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Abstract
Background: Protein-Carbohydrate interactions are crucial in many biological processes with
implications to drug targeting and gene expression. Nature of protein-carbohydrate interactions may be
studied at individual residue level by analyzing local sequence and structure environments in binding
regions in comparison to non-binding regions, which provide an inherent control for such analyses. With
an ultimate aim of predicting binding sites from sequence and structure, overall statistics of binding regions
needs to be compiled. Sequence-based predictions of binding sites have been successfully applied to DNA-
binding proteins in our earlier works. We aim to apply similar analysis to carbohydrate binding proteins.
However, due to a relatively much smaller region of proteins taking part in such interactions, the
methodology and results are significantly different. A comparison of protein-carbohydrate complexes has
also been made with other protein-ligand complexes.

Results: We have compiled statistics of amino acid compositions in binding versus non-binding regions-
general as well as in each different secondary structure conformation. Binding propensities of each of the
20 residue types and their structure features such as solvent accessibility, packing density and secondary
structure have been calculated to assess their predisposition to carbohydrate interactions. Finally,
evolutionary profiles of amino acid sequences have been used to predict binding sites using a neural
network. Another set of neural networks was trained using information from single sequences and the
prediction performance from the evolutionary profiles and single sequences were compared. Best of the
neural network based prediction could achieve an 87% sensitivity of prediction at 23% specificity for all
carbohydrate-binding sites, using evolutionary information. Single sequences gave 68% sensitivity and 55%
specificity for the same data set. Sensitivity and specificity for a limited galactose binding data set were
obtained as 63% and 79% respectively for evolutionary information and 62% and 68% sensitivity and
specificity for single sequences. Propensity and other sequence and structural features of carbohydrate
binding sites have also been compared with our similar extensive studies on DNA-binding proteins and
also with protein-ligand complexes.

Conclusion: Carbohydrates typically show a preference to bind aromatic residues and most prominently
tryptophan. Higher exposed surface area of binding sites indicates a role of hydrophobic interactions.
Neural networks give a moderate success of prediction, which is expected to improve when structures of
more protein-carbohydrate complexes become available in future.

Published: 03 January 2007

BMC Structural Biology 2007, 7:1 doi:10.1186/1472-6807-7-1

Received: 12 September 2006
Accepted: 03 January 2007

This article is available from: http://www.biomedcentral.com/1472-6807/7/1

© 2007 Malik and Ahmad; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1472-6807/7/1
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17201922
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Structural Biology 2007, 7:1 http://www.biomedcentral.com/1472-6807/7/1
Background
Carbohydrates are often referred to as the third molecular
chain of life, after DNA and proteins [1]. These interac-
tions are responsible for important biological functions
such as inter cellular communication particularly in the
immune system [2]. Living cells in all organisms are usu-
ally covered with one or another type of carbohydrate [2].
Some viruses like influenza, use sugars on the outside of
human cells to gain entry. Sometimes the carbohydrate-
binding proteins and their sugar-ligands are expressed on
the same cell, and the sugar is a part of the regulation
machinery of the cell [3]. The functional roles of carbohy-
drates and their interactions with proteins are drawing
more attention than before, since it has been recognized
that carbohydrates are used as information carriers, rather
than simple storage material [1]. Protein-carbohydrate
interactions are involved in a broad range of biological
processes. These processes include, among others, infec-
tion by invading microorganisms and the subsequent
immune response, leukocytic trafficking and infiltration,
and tumor metastasis [4-12]. Carbohydrates are uniquely
suited for this role in molecular recognition, as they pos-
sess the capacity to generate an array of structurally diverse
moieties from a relatively small number of monosaccha-
ride units [13]. This could be attributed to the fact, that
unlike the components of nucleic acids, carbohydrates
can link together in multiple, nonlinear ways because
each building block has about four functional groups for
linkage. They can even form branched chains. Hence, the
number of possible polysaccharides is enormous (Figure
1). Since carbohydrates assume a large variety of configu-
rations, many carbohydrate-binding proteins are being
considered as targets for new medicines.

In view of the above, accurate in silico identification of car-
bohydrate-binding sites is a key issue in genome annota-
tion and drug targeting. The information about the
factors, which prevent or support carbohydrate binding of
an amino acid, is expected to be present in the evolution-
ary profile of the sequence as well as the identity and
structure of amino acid residues in the neighborhood of
potential carbohydrate binding sites. A number of reviews
have been published on protein- carbohydrate interac-
tions [14-18]. Different aspects of protein carbohydrate
recognition have also been extensively studied [19-26].
However, bioinformatics approaches with a predictive
goal are relatively rare [1,27]. Compared with the abun-
dance of methodologies developed for protein-nucleic
acid [28-32] or protein-protein interactions [33-38], there
are still very few methods for predicting carbohydrate-pro-
tein interactions. Shionyu-Mitsuyama [1] has developed a
program that uses the empirical rules of the spatial distri-
bution of protein atoms at known carbohydrate-binding
sites for prediction. In that work an analysis of the charac-
teristic properties of sugar binding sites was performed on

a set of 19 sugar binding proteins. For each site six param-
eters were evaluated viz. solvation potential, residue pro-
pensity, hydrophobicity, planarity, protrusion and
relative accessible surface area. Three of the parameters
were found to distinguish the observed sugar binding sites
from the other surface patches. These parameters were
then used to calculate the probability for a surface patch
to be a carbohydrate-binding site [27]. These prediction
methods are based on local structural descriptors of pro-
teins and cannot be used if complete 3 dimensional struc-
tures are not available. On the other hand, neural network
based predictions of post-translational modification (O-
glycosylation and phosphorylation) sites have been
reported by two groups [39,40]. However, these studies
are restricted to only one type of protein-carbohydrate
interactions and therefore do not capture all protein-car-
bohydrate interactions, as sought out in this work.

