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Abstract

Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents
into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this
delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain
(FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing
instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter
plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used
an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal
instillation. We found that instillation of FT in a dose volume of 10 ml routinely resulted in infection of the upper airways but
failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation
required a dose volume of 50 ml or more. These studies also demonstrated that intranasal instillation was significantly more
efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral
(ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume
and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies
that employed this technique.
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Introduction

Intranasal instillation is currently the most widely used method

for delivery of drugs, vaccines, or pathogen challenges targeted for

either the upper respiratory tract (URT) or lungs of research mice.

Intubation is an alternative method [1,2,3,4,5,6,7] that allows for

very efficient delivery of materials into the lungs, but the

procedure is technically much more demanding and more time-

consuming than intranasal administration. In addition, intubation

includes a much higher risk of injury to the animal that could

compromise the study. Aerosol administration via a nebulizer-

based device [8,9,10,11] also offers very efficient delivery of

materials to the lungs with little risk of injury to the animal;

however, this method is technically demanding and requires

expensive equipment that is not widely available. Moreover, the

use of aerosol generators for studies involving dangerous

pathogens involves safety issues for research personnel that do

not exist when using the intranasal delivery method. In light of

these factors, it seems certain that intranasal administration will

continue to be the most popular method for pneumonic instillation

for the foreseeable future. Surprisingly, there is a paucity of

published literature describing the efficiency of intranasal

instillation of drugs, vaccines, or infectious agents. Therefore, an

analysis of the efficiency of pneumonic delivery via intranasal

instillation that would allow for standardization of the two most

critical variables associated with this technique, namely dose

volume and type of anesthesia, would be of great benefit to

researchers working with murine models.

Francisella tularensis (FT) is a gram-negative facultative intracel-

lular bacterium that causes a high morbidity/mortality zoonotic

disease known as tularemia. FT is one of the most virulent

bacterial pathogens in humans, as evidenced by its published LD50

of less then 10 CFU [12,13]. Because of its high infectivity and the

relative ease with which if can be disseminated via the aerosol

route, FT is considered to have high potential for use as a

biological weapon. The Francisellaceae family of bacteria has a single

genus, Francisella, which has been divided into two species:

Francisella philomiragia (a muskrat pathogen) and Francisella tularensis.

F. tularensis has been further subdivided into four subspecies:

tularensis (type A), holarctica (type B), novicida, and mediasiatica [14].

Of these, only subsp. tularensis and subsp. holarctica cause disease in

humans [15]. The live vaccine strain (LVS) of FT (FTLVS) is an
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attenuated F. holarctica strain that was developed as a vaccine

candidate in the former Soviet Union [16]. While FTLVS is highly

attenuated in humans, it remains virulent in mice and causes a

tularemic disease syndrome similar to that observed in humans [17].

Technological advances in small animal imaging have made it

possible to monitor in real-time the growth and dissemination of

fluorescent or bioluminescent bacteria in individual animals over

the entire course of infection, offering a powerful alternative to

traditional methodologies. Bioluminescence has proven to be

particularly useful for this application. We recently created a novel

bioluminescence reporter vector (pXB173-lux) that encodes the P.

luminescens lux operon downstream of the FT Pgro promoter. The

lux operon contains genes that are required for production of both

luciferase and luciferin, and transformation of FTLVS with this

vector causes the bacteria to constitutively produce light during in

vitro or in vivo growth [18]. In this report, we employed an IVIS

Spectrum whole-animal live imaging system, coupled with

bacterial load determinations, to evaluate in real-time the

efficiency of intranasal instillation for initiation of lower respiratory

tract (LRT) infections in mice. The results presented here provide

striking visual evidence that both the instillation volume and the

type of anesthesia used during instillation have a significant impact

on the efficiency of pulmonary delivery of FTLVS.

Results

To evaluate the efficiency of intranasal administration for

delivery of FT to the lungs, BALB/c mice (5/group) were

anesthetized with inhaled isoflurane and then challenged with

16106 CFU of FTLVS bearing a luminescent reporter vector

(pXB173-lux, Figure 1, see [18]) in a total volume (PBS) of either

10 ml, 20 ml, 50 ml, or 100 ml. Each mouse was subjected to live

whole animal luminescent imaging using an IVIS Spectrum

imaging system beginning 24 hours post-challenge (Figure 2A).

