and poten-
tial cross-reactivity prior to delivery into human patients. We
propose below a combination of in silico, in vitro, and in vivo
(murine) strategies to enhance current screens prior to clinical
trials. In each case, we argue that having an engineered, high-
affinity TCR would be of significant value in revealing potential
safety concerns, even if a lower-affinity TCR may be desirable in
a clinical setting, especially in CD8 T cells (75, 76). It is relatively
easy to introduce mutations at one of several, well-characterized
locations in the TCR [reviewed in (148)] that can reliably reduce
affinity while maintaining specificity and anti-tumor activity (74).

One way to attempt to detect possible cross reactivities for a
given TCR will be to take advantage of the vast amount of infor-
mation available through genomic and proteomic databases. A
standard protein BLAST (Basic Logical Alignment Search Tool,
blastp algorithm)1 search can be conveniently performed using
the NCBI web interface, revealing similar sequences to a given
peptide ranked with an Expect (E) value. The E value is a mea-
sure of the statistical significance of a particular match compared
to random chance in the entire proteome, with lower E values
being more significantly similar to the search string. As a model,
the mouse proteome was searched by BLAST for sequences simi-
lar to the SIY peptide, which acts as an H2-Kb-restricted agonist
for the 2C TCR, but is not actually contained within the mouse
proteome. This search revealed two peptides with Expect values
<5.0 (Figure 2C). However, the previously identified positive-
selecting antigen, dEV8, was not identified in the BLAST search,
even extending the accepted E value up to 10,000. Thus, BLAST
searches alone do not capture the criteria that would be best
used to search for MHC-binding peptides with potentially similar
TCR-contact residues.

All peptides identified through in silico screens were tested in
MHC-binding prediction algorithms with arbitrary cut-off values
used previously for distinguishing qualitative binders vs. non-
binders. Algorithms examined here included SYFPEITHI with a
cutoff of >16 for binders (157)2; BIMAS with a cutoff of esti-
mated t ½ > 30 s3; Artificial Neural Network [ANN; (158)], and
Stabilized Matrix Method [SMM (159)]. ANN and SMM were
both applied with a cut-off value of IC50 < 500 nM, and both were
accessed through the Immune Epitope Database (IEDB) Analysis
Resource4. A plot of predicted MHC-binding values for epitopes
discussed in this review are shown in Figure 3A. It has been esti-
mated that an IC50 cutoff of 500 nM by ANN or SMM yields
80% or higher (up to 97%) accuracy in predicting MHC binders,
depending on allele (160). However, it is important to keep in mind
that some MHC-binding peptides may be missed using a threshold
such as this; for example, using 500 nM as a binding threshold for
netMHCpan H2-Kb binding predictions would omit p2Ca, a pep-
tide which is known to form a complex with H2-Kb and stimulate
2C T cells (161).

1http://blast.ncbi.nlm.nih.gov/
2http://www.syfpeithi.de/Scripts/MHCServer.dll/EpitopePrediction.htm
3http://bimas.dcrt.nih.gov/molbio/hla_bind
4http://tools.iedb.org/analyze/html/mhc_binding.html#
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FIGURE 3 | Analysis of selected tumor epitopes for homologous
sequences in the human and mouse proteomes. (A) MHC-binding
prediction scores for a set of characterized T cell epitopes, including six
HLA-A2-restricted human tumor-associated epitopes. (B) MHC-binding
predictions for peptides identified in a MAGE-A3 [112–120] homology scan
(no gaps) of the human and mouse proteomes. (C) MHC-binding
predictions for peptides identified in a WT1 [126–134] homology scan of the
human and mouse proteomes (including an allowed, single-amino acid gap).

For (B,C), peptides were subjected to ANN and SMM prediction algorithms
along with SYFPEITHI and BIMAS, and prediction to bind above the arbitrary
thresholds described in the text in any of the algorithms was taken to
indicate a potential binder. (D) A comparison of MAGE-A3 and WT1
proteome scan results. The total number of predicted binders identified in
the human proteome and the percent of the binders identically found in the
mouse proteome for both epitopes (searched without gaps) are highlighted
in yellow.