In this work we explore the exact contribution from differ-
ent sequence and evolutionary attributes of proteins in
determining their carbohydrate binding regions. Propen-
sity of each of the 20 amino acid residues in binding
regions has been calculated and compared with non-bind-
ing regions. Solvent accessibility, secondary structure and
packing density of binding sites have been analyzed in a
similar way. We go on to design a neural network to
model sequence and evolutionary information (obtained
by Position Specific Scoring Matrices) and determine their
role in the predictability of carbohydrate binding sites.

We also study the binding sites of other protein-ligand
and protein-DNA complexes and compare the propensity
scores of all residues and their secondary structures with
protein-carbohydrate complexes.

Results and Discussion
Residue-wise propensity scores
We started with a non-redundant set of all carbohydrate
binding proteins (Procarb40) collected from PDB as
described in the Methods section. Residue-wise propensi-
ties of carbohydrate binding sites in Procarb40 dataset
were calculated and compared with the propensities of
protein-ligand interaction database PLD116 and protein-
DNA interaction database PDNA62 complexes, former of
which is used as control data sets and the later for addi-
tional comparison. These datasets are described in Meth-
ods section. Results obtained from this analysis are
summarized in Figure 2 and Table 2. It may be observed
that certain residues (e.g. TRP, GLN, and ASN) are over-
represented within the binding sites of these 40 protein-
carbohydrate complexes, which signifies their importance
in protein-carbohydrate interactions. These results may be
understood in the light of reported experimental and the-
oretical studies on carbohydrate interactions. For exam-
ple, it has been argued that the side chain residues with
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Some typical protein-carbohydrate interactionsFigure 1
Some typical protein-carbohydrate interactions. All the atoms making hydrogen bonded contacts between sugars and amino 
acids are labelled.



BMC Structural Biology 2007, 7:1 http://www.biomedcentral.com/1472-6807/7/1
polar planar groups- ASN, ASP, GLU, GLN, ARG, and HIS-
are the only ones participating in all three forms of hydro-
gen bonding with sugars and are abundant in sugar-bind-
ing sites, which explains why their propensities in the
binding sites is higher [14]. Our analyses show that aro-
matic amino acid residues are often present in carbohy-
drate-binding sites of proteins. These binding sites are
characterized by a placement of a carbohydrate moiety in
a stacking orientation to an aromatic ring. This arrange-
ment is an example of CH/pi interactions, which have
been shown to play an important role in carbohydrate rec-
ognition by glycosidases and carbohydrate-binding pro-
teins [41]. Apart from confirming some of the widely
accepted ideas on residue preference for carbohydrate
binding, our study determines exact role and contribution
of each residue to carbohydrate binding.

Highest propensity score (331% over representation) in
the carbohydrate binding sites is observed from Figure 2
and Table 2 for tryptophan (TRP), which is in accordance
with many reported mutational studies [42]. This and
other studies have provided experimental and theoretical
evidence that the presence of TRP residues in mutation
sites is crucial for their binding to carbohydrates [43-45].

Additionally, the conservation of aromatic residues, such
as tyrosine and phenylalanine, on an exposed surface is
common in carbohydrate-binding modules (CBMs) from
families 1, 3, 5 and 10, highlighting the role of aromatic
residues in carbohydrate binding [46-50]. (It may be
noted that CBMs have been previously classified into dif-
ferent families in which groupings of Carbohydrate bind-
ing domains or CBDs were called "Types" and numbered
with roman numerals (e.g. Type I or Type II CBDs) [51]).

The modification of tryptophan residues has also been
shown to cause a compete loss of hemagglutinating activ-
ity [52]. Involvement of two tryptophan residues in carbo-
hydrate-binding site was also shown to be essential in the
same study. Similarly, Lafora disease-related mutation of
TRP32 to glycine (W32G) has also been shown to disrupt
the polysaccharide-binding pocket and also potentially
unfold the region immediately adjacent to the binding
pocket [53]. All these experimental results are well
reflected in the high propensity of TRP in carbohydrate
binding sites presented in this work (Figure 2).