The imaging studies revealed a clear difference in luminescent

signal from the lungs that correlated with the dose volume used for

intranasal instillation. While very little luminescent signal was

observed emanating from the lungs of mice challenged using a

10 ml or 20 ml dose, the mice that were dosed using the larger

instillation volumes (50 ml or 100 ml) displayed significantly higher

levels of luminescent signal. These findings were confirmed by

sacrificing the mice immediately after imaging was completed to

determine the bacterial burdens in the lungs using standard

dilution plating techniques (Figure 2B).

To determine the impact of dose volume-dependent challenge

efficiencies on the course of experimental tularemic disease, we

performed a kinetic IVIS imaging analysis of BALB/c mice (3/

group) were anesthetized with inhaled isoflurane and then

challenged with 16106 FTLVS-lux using a range of instillation

volumes (10 ml, 20 ml, 50 ml, or 100 ml). Each mouse was subjected

to live whole-animal luminescent imaging at 24 hr intervals post

infection. These imaging studies revealed striking differences in

both the rate and tissue specificity of FT dissemination

(Figure 3A). At the 24-hour time point, the luminescence

emanating from the lungs of challenged mice confirmed that the

larger instillation volumes more efficiently delivered bacteria into

the lungs. By 48 hrs post-challenge, luminescent signatures were

detected in or around the upper airways of all of the animals. In

the mice that were challenged using a 10 ml volume, the

luminescent signature remained confined to the upper airways

over the entire timecourse, suggesting that the bacteria never

disseminated from the upper airways to the lungs, liver or spleen.

In contrast, the luminescent signatures observed in the lungs of

mice challenged using instillation volumes of 20 ml, 50 ml, and

100 ml increased in intensity over the timecourse. Moreover, the

infection appeared to disseminate from the lungs to the liver and

spleen in each of these experimental groups, and the rate of

dissemination increased with increasing instillation volume used to

administer intranasal challenge. Each mouse was also weighed

daily as an assessment of disease state. Weight retention results

confirmed that the dose volume used for intranasal instillation had

a significant impact on the course of tularemic disease (Figure 3B).

A significant difference (p,0.05) in weight retention between mice

that were dosed using a volume of 10 ml vs. 100 ml was observed as

early as 2 days post-infection, and by day 4 post-infection there

was a highly significant difference (p,0.001) between the 10 ml

volume group and each of the other experimental groups.

To examine the efficiency of intranasal dosing for pneumonic

delivery under differing forms of anesthesia, BALB/c mice (5/

group) that had been anesthetized with either parenteral

(ketamine/xylazine) or inhaled (isoflurane) anesthesia were

challenged with FTLVS-lux in an instillation volume of either

50 ml or 100 ml. IVIS imaging studies and lung bacterial burden

determinations were performed 24 hrs post-infection (Figure 4).

The intensity of luminescence emanating from the lungs of mice

challenged under inhaled anesthesia was more intense than

observed in mice anesthetized with parenterally-administered

ketamine/xylazine. The bacterial burden in the lungs was then

determined via dilution plating. Mice that were anesthetized using

inhaled isoflurane had significantly higher bacterial burdens in

their lungs than mice that had been anesthetized with parenteral

ketamine/xylazine (Figure 4), confirming the IVIS imaging

results.

Discussion

Intranasal instillation is the most widely used method for

delivery of drugs, vaccines, and/or infectious agents into the

respiratory tract of research mice. However, over the years there

have only been a handful of published studies designed to analyse

the efficiency of intranasal dosing. The primary variables that

should be considered when employing this technique are: i) type of

diluent used as vehicle for instillation, ii) physical positioning of the

Figure 1. Genetic Map of pXB173-lux. pXB173-lux constitutively
expresses the Photorhabdus luminescens luciferace (lux AB) and
luciferase substrate (luxCDE) from the Francisella groE promoter. This
vector also encodes a selectable marker for kanamycin resistance
(aph39).
doi:10.1371/journal.pone.0031359.g001
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mouse during and after instillation, iii) instillation volume, and iv)

the type of anesthesia used during instillation. Two of these

variables, namely instillation vehicle and physical positioning of

the mouse, were not considered in this report. Previously

published findings revealed that aqueous diluents were preferable

for intranasal instillation [19], therefore, PBS was used as the

vehicle for all of the experiments described herein. Moreover,

there have been several published studies in which positioning of

the mouse during intranasal instillation was considered, and while

some of the findings indicated that supine positioning was best for

promoting delivery of inocula to the lungs [19], other findings

suggested that positioning of the mouse did not have a significant

impact on pneumonic delivery efficiency [20]. Therefore, for all of

the studies reported here, mice were held in a tilted supine position

with their heads elevated to between 60 and 75 degrees above

their feet during and after (for approximately 1 minute) instilla-

tion.