Using the MHC-binding principles, an alternative strategy to
BLAST is to scan the full proteome for sequence motifs that: (1)
preserve critical residues (or conservative mutations) ideally iden-
tified by positional single-site substitutions of the peptide epitope,
and (2) allow other residues to vary more widely. A similar strat-
egy was used to identify potential positive-selecting ligands for the
OT-1 TCR, scanning for MHC-binding motifs, and then scoring
for similarity among the predicted TCR contacts to the H2-Kb-
restricted ovalbumin peptide, OVA (87). For our current efforts,
using previous alanine scan information for the SIY peptide

(SIYRYYGL) that stimulates the 2C TCR (39), a search motif
was designed as “XX[YFW][RKH][YFW][YFW][GSAT][LIVM],”
where “X” indicates that any residue would be acceptable at that
position, and bracketed residues indicate that one of those limited
set of residues would be acceptable. If every possible sequence were
available in the proteome, the 2C homology search, as designed,
would yield 518,400 sequences (20× 20× 3× 3× 3× 3× 4× 4).
Scanning the mouse proteome [the complete Mus musculus
proteome from The Universal Protein Knowledgebase (UniPro-
tKB), 73,947 entries] with this motif identified 43 peptides, of
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which 33 were predicted to bind well to H2-Kb (in this case,
defining binders using a SYFPEITHI cutoff of 17 or higher,
see Figure 2D). Importantly, this strategy identified, among
the 33 peptides, dEV8 from the NADH dehydrogenase, which
as described above is known to react with 2C TCR and the
higher-affinity m33 TCR.

We propose that the yield of identified,predicted MHC-binding
peptides when searching the proteome in this manner provides
a reasonable estimate of the possible number of self-reactive
peptides, and a tractable number of candidates that could be
tested for reactivity with a higher-affinity TCR (like m33) in
CD8 T cells. Of course, the identified peptides are influenced
by the design of the search string, as well as the accuracy of
binding predictions. To improve the ability of searches like this
to comprehensively identify all potentially cross-reactive pep-
tides, an epitope of interest should be evaluated for the ability
of substituted peptides to activate its specific TCR. Value can
be obtained from simple, single-point alanine substitutions, as
can be seen from the ability of the murine proteome scan to
identify the dEV8 peptide (with only two amino acids in com-
mon with the agonist peptide, Figure 2D) when guided by ala-
nine substitutions of SIY for binding and stimulation of the 2C
TCR (39).

While the search strategies for structurally similar peptides may
identify potential problematic cross-reactive epitopes, this strategy
alone can not identify structurally dissimilar peptides which act
as agonists. It is possible that such peptides could be identified
using combinatorial peptide library techniques, where individ-
ual positions/residues are held constant in each peptide pool, and
stimulation is evaluated (162, 163).

To evaluate in silico strategies for human tumor targeting,
BLAST searches of the HLA-A2-restricted epitopes for MART-
1, NY-ESO-1, MAGE-A3, and WT1 were performed in the human
proteome; similarity was defined with an Expect value cut off of
5.0. Within this range of similarity, the MART-1 (27–35) and WT1
(126–134) described above were identified as unique within the
proteome. NY-ESO-1 (157–165) yielded two additional peptides
rated similar within these criteria; however, neither was predicted
to bind to HLA-A2. By contrast, MAGE-A3 (112–120) yielded
fourteen sequences that were similar within this range of Expect
values, of which 10 were other members of the MAGE family. All of
the MAGE-similar peptides were predicted to have some binding
to HLA-A2 (SYFPEITHI score greater than 16 or BIMAS off-rate
>30 s).

Two of the epitopes, MAGE-A3 and WT1, were used further
as the basis for a scan for structurally similar peptide sequences,
as done with SIY. The contribution of each peptide position to T
cell recognition has not been systematically studied for these epi-
topes; however, some data on substitutions is available (106, 111,
164–166). Using these data, and striving to maintain structural
homology/conservative mutations, proteome search strings were
generated, and applied to both the human and murine proteomes.
This strategy thus further aimed to determine what fraction of
potentially cross-reactive, structurally similar epitopes would be
represented in both the human and murine proteomes. This infor-
mation could be useful in examining what fraction of potential
cross-reactive epitopes might reveal toxicities in a mouse model
(see below).

If every possible sequence were available in the proteome,
the MAGE-A3, and WT1 searches would yield ∼3,800,000 and
∼1,040,000 sequences, respectively. Applying the searches to the
human proteome (the complete Homo sapiens proteome down-
loaded from UniProtKB, 134,787 entries) yielded 134 sequences
similar to the MAGE-A3 epitope and 13 sequences similar to the
WT1 peptide. Thus, consistent with the BLAST search, WT1-like
sequences were about 10-fold more rare in the human proteome
than MAGE-A3-like sequences. We also allowed the search string
to include a single random amino acid gap anywhere in the peptide
sequence for WT1, yielding larger theoretical search maxima (e.g.,
146,000,000 for WT1, almost 40-fold larger than the theoretical
search size without gaps for MAGE-A3, 3,800,000). When even
that search string for WT1 was applied to the human proteome,
only 78 peptides were identified, still half as many as identified with
the MAGE-A3 search string without gaps (134 peptides). It should
be noted that for most TCRs, insertion of a single residue (i.e.,
“gap”) in the peptide may significantly alter the bound conforma-
tion of the peptide, resulting in a loss of recognition of the epitope.
Using a combinatorial library scanning approach where peptide
pools of different length were tested for the ability to stimulate
different TCRs, it has been shown that TCRs have restricted length
preferences in the peptide epitopes that they recognize (163). Thus,
it remains to be seen whether the addition of “gaps” in a search
string are of any value. This can be readily determined by activity
analysis of cognate peptides that have the various single-amino
acid insertions.