If the propensity scores of carbohydrate binding are com-
pared with other ligand-binding residues identified by

Comparison of binding site propensity of each residue in Procarb40, PDNA62 & PLD116 (residue was marked as binding if any of its atom fell within 3.5 Å of any atom of the ligand/DNA/carbohydrateFigure 2
Comparison of binding site propensity of each residue in Procarb40, PDNA62 & PLD116 (residue was marked as binding if any 
of its atom fell within 3.5 Å of any atom of the ligand/DNA/carbohydrate. Propensity values were obtained by pooling all resi-
dues of the same type in all proteins to a single database of binding and non-binding sites. To compute the error bars, propen-
sity values were calculated for each protein separately and standard deviations in propensity values was used as an error bar.
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Ligand formula Ligand ID

C6 H12 O6
3(C8 H15 N1 O6)
2(C6 H11 N1 O4)

MAN
NGA
THC

ZN1 2+
2(C6 H12 O6)
4(C6 H12 O6)

C6 H12 O6
2(C1 H12 O6)

ZN
FUC
GLC
GAL
MAN

6(C5 H11 N1 O2 SE1)
7(C6 H10 O10 S1)

8(C6 H13 N1 O11 S2)

MSE
IDS
SGN

4(CA1 2+)
4(MN1 2+)

12(C1 H12 O6)

CA
MN

MAN
C3 H8 O3

12(O4 S1 2-)
10(C8 H15 N1 O6)

GOL
SO4
NAG

2(C6 H12 O6)
O4 P1 3-

4(C6 H12 O6)
2(C5 H14 SI1)

2(C8 H15 N1 O6)
2(C11 H19 N1 O9)
4(C11 H19 N1 O9)

GLC
PO4
GAL
CEQ
NGA
SLB

NAN
C6 H12 O5

C6 H12 O9 S1
C9 H17 N1 O6

FUC
SGA
MAG

C6 H12 O5
CA1 2+

C6 H12 O6
C11 H19 N1 O9
C9 H17 N1 O6

FUC
CA
GAL
SIA

1NA
9(CA1 2+)

4(C6 H13 N1 O11 S2)
2(C6 H10 O8 S1)
2(C6 H8 O8 S1)

CA
SGN
IDU
UAP

3(C6 H10 O10 S1)
2(C6 H13 N1 O11 S2)
2(C8 H18 N2 O4 S1)

IDS
SGN
EPE

CA1 2+
5(C3 H8 O3)
6(C6 H12 O6)

CA
GOL
BGC

C6 H14 O6
CO1 2+

8(C2 H6 O2)
5(C6 H12 O6)

GLC
CO
EDO
BGC

C6 H12 O6
C20 H28 O1
C6 H12 O6
C6 H12 O6
C43 H88 O3

4(C46 H94 O11 P2 2-)

GLC
RET
GAL
MAN
L2P
L3P
BM
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Table 1: Showing Procarb40 dataset. (Some cells are left empty as no Pfam ID could be found for them).

PDB ID Pfam ID Ligand name

1A7C Serpins ALPHA-D-MANNOSE
N-ACETYL-D-GALACTOSAMINE

N-METHYLCARBONYLTHREONINE
1AU1 Interferon ZINC ION

FUCOSE
GLUCOSE

D-GALACTOSE
ALPHA-D-MANNOSE

1AXM Fibroblast Growth Factors SELENOMETHIONINE
O2-SULFO-GLUCURONIC ACID
N,O6-DISULFO-GLUCOSAMINE

1CVN Lectin legB CALCIUM ION
MANGANESE (II) ION
ALPHA-D-MANNOSE

1E6N CBM_5_12
Glycol_hydro_18

GLYCEROL
SULFATE ION

N-ACETYL-D-GLUCOSAMINE
1FV3 Toxin_R_bind_C

Toxin_R_bind_N
Toxin_trans

GLUCOSE
PHOSPHATE ION
D-GALACTOSE

ETHYL-TRIMETHYL-SILANE
N-ACETYL-D-GALACTOSAMINE

5-N-ACETYL-BETA-D-NEURAMINIC ACID
5-N-ACETYL-ALPHA-D-NEURAMINIC ACID

1FWU Ricin_B_lectin FUCOSE
O3-SULFONYLGALACTOSE

ALPHA-METHYL-N-ACETYL-D-GLUCOSAMINE
1G1T EGF

Lectin C
FUCOSE

CALCIUM ION
D-GALACTOSE
O-SIALIC ACID

N-ACETYL-O-METHYL-D-GLUCOSAMINE
1G5N Annexin CALCIUM ION

N,O6-DISULFO-GLUCOSAMINE
1,4-DIDEOXY-O2-SULFO-GLUCURONIC ACID

1,4-DIDEOXY-5-DEHYDRO-O2-SULFO-GLUCURONIC ACID
1GMN Kringle

PAN
O2-SULFO-GLUCURONIC ACID
N,O6-DISULFO-GLUCOSAMINE

4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID
1GUI CBM4/9 CALCIUM ION

GLYCEROL
BETA-D-GLUCOSE

1GWM Family 29 carbohydrate binding module GLUCOSE
COBALT (II) ION
1,2-ETHANEDIOL
BETA-D-GLUCOSE

1IW6 Bac_rhodopsin GLUCOSE
RETINAL

D-GALACTOSE
ALPHA-D-MANNOSE

2,3-DI-PHYTANYL-GLYCEROL
2,3-DI-O-PHYTANLY-3-SN-GLYCERO-1-PHOSPHORYL-3'-SN-GLYCEROL-1'-

PHOSPHATE

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1A7C
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AU1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AXM
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CVN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1E6N
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FV3
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FWU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G1T
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1G5N
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1GMN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1GUI
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1GWM
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IW6
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C6 H12 O6
2(C6 H12 O6)
C8 H15 N1 O6