Dose volume is the best characterized variable associated with

intranasal instillation. Published studies have evaluated instillation

volumes between 2 ml [21] and 100 ml [22]. Several reports used

either dyes or radioactive tracers to investigate the relative

efficiencies of various instillation volumes. Visweswaraiah and

colleagues performed instillations with Evan’s blue dye to evaluate

the efficiency of lung delivery using instillation volumes between

5 ml and 50 ml [23] and found that lower instillation volumes

resulted in retention of the inoculum in the URT while delivery of

dye to the lungs was accomplished only with the larger bolus

volumes. A similar study using a radioactive tracer (99mTc-SC) also

concluded that instillation in a total volume of 5 ml resulted in

retention of the tracer in the URT with no detectable delivery to

the lungs [20]. This study also concluded that 35 ml was the

optimal instillation volume for delivery of tracer into the lungs.

Eyles and colleagues performed instillations of radiolabeled

microspheres in either 10 ml or 50 ml volumes and found that

the radioactive microspheres accumulated in the URT when

delivered in the lower volume while approximately 50% of the

microspheres were delivered to the lungs when administered in the

larger volume [24]. Because we could find no studies in which

efficiency of pneumonic delivery via intranasal instillation was

tested using a bacterial agent, we performed a series of intranasal

instillation studies using luminescent FTLVS. Our findings were

consistent with those employing dyes or radioactive tracers and

confirmed that instillation in small volumes (10 ml) resulted in

delivery of FTLVS only to the URT while instillation in larger

volumes (50–100 ml) resulted in delivery of luminescent bacteria to

the lungs.

The use of anesthesia and the type of anesthesia used during

intranasal instillation is another variable that could have a

significant impact on its efficiency for delivery of inocula to the

lungs. It has been previously shown that delivery of materials to

the lungs via this technique is significantly more effective when

instillation of mice is performed under anesthesia during the

Figure 2. Correlation between whole animal in vivo imaging with viable bacterial counts 24 hours after challenge. BALB/c mice (5/
group) were challenged with 16106 CFU of FTLVS bearing the pXB173-lux reporter plasmid via the intranasal route in a total bolus volume of either
10 ml, 20 ml, 50 ml, or 100 ml. Panel A: Dissemination of FTLVS was then monitored 24 hrs later using an IVIS Spectrum whole animal imaging system.
Images were collected at the indicated time points post-infection and were normalized to reflect photons per second per cm‘2/sr. (Panel B): Lungs
were collected after imaging was completed for bacterial burden determination via dilution plating. Statistical analyses were performed via one-way
ANOVA using a Bonferroni multiple comparisons posttest. Statistically significant differences are indicated as follows: p,0.05 (*) and p,0.01 (**).
doi:10.1371/journal.pone.0031359.g002

Pneumonic Delivery via Intranasal Instillation

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31359



procedure [19,20,23]. In fact, one of these studies showed that

when intranasal instillation is performed on unanesthetized mice,

much of the instilled material was delivered to the gastrointestinal

tract suggesting that alert mice tend to swallow a significant portion

of the inoculum [23]. In light of these findings, and likely because

intranasal instillation is technically much easier to perform on

anesthetized mice, the majority of researchers using this technique

routinely anesthetize mice prior to the procedure. Therefore, it is

surprising that there has only been one other published study that

examined the effects of different types of anesthesia (parenteral vs.

inhaled) on the efficiency of this procedure for delivery of materials

to the lower respiratory tract (LRT) [20].

Figure 3. Kinetic in vivo localization of luminescent FTLVS following intranasal dosing in titrated volumes of inocula. BALB/c mice (3/
group) were challenged via the intranasal route with 16106 CFU of FTLVS-lux suspended in a volume of 10 ml, 20 ml, 50 ml, or 100 ml of sterile PBS.
Panel A: All mice were then subjected to whole animal imaging using an IVIS Spectrum Imaging system at the indicated time points. Scaling
intensity of all images was normalized and data are reported as photons/sec/cm‘2/sr. Panel B: All mice were weighed daily as a measure of disease-
state. Statistical analysis was performed via 2-way ANOVA with Bonferroni post-tests. Significant differences between the 10 ml instillation volume
group and all other groups are indicated toward the top of the graph and are color-coded. Significant differences between the 100 ml instillation
volume group and either the 20 ml or 50 ml dose volume groups are indicated toward the bottom of the graph and are color-coded. The calculated p
values are indicated as follows: p,0.05 (*), p,0.01 (**), and p,0.001 (***).
doi:10.1371/journal.pone.0031359.g003
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Because isoflurane and ketamine/xylazine are commonly used