The MAGE-A3 and WT1-related peptides were further
screened using the binding prediction algorithms listed above,
and peptides predicted to bind by the ANN or SMM algorithms
(IC50 < 500 nM) were designated as potential binders, resulting in
98 and 11 peptides for MAGE-A3 and WT1, respectively. Interest-
ingly, of these epitopes, 41 and 64%, respectively, were identically
represented in the mouse proteome, with many others having
highly homologous sequences. The distribution of homologous
sequences identified through these screens, and their presence
uniquely in the human proteome, the mouse proteome, or iden-
tically in both is shown in Figures 3B,C (where the WT1-like
peptides in Figure 3C also include those with single-amino acid
gaps). A summary of the search results for these two epitopes can
be seen in Figure 3D. The number of peptides identified by this
type of search in all three cases (SIY, MAGE-A3, and WT1) is
readily amenable to small-scale synthesis and in vitro testing for
T cell stimulation by peptide-loaded, HLA-A2-positive APCs. We
propose this straightforward screen to evaluate cross reactivities
with structurally similar epitopes. Peptides with reactivities would
be followed with more detailed analysis of gene transcript levels in
different tissues, and studies of the ability of the gene-product to
be processed and presented.

Proteome searches using a particular motif can not assess all
potential cross-reactive peptide epitopes, especially those without
structural similarity. Hence, we propose that an additional in vitro
screening strategy may be useful. For example, an open reading
frame (ORF) library (167, 168) covering genes from the human
proteome would be transfected into HLA-A2-positive APCs. ORF
libraries have been used in yeast two-hybrid systems toward map-
ping the protein “interactome,” (169) and recently the human
ORFome is being developed in a lentiviral vector system, which
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would allow for convenient application to mammalian cell trans-
duction (168, 170). This would provide another opportunity to
identify unpredicted cross reactivities, and such libraries would
provide a resource available for screening virtually any TCR,
restricted by the appropriate HLA alleles.

Finally, we propose expanded use of HLA transgenic mice to
screen for safety. As mentioned above, 40–65% of peptides iden-
tified in MAGE-A3 and WT1 homology screens were identical in
mouse and human, providing a rationale for using a mouse screen
to identify at least some of the potentially adverse cross reactiv-
ities. The system would ideally involve the use of mouse T cells
transduced with human TCRs (human V regions linked to mouse
C regions), as these would provide syngeneic cell:cell adhesion sys-
tems for optimal activities. TCR-transduced mouse CD4 and CD8
T cells could be transferred to the transgenic HLA-A2/Dd hybrid
MHCs (AAD, available from Jackson Labs) which allows cells to
present HLA-A2 peptide epitopes while still engaging mouse CD8.
This system could be tested with various affinity TCRs in order to
push the limits of safety and efficacy.

A significant advantage of the mouse system would be the
opportunity to also generate additional transgenic mice on the
AAD background, where the tumor gene of interest (e.g., MART-
1, MAGE-A3, or NY-ESO-1) is expressed under the relevant mouse
promoter. Such models could reveal on-target/off-tumor activities
due to uncharacterized expression of the target gene in normal tis-
sue, either at low levels or by a low-frequency cell subset. As the
WT1 [126–134] epitope is identical in the mouse and human pro-
teins, this provides an opportunity to assess safety without the
generation of the human WT1 transgene.

CONCLUDING REMARKS
While there will always remain a risk of unpredicted reactivi-
ties in patients receiving adoptive T cell therapies, we believe

that the use of TCRs with different affinities and specificities in
an expanded set of pre-clinical approaches, as described here,
will identify some of the possible problems. Proteome search
approaches provide a measure of the number of related self-
peptides that could pose safety concerns with adoptive T cell
therapies. In addition, the number of peptides represented in the
proteome predicted to be similar to a given epitope should cor-
relate with the extent of central tolerance that might exist against
a cancer peptide. In this regard, this type of analysis might be
considered for peptide vaccines (e.g., lower numbers of homolo-
gous peptides may correlate with higher frequencies of peripheral
T cells that have escaped negative selection). Further safeguards
at the initial clinical stage, such as reduction in the number of T
cells delivered, may be considered. Significant progress has also
been made in the development of suicide genes or alternative
approaches that could allow rapid deletion of T cells before a
dangerous reaction reaches the critical stage (171, 172). Finally,
transfer of only CD4 T cells may be desirable as they can mediate
strong anti-tumor effects and potential for helping endogenous
immune responses, but CD4 T cells may not exhibit the CD8-
dependent cross reactivities that the same TCRs mediate in CD8
T cells.
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