3(C5 H11 N1 O2 SE1)

GLC
GAL
NAG
MSE

8(C1 H12 O6) MAN

C6 H12 O6
CA1 2+

C6 H12 O6
MN1 2+

3(C1 H12 O6)
4(C8 H15 N1 O6)

FUC
CA
GAL
MN

MAN
NAG

8(C6 H12 O6)
C11 H22 O6

C8 H17 N1 O3 S1

MAN
OPM
NHE

CA1 2+
2(C3 H8 O3)

O4 S1 2-
5(C6 H12 O6)
2(C6 H12 O6)

CA
GOL
SO4
BMA
GLA

2(CA1 2+)
2(MN1 2+)

5(C6 H12 O6)
2(C5 H7 N1 O3)

CA
MN

MAN
PCA

2(C6 H12 O6)
2(C6 H12 O6)

3(C11 H19 N1 O9)

GLC
GAL
SIA

8(C6 H10 O10 S1)
8(C6 H13 N1 O11 S2)

IDS
SGN

C6 H12 O6
C6 H12 O6

C11 H19 N1 O9

GLC
GAL
SIA

3(CA1 2+)
4(C6 H12 O6)

CA
MAN

4(C6 H12 O6)
6(C1 H12 O6)

6(C8 H15 N1 O6)

GAL
MAN
NAG

H2 N1
3(C8 H15 N1 O6)

NH2
NAG

2(NA1 1+)
O4 S1 2-

C6 H10 O10 S1
2(C6 H13 N1 O11 S2)
2(C10 H15 N5 O10 P2)

C6 H8 O8 S1

NA
SO4
IDS
SGN
A3P
UAP

4(C6 H12 O6)
2(C8 H15 N1 O6)

GAL
NAG

2(CA1 2+)
O4 S1 2-

3(C5 H10 O5)

CA
SO4
XYP
1J8R PapG _N GLUCOSE
D-GALACTOSE

N-ACETYL-D-GLUCOSAMINE
SELENOMETHIONINE

1JPC B_lectin
D-mannose binding lectin

ALPHA-D-MANNOSE

1LGB Lectin_legB
Transferrin

FUCOSE
CALCIUM ION
D-GALACTOSE

MANGANESE (II) ION
ALPHA-D-MANNOSE

N-ACETYL-D-GLUCOSAMINE
1M5J ALPHA-D-MANNOSE

O1-PENTYL-MANNOSE
2- [N-CYCLOHEXYLAMINO]ETHANE SULFONIC ACID

1OH4 CALCIUM ION
GLYCEROL

SULFATE ION
BETA-D-MANNOSE

ALPHA D-GALACTOSE
1Q8V Lectin_legB CALCIUM ION

MANGANESE (II) ION
ALPHA-D-MANNOSE

PYROGLUTAMIC ACID
1QFO V-set GLUCOSE

D-GALACTOSE
O-SIALIC ACID

1RID Sushi O2-SULFO-GLUCURONIC ACID
N,O6-DISULFO-GLUCOSAMINE

1SE3 Stap_Strp_tox_C
Stap_Strp_toxin

GLUCOSE
D-GALACTOSE
O-SIALIC ACID

1SL4 Lectin_C CALCIUM ION
ALPHA-D-MANNOSE

1SLC Gal-bind_lectin D-GALACTOSE
ALPHA-D-MANNOSE

N-ACETYL-D-GLUCOSAMINE
1T0W Chitin_bind_1 AMINO GROUP

N-ACETYL-D-GLUCOSAMINE
1T8U Sulfotransfer_1 SODIUM ION

SULFATE ION
O2-SULFO-GLUCURONIC ACID
N,O6-DISULFO-GLUCOSAMINE
ADENOSINE-3'-5'-DIPHOSPHATE

1,4-DIDEOXY-5-DEHYDRO-O2-SULFO-GLUCURONIC ACID
1ULE D-GALACTOSE

N-ACETYL-D-GLUCOSAMINE
1UX7 CBM_6 CALCIUM ION

SULFATE ION
BETA-D-XYLOPYRANOSE

Table 1: Showing Procarb40 dataset. (Some cells are left empty as no Pfam ID could be found for them). (Continued)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1J8R
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1JPC
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1LGB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1M5J
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1OH4
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1Q8V
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1QFO
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1RID
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SE3
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SL4
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SLC
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1T0W
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1T8U
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ULE
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1UX7
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NA1 1+
CA1 2+

C3 H8 O3
4(C5 H10 O5)

NA
CA

GOL
XYP

4(CA1 2+)
7(C6 H12 O6)

CA
BGC

20(C6 H12 O6)
8(C5 H9 N1 O3)

MAN
AYA

5(C6 H12 O6)
10(C11 H19 N1 O9)
5(C8 H15 N1 O6)

GAL
SIA

NAG
6(NA1 1+)

2(C5 H10 O5)
8(C5 H10 O5)

NA
XYS
XYP

C6 H8 O7
3(C6 H13 N1 O11 S2)