for anesthesia in rodent-based research [25], we performed a

direct comparison of the efficiency of pneumonic delivery of

FTLVS-lux via intranasal instillation under these two types of

anesthesia. In light of our general observation that mice

anesthetized using parenteral-administered ketamine/xylazine

maintain a steadier breathing pattern than mice anesthetized for

relatively short periods using inhaled isoflurane, we hypothesized

that intranasal instillation would be more efficient for pulmonary

delivery of bacteria in mice that had been anesthetized with

ketamine/xylazine. To our surprise, delivery of bacteria to the

lungs was significantly more efficient when instillation was

Figure 4. Pulmonary delivery of FTLVS-lux was more efficient under inhaled vs. parenteral anesthesia. BALB/c mice (5/group) were
anesthetized using either inhaled isoflurane or parenterally-administered ketamine/xylazine and then challenged with either 16105 CFU FTLVS-lux in
a volume of 50 ml (Panel A) or 16106 CFU FTLVS-lux in a volume of 100 ml (Panel B). Dissemination of FTLVS was monitored 24 hrs later using an
IVIS Spectrum whole animal imaging system. Lungs were collected after imaging was completed for bacterial burden determination via dilution
plating. All IVIS images were normalized to reflect photons per second per cm‘2/sr. Statistical analyses were performed using the student t test.
doi:10.1371/journal.pone.0031359.g004
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performed under inhaled anesthesia. These results lead us to

speculate that the irregular Cheyne-Stokes type respiratory pattern

that is typically observed following removal of mice from an

induction chamber with inhaled anesthesia causes transient

hypoxia which results in deeper inhalation of larger volumes of

inoculum per breath, facilitating more efficient delivery of the

material to the LRT. In contrast, mice that receive injectable

anesthesia breathe in a more-regular and more-shallow pattern,

resulting in a more-even coating of the URT surface with the

inoculum. Because the inoculum is more distributed along the

mucosal surface of the URT and the breathing pattern of the mice

is more shallow and regular, the inoculum is not delivered as

efficiently to the LRT. Our findings are in contrast to those from

the other published study that performed a comparison of inhaled

vs. parenteral anesthesia and concluded that the efficiency of

pulmonary delivery of intranasally instilled materials was not

impacted by the type of anesthesia [20].

It is relatively well established [20,23,24,26,27] that intranasal

instillation for the purpose of URT delivery requires a low

administration volume (#10 ml). However, no consensus has been

reached with respect to dose volume for delivery to the LRT. A

random survey of very recently published papers in which intranasal

instillation was employed for delivery of infectious agents (bacterial

and fungal pathogens) to the lungs of mice revealed that researchers

used a wide range of dose volumes in combination with a variety of

anesthesia types as follows: i) 20 ml instillation volume under

pentobarbital [28] or ketamine/xylazine anesthesia

[29,30,31,32,33], ii) 25 ml instillation volume under either pento-

barbital [34] or ketamine/xylazine anesthesia [35], iii) 30 ml

instillation volume under ketamine/xylazine anesthesia [36], iv)

35 ml instillation volume under ketamine/xylazine anesthesia [37],

v) 40 ml instillation volume under isoflurane anesthesia [38], vi)

50 ml instillation volume under either ketamine/xylazine [39],

isoflurane [40,41,42,43,44], halothane [45,46], and vii) 100 ml

instillation volume under isoflurane anesthesia [47]. Moreover, a

number of recent papers either supplied information regarding the

dose volume used without indicating the type of anesthesia [48,49],

indicated the anesthesia used but failed to indicate the dose volume

[50,51], or supplied no information regarding either the dose

volume or anesthesia [52,53,54] used for intranasal instillation.

The findings presented here have clearly shown that the

efficiency of pneumonic delivery via intranasal instillation is

significantly impacted by the volume of the inoculum as well as by

the type of anesthesia used during the procedure. These findings

underscore the importance of considering both variables when

comparing the experimental results between studies that involved

intranasal instillation for the purpose of delivering infectious agents

or other materials to the lungs. Therefore, it is critical that a

complete description of the methods used to anesthetize and

inoculate mice via intranasal instillation be supplied in any study

that employs this technique. Further studies are needed to

determine whether ‘‘high-volume’’ intranasal instillation has any

deleterious effects on research mice. The reference book entitled

‘‘The Mouse in Biomedical Research’’ states that intranasal

instillation in volumes greater than 20 ml can result in suffocation

and death of research mice [55]. While our findings do not support

this conclusion, we have noted brief respiratory distress in mice

that have received intranasal instillation volumes $50 ml.