3(C6 H10 O8 S1)

CIT
SGN
IDU

3(C4 H9)
5(C6 H12 O6)
14(C6 H12 O6)

BUT
GLC
GAL

C6 H12 O6
O4 P1 3-

2(C6 H12 O6)
2(NI1 2+)
C4 H6 O3

C15 H28 O3
C6 H14 N1 O8 P1
C6 H14 N1 O8 P1
C2 H9 N1 O7 P2

2(C7 H14 O7)
2(C8 H14 O8)
2(C28 H54 O4)

GLC
PO4
GAL
NI
LIN
LIM
GP1
GP4
EA2

GMH
KDO
LIL

C6 H12 O6 
Ca 2+

GLC
CA

5(C6 H12 O6)
10(C6 H12 O6)

5(C11 H19 N1 O9)
5(C8 H15 N1 O6)

2(C6 H14 N1 O4 S1)

GLC
GAL
SIA

NGA
MES

3(C6 H12 O6) MAN
3(C6 H12 O6) GLC
BM
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1UY4 SODIUM ION
CALCIUM ION

GLYCEROL
BETA-D-XYLOPYRANOSE

1UYY CBM_6 CALCIUM ION
BETA-D-GLUCOSE

1VBO ALPHA-D-MANNOSE
N-ACETYLALANINE

1VPS Polyoma Coat D-GALACTOSE
O-SIALIC ACID

N-ACETYL-D-GLUCOSAMINE
1W9T CBM_6 SODIUM ION

XYLOPYRANOSE
BETA-D-XYLOPYRANOSE

1XT3 Toxin_1 CITRIC ACID
N,O6-DISULFO-GLUCOSAMINE

1,4-DIDEOXY-O2-SULFO-GLUCURONIC ACID
2BOS SLT beta BUTYL GROUP

GLUCOSE
D-GALACTOSE

2FCP Plug
TonB_dep_Rec

GLUCOSE
PHOSPHATE ION
D-GALACTOSE
NICKEL (II) ION

3-OXO-BUTYRIC ACID
3-OXO-PENTADECANOIC ACID
GLUCOSAMINE 1-PHOSPHATE
GLUCOSAMINE 4-PHOSPHATE

ETHANOL AMINE PYROPHOSPHATE
L-GLYCERO-D-MANNO-HEPTOPYRANOSE

3-DEOXY-D-MANNO-OCT-2-ULOSONIC ACID
2-TRIDECANOYLOXY-PENTADECANOIC ACID

2MPR LamB GLUCOSE
CALCIUM ION

3CHB Enterotoxin b GLUCOSE
D-GALACTOSE
O-SIALIC ACID

N-ACETYL-D-GALACTOSAMINE
N-(EHTYLSULFITE)MORPHOLINE

3MAN Cellulase ALPHA-D-MANNOSE
3MBP GLUCOSE

Table 1: Showing Procarb40 dataset. (Some cells are left empty as no Pfam ID could be found for them). (Continued)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1UY4
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1UYY
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1VBO
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1VPS
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1W9T
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1XT3
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BOS
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2FCP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2MPR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3CHB
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3MAN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3MBP
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PLD116 database (see Methods), TRP remains the most
prominent high propensity residue. However, high pro-
pensity score of HIS residues is also shown by PLD bind-
ing sites, indicating that the role of HIS in ligand-binding
sites does not have specific preference for carbohydrates,
but HIS in general being an active site shows high propen-
sity of binding to any ligand, including carbohydrates.
Next important residue is ARG whose propensity for car-
bohydrate binding is less than TRP within Procarb40, yet
the propensity (277% over representation) is even higher
than what is observed for ARG in DNA-binding proteins
database PDNA62 (= 241% over representation) (see
Table 2 and Methods section). These results are supported
by some published results of transmutagenesis experi-
ments reporting crucial role of ARG residues in some pro-
tein-carbohydrate interactions [54]. Lower propensity
scores for the other basic residue LYS indicate that the
interaction between ARG and sugar is not purely electro-
static in nature. Dahms et al. in 1993, [54] also report that
the substitution of ARG residues by LYS in Insulin-like
growth factor also caused loss of binding despite similar
electropositive property of these residues and also despite
overall conservation of structure upon this mutation.
These results were interpreted that the proteins utilize res-
idues with planar side chains (ARG, ASN, ASP, GLU) for
their interaction with sugars. Higher propensity scores of
ASP and GLU, which are also negatively charged residues,
also support this argument. These propensity scores are
higher than what is observed for other ligands (PLD116
database), thus highlighting a preference of these residues

to interact carbohydrates in contrast to other types of lig-
ands. In comparison to DNA-binding propensity scores of
ASP and GLU are much higher, obviously because nega-
tively charged bases in DNA repel negative charged resi-
dues.

Solvent accessibility of binding sites compared with the 
rest of the protein
We next attempted to establish a residue-wise relationship
between solvent accessibility and carbohydrate binding.
Figure 3 shows the mean solvent accessibility (ASA) val-
ues for the binding and non-binding regions in Procarb40
database. We observe that the most frequent carbohydrate
binder TRP has a significantly higher ASA in binding loca-
tions compared with non-binding ones. Similar higher
ASA for binding regions are also observed for other
aliphatic residues ALA, GLY, ILE and LEU. Thus, the
hydrophobic residues, which are usually in the buried
states, do not apparently participate in sugar binding. In
order to bind sugars they are expected to be on the surface,
thus facilitating their hydrophobic interactions with car-
bohydrate atoms of protein-carbohydrate complexes and
reveals that polar uncharged and certain hydrophobic res-
idues (e.g. TYR, TRP, ALA, LEU and ILE) seem to have
higher mean ASA-values in the binding regions. This
result contrasts with similar binding sites analysis on
DNA-binding proteins, where ASA of charged residues
showed a better discrimination between binding and
non-binding regions [28]. Most charged and polar resi-
dues do not show any difference in their ASA for binding

Table 2: Propensities of Procarb40, PDNA62 & PLD116 along with their binding and non-binding data

PROCARB40 PDNA62 PLD116

Residue Propensity BS NBS Propensity BS NBS Propensity BS NBS

A 0.43 9 494 0.64 42 389 0.79 109 2684
C 0.00 0 29 0.34 7 143 1.07 24 436
D 1.41 27 433 0.36 18 292 0.79 84 2009
E 1.81 29 356 0.39 32 510 0.92 92 1952
F 0.66 9 318 0.77 33 245 1.09 70 1346
G 0.80 20 581 0.71 46 372 1.26 176 2633
H 1.58 8 114 1.08 39 194 2.09 81 712
I 0.12 2 392 0.48 30 373 0.72 70 1837
K 1.40 26 419 1.95 180 423 0.59 65 2053
L 0.34 8 561 0.38 39 624 0.81 120 2872
M 0.19 1 124 0.54 14 149 1.11 42 716
N 1.96 38 429 1.45 74 260 1.17 92 1485
P 0.40 5 297 0.66 35 307 0.45 38 1597
Q 1.54 18 263 1.19 61 272 0.74 46 1123
R 2.77 32 246 2.41 208 360 1.80 139 1450
S 0.43 9 499 1.33 91 355 1.03 112 2049
T 0.70 15 499 1.36 85 325 0.87 90 2030
V 0.00 0 472 0.59 40 399 0.73 92 2315
W 3.31 23 144 1.40 22 81 2.30 67 518
Y 1.68 25 333 1.19 43 189 1.88 125 1189
Page 8 of 14
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and non-binding regions, presumably because their prob-
ability to be on the surface is higher irrespective of their
role in binding. For a quick comparison of role of ASA in
binding regions of PLD116 and PDNA62 databases with
Procarb40, ratio of mean ASA in binding to non-binding
regions of the three databases have been plotted in Figure
4 (see Additional file 1). As discussed above, aliphatic res-
idues ILE, LEU and GLY show the highest ratio for
Procarb40, in addition to the most frequent binder TRP.
Very low values of CYS and VAL residues are not signifi-
cant as there are very few binding residue of this type (see
Table 2).

Role of Secondary structure
We tried to explore if certain residues prefer any secondary
structure for binding to carbohydrates. Results of these
statistics are p

resented in Additional File 1 as Tables 5-10 and Figures
5a-g. If the number of binding sites is resolved into their
secondary structure types, very few binding sites are
assigned to each category. This leaves the resulting data to
be insufficient for any statistical conclusions. These results
are therefore not discussed here, but only provided in
Additional File 1 for reference.

Packing Density
We also tried to find out the difference between the pack-
ing density of the binding and non-binding residues and
observed that there is no statistically significant difference
of packing density between binding and non-binding res-
idues.

Prediction results
Looking at clear preferences of residues for binding carbo-
hydrates (Figure 1), we sought to develop a prediction
method, which could take the predisposition of residues
and their sequence environments as an input and thereby
identify binding residues from the information of protein-
sequence. To do so, sequence environment at each residue
level could be represented either as binary 20 bit vectors
or by the rows of the matrices depicting evolutionary pro-
files of residues at each location. Sequence neighbor envi-
ronment could be added as the corresponding rows of this
matrix (called position-specific substitution matrix or
PSSM) on either side. Schemes of these representations
have been extensively developed for the problem of sol-
vent accessibility and other residue-wise features of pro-
teins [55]. Table 3 summarized the results of predictions
obtained in this way, using a leave-one-out method. This
method also allows us to compute the standard errors in
the prediction scores. Further, prediction performance of
sequence-only predictors has been compared with those

Comparison between mean ASA values of residues in binding and non-binding sites for Procarb40Figure 3
Comparison between mean ASA values of residues in binding and non-binding sites for Procarb40. Error bars are taken from 
their standard deviation in each protein. The graph does not contain cystein and valine data as none of these residues were 
found to be in the binding regions.
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using PSSMs. The best performance for Procarb40 data set
was found to be a modest 61%, indicating that the
sequence and evolutionary information do not decisively
determine a binding site. This not-so-good prediction per-
formance for Procarb40 is is apparently because carbohy-
drates are diverse and finding overall general rules for
their binding sites in proteins may not be possible with
the amount of data we have. We need to have large data
with sufficient representation of all types of sugars. To
ensure that the low performance is caused by the diversity
of sugars, we tried to develop a prediction model for only
one type of sugar. We tried many differently classified car-
bohydrates, but due to further small size of data, could
only use galactose binding proteins (GalBind18) data set
used by Sujatha et al. (2004) [57] to have a sufficient
number of binding sites to model. As expected prediction
performance for proteins binding to only one type of sug-
ars, was very much higher than all carbohydrates taken
together. Table 3 shows that in GalBind18 carbohydrate
binding sites could be predicted with as much as 79% spe-
cificity and 63% sensitivity. We speculate that much better
prediction methods will be developed when a large
number of proteins binding to each type of carbohydrates
become available.