Therefore, studies designed to evaluate respiratory function

before, during, and after intranasal instillation with a range of

instillation volumes are warranted. We are also initiating studies

that will determine whether instillation in larger volumes alters the

microenvironment of the lung enough to alter pneumonic disease

progression.

Materials and Methods

Bacterial Strains and Growth Conditions
F. tularensis strain LVS (live vaccine strain) was obtained from

the Centers for Disease Control and Prevention (CDC, Atlanta,

GA). F. tularensis was cultured in modified Mueller Hinton broth

(MMH broth supplemented with 10 g/L tryptone, 0.1% glucose,

0.025% ferrous pyrophosphate, 0.1% L-cysteine, and 2.5% calf

serum) or on MMH agar (supplemented with 5% calf serum and

1% IsoVitalex). FTLVS was transformed with the luminescence

reporter plasmid (pXB173-lux) as described previously [18].

Kanamycin (km) was used at 10 mg/mL to maintain selection

for FTLVS bearing the lux-reporter plasmid. We received

authorization from the CDC, the Department of Health and

Human Services, and from the University of Tennessee Health

Science Center (UTHSC) Institutional Biosafety Committee for

the use of aph39 in FT.

Mice
Female BALB/c mice were purchased from either Jackson

Laboratories or Charles River Laboratories. Mice were age-

matched and used between 8 and 16 weeks of age. Mice were

housed in an AALAC accredited facility in microisolator cages

with food and water available ad libitum. All experimental protocols

were reviewed and approved by the UTHSC IACUC.

Anesthesia and Intranasal Instillation
Prior to instillation, mice were anesthetized using either inhaled

(isoflurane) or parenteral (ketamine/xylazine) anesthesia. Isoflur-

ane was delivered using a SurgiVetH Vaporstick small animal

anesthesia machine equipped with a Classic T3TM isoflurane

vaporizer (Smith Medical, Dublin, OH) and mice were exposed to

2.5% isoflurane delivered in O2 (2 L/min) within a 1 liter

induction chamber until a state of areflexia was reached.

Ketamine (KetaVed, VEDCO, St. Joseph, MO; 9 mg/10 g body

weight) and xylazine (AnaSed, Lloyd Laboratories, Shenandoah,

IA; 1 mg/g body weight) were administered intraperitoneally and

mice were challenged once a stable plane of anesthesia was

reached. Intranasal administration of each challenge dose was

performed by pipetting approximately half of the designated

volume of PBS (containing the indicated number of FTLVS) onto

the outer edge of each nare of the mice. Mice receiving isoflurane

anesthesia were removed from the induction chamber and

instillation was performed immediately; no supplemental anesthe-

sia or oxygen was administered following removal from the

induction chamber.

Whole-Animal Luminescent Imaging
The photon emissions from mice that had been infected with

FTLVS-lux were measured using an IVIS Spectrum whole live-

animal imaging system (Caliper Life Sciences, Hopkinton, MA).

Mice were anesthetized with isoflurane using a precision vaporizer

and oxygen before and during imaging. Images were collected

using medium binning with an F-stop of 1, and the maximum

exposure time was 5 minutes. The luminescent signals for all

images in any individual study were normalized and reported as

photons/second/cm‘2/sr.

Bacterial Burden Determination
Lungs of challenged mice were removed aseptically and

homogenized (using a closed tissue grinder system, Fisher

Scientific, Pittsburgh, PA) in one ml of sterile PBS, and the final

volume was adjusted to 1.25 ml with PBS. To disrupt cells

(releasing FT), 0.25 ml disruption buffer (2.5% saponin, 15%

Pneumonic Delivery via Intranasal Instillation
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BSA, in PBS) was added with light vortexing. Appropriate

dilutions of each sample were then plated in duplicate using an

Eddy Jet spiral plater (Neutec Group Inc., Farmingdale, NY) on

MMH agar plates and incubated at 37uC for 48–72 hours.

Colonies were counted using a Flash & Go automated colony

counter (Neutec Group Inc.).

Statistical Methodology
Statistical analyses of each figure were performed using

GraphPad Prism software (GraphPad Software, La Jolla, CA).

The specific statistical method used for each dataset is described in

the figure legends.
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