Single sequence versus evolutionary information
It may be a little surprising to note that PSSM based pre-
dictions (55%) were somewhat poorer than single
sequences (61%) in Procarb40. However in the case of
GalBind18 the situation in reversed. Lower values of pre-
diction in PSSM based methods could be due to two rea-
sons. First of all the number of sequences which gave
significant alignments with Procarb40 was roughly 400,
which is small and hence the evolutionary information
transferred to PSSM may not be enough to improve per-
formance. Secondly, the diversity of Procarb40 may lead
to higher conservation scores to some residues and hence
there would be many false positive predictions by this
(that is why the specificity of PSSM based method was as
low as 23%). In the case of GalBind18, the situation is
reversed because the carbohydrates are more similar and

hence conservation of a residue within them does convey
positive information about its binding behaviour. Thus
PSSMs do not carry false information to the neural net-
work.

Comparison with other studies
Although some of the results presented in this work may
be obvious to some experienced biologists, yet this work
is the first attempt to summarize the sequence and struc-
ture features of carbohydrate binding proteins in such a
comprehensive way. Previous studies have either focused
on a small set of proteins aiming to analyze one or a few
types of residues [43-45], or tried to focus either on the
structural aspect [e.g. [16,17,26]] or just the sequence
aspect of these interactions. This is also the first attempt to
use sequence and evolutionary information to predict car-
bohydrate-binding sites using neural network based
approach, which has been proved to be successful in mak-
ing other sequence-based predictions. Earlier, structure-
based methods have been employed to develop empirical
rules on patches and other structure descriptors with a
somewhat better (65%) accuracy. However, sequence-
based methods, employing only sequence information
presented in this work are new and will have a much
wider application as no structure information will be
required for prediction. We expect that this will trigger
interest in the prediction of carbohydrate binding sites
using machine learning methods and the performance
will improve with the availability of more data.

Conclusion
This analysis of protein-carbohydrate interactions in
terms of proteins sequence and solvent accessibility
reveals that TRP and ARG residues have the highest overall
binding propensity for all types of carbohydrates. Planar
side chains of polar residues are also confirmed to have
overall high propensity of binding. Mean solvent accessi-
bility of hydrophobic residues has been found to be
higher for binding regions, whereas charged residues have
almost the same solvent accessibility in binding and non-
binding regions. A neural network, trained to use evolu-

Table 3: Comparison of Binary and PSSM prediction results using jackknife leave-one-out method (binding sites were labeled at 3.5 Å 
cut-off distance between carbohydrate and protein atoms).

Data type Validation type Average-sensitivity Average-specificity Average -net Prediction P-value

GalBind18 Leave1 out (Using PSSM) 0.63 (0.19) 0.79 (0.09) 0.71 (0.09) 0.08859
GalBind18 Leave1 out (Using single sequences) 0.62 (0.26) 0.68 (0.12) 0.65 (0.11)
Procarb40 Leave1 out (Using PSSM) 0.87 (0.12) 0.23 (0.08) 0.55 (0.06) 0.00209
Procarb40 Leave1 out (Using single sequences) 0.68 (0.22) 0.55 (0.16) 0.61 (0.12)

Due to a large number of iterations required in a leave-one-out method, the prediction performance has a significant standard deviation, which has 
been shown in brackets. P-values are for two-tailed t-test conducted to distinguish between the predictions performances of single sequences 
versus evolutionary information coded by PSSM. In Procarb40, evolutionary profiles give a significantly poorer result than single sequences, due to a 
high false positive rate (low specificity).
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tionary information of residues and their neighbors could
correctly make prediction of binding or non-binding resi-
dues with 69–72% specificity and 55–57% sensitivity.

Methods
Definition of a binding site
A binding residue is defined as any amino acid in the pro-
tein such that any of its atoms is within a cut-off distance
from any atom from the sugar in the protein-carbohydrate
complex. We tried to determine the best cut-off distance
and found that 3.5 Å distance could best separate the
binding residues from non-binding ones in the propen-
sity graphs and also gives the best accuracy figures in neu-
ral network based predictors. Thus, all the reported results
are based on this distance cut-off unless otherwise stated.

Data Sets
Procarb40
PDB search was performed for protein-carbohydrate com-
plexes with a pair-wise similarity of 50% or less. Only one
structure was taken in case there were more than one rep-
resentative from the same family. For polypeptides, only
one chain was selected on the basis of maximum number
of binding sites present. FASTA formatted sequences were
subsequently formatted using formatdb program of the
BLAST package. BLASTCLUST program [56] at 30%
threshold refined our search to 40 structures (Table 1). We
call this database Procarb40.

GalBind18
This is a data set of 18 Galactose specific proteins selected
for another analysis by Sujatha et al. [57].

PDNA62
This is the (non redundant) data set of 62 DNA-binding
proteins [28].

PLD116
This is a non-redundant data set of ligand-binding pro-
teins developed for the current study. To begin with, all
the 485 protein-ligand complexes were downloaded from
Protein-Ligand Database [58] (v1.3 as on 25/01/06).
Redundancy among sequences was first removed by using
CD-HIT program from [59] with a threshold of 40%
sequence identity. This resulted in 178 clusters. FASTA for-
matted sequences were subsequently formatted using for-
matdb program of the BLAST package. The redundancy
was further removed with a threshold of 30% sequence
identity using BLASTCLUST program [56]. A data set was
thus created, by retaining only the representative ones
such that no two sequences in the resulting data set have
more than 30% sequence identity. We call this database
PLD116.

Other data sets
PDB-ALL (47,189 sequences) is a data set of all protein
sequences obtained from NCBI. PIR is the sequence data
set (283,177 sequences) of Protein Information Resource
at Georgetown University [60]. SWISSPROT is another
well-known database of sequences [61]. NCBI-NR is a
non-redundant data set of all protein sequences compiled
from GeneBank, PIR, SwissProt, PDB and other resources
by NCBI [62] were also used in the current work.

Generation of PSSMs
Target sequences are scanned against the reference data
sets to compile a set of alignment profiles or position spe-
cific scoring matrices (PSSMs) using Position Specific Iter-
ative BLAST (PSI BLAST) program [63]. Three cycles of
PSI-BLAST were run for each protein and the scores were
saved as profile matrices (PSSMs). NR database of NCBI,
PDBAA (database of all amino acid sequences of proteins
in PDB), SWISSPROT and PIR were used for building the
profiles. Profiles from NR database of NCBI were used for
most of the calculations presented in this work unless oth-
erwise specified.

Calculation of amino acid composition, solvent accessibility and 
secondary structure at binding sites
We collected statistics on amino acid residues, which were
involved in carbohydrate binding. An attempt was then
made to determine whether there was a preference for any
particular amino acid residue. Frequency of occurrence for
each residue type is calculated and corresponds to the rel-
ative number of residues of that type out of all the residues
that were found in the carbohydrate-binding proteins.

Solvent accessibility or accessible surface area (ASA) val-
ues of Procarb40, PDNA62 and PLD116 complexes were
obtained from our earlier database of (relative) solvent
accessibility of proteins ASAVIEW [64], whereas the sec-
ondary structure was obtained using DSSP program [65].

Propensity scores
Propensity of a residue in the binding site was calculated
by the formula: -

where NBi is the number of residues of type i, which bind
to carbohydrate, Ni is the total number of residues of type
i, NBall is the total number of all binding residues, Nall is
the total number of all residues. To compute the propen-
sity score of each residue, the data of binding and non-
binding residues were pooled together and a single pro-
pensity score was obtained for the entire data of proteins.

NB
N

NB
N

i
i

all
all
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Also, propensity scores for each protein were calculated
separately and standard deviation in all propensity scores
for the same residue type was used as the error bar.

Neural network
Neural network inputs
Conservation scores in 20 amino acid positions for every
residues form 20 columns (column 3 onwards) of corre-
sponding row in a PSI-BLAST PSSM. For every residue, we
make a binary (1 for binding and 0 for non-binding) pre-
diction of that residue being a binding site or not. Input
for every prediction is the PSSM score on the row corre-
sponding to this target residue and one more rows on
either side (20 × 3 = 60 inputs) as well as two more rows
on either side (20 × 5 = 100 inputs).

Network architecture and transfer function
A fully connected, feed-forward neural network was con-
structed using Stuttgart Neural Network Simulator
(SNNS) version 4.2, developed at University of Stuttgart
[66]. After varying the number of units, and hidden layers,
it was found that a network with two units in the hidden
layer and a single output unit performed slightly better
than other choices.

Training and validation
Different datasets and their cross validation were tried.
Out of these results are presented for which prediction
performance was better than others. We use a leave-one-
out approach for training and validation. In this
approach, data corresponding to one protein is removed
from the data set and the remaining proteins are trained
using a neural network. The performance on the left out
protein is than measured. The process is systematically
repeated for all proteins, leaving them out one by one and
measuring their prediction accuracy. Finally reported
accuracy scores correspond to the averages of the left out
proteins.

Most other procedures for training and assessment of pre-
diction accuracy were the same as in our earlier work [67].

Assessment of prediction performance
Three scores were used for the measure of prediction per-
formance viz. Sensitivity (S1), Specificity (S2) and their
average Net Prediction (NP). They are defined as follows:

Sensitivity (S1)= TP/(TP+FN)

Specificity (S2) = TN/(TN+FP)

Where TP stands for correctly identified binding sites, TN
stands for correctly identified non-binding residues, FP
stands for number of non-binding residues wrongly iden-

tified as binding by predictor, and FN is the number of
binding residues predicted as non-binding.
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