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Abstract 

Background:  Predicting hospital mortality risk is essential for the care of heart failure patients, especially for those in 
intensive care units.

Methods:  Using a novel machine learning algorithm, we constructed a risk stratification tool that correlated patients’ 
clinical features and in-hospital mortality. We used the extreme gradient boosting algorithm to generate a model pre-
dicting the mortality risk of heart failure patients in the intensive care unit in the derivation dataset of 5676 patients 
from the Medical Information Mart for Intensive Care III database. The logistic regression model and a common risk 
score for mortality were used for comparison. The eICU Collaborative Research Database dataset was used for external 
validation.

Results:  The performance of the machine learning model was superior to that of conventional risk predictive 
methods, with the area under curve 0.831 (95% CI 0.820–0.843) and acceptable calibration. In external validation, the 
model had an area under the curve of 0.809 (95% CI 0.805–0.814). Risk stratification through the model was specific 
when the hospital mortality was very low, low, moderate, high, and very high (2.0%, 10.2%, 11.5%, 21.2% and 56.2%, 
respectively). The decision curve analysis verified that the machine learning model is the best clinically valuable in 
predicting mortality risk.

Conclusion:  Using readily available clinical data in the intensive care unit, we built a machine learning-based mortal-
ity risk tool with prediction accuracy superior to that of linear regression model and common risk scores. The risk tool 
may support clinicians in assessing individual patients and making individualized treatment.

Keywords:  Machine learning models, Heart failure, Extreme gradient boosting, Medical information mart for 
intensive care, Risk stratification
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Background
Heart failure is a complex clinical syndrome caused by 
structural or functional impairment of the heart [1, 2]. 
Heart failure has a high incidence in critically ill patients, 

especially among those in intensive care units (ICUs), 
and it is responsible for poor outcomes by causing myo-
cardial injury and increased in-hospital mortality [3]. 
Critical-illness scoring systems, such as the acute physi-
ology and chronic health evaluation-II (APHACHE-II) 
and the simplified acute physiology score-II (SAPS-II), 
have been widely used in critical care medicine. However, 
they have been only modestly successful in heart failure 
populations [4–6]. Nowadays, the prognosis for critical 
patients with advanced heart failure remains poor, and a 
proportion of patients require higher acuity care in the 
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ICU. We need a more precise risk stratification tool to 
improve the quality of heart failure care in the ICU [7, 8]. 
On the other hand, traditional prediction models based 
on logistic regression analysis for heart failure, such as 
Get With Guidelines Heart Failure (GWTGW)-HF Reg-
istry, may not capture multi-dimensional correlations 
that contain prognostic information from large amounts 
of high dimensional data while we can get much charac-
teristic information from the detection instrument in the 
ICU [9]. In contrast, novel machine learning techniques 
can capture the nonlinear relationship between patients’ 
prognosis and clinical manifestations and identify pat-
terns from large datasets that have many variables [10–
12]. Extreme gradient boosting (XGBoost) is an ensemble 
learning algorithm combining multiple machine learning 
algorithms serially to obtain a better model that can learn 
more complex decision boundaries and efficiently handle 
missing data [13]. XGBoost gained significant favor in the 
last few years due to helping individuals and teams win 
virtually every Kaggle structured data competition. What 
is more, XGBoost has had good performance in prognos-
tic prediction models [14–16].

In this study, we used XGBoost methods to gener-
ate a more precise risk predictive model on in-hospital 
mortality among critically ill patients with heart failure 
compared with traditional prediction models and critical 
illness scoring systems. We further validated the machine 
learning model by plotting the decision curve and assess-
ing predictive performance in external populations.

Materials and methods
Database
Two distinct databases were used for this study. The 
model was developed from a retrospective analysis of a 
cohort of patients from Medical Information Mart for 
Intensive Care (MIMIC-III) a large public database that 
includes information on 46,520 patients who were admit-
ted to ICUs from 2001 to 2021 at the Beth Israel Dea-
coness Medical Center in Boston, MA, USA [17]. The 
database contains records of demographics, hourly vital 
signs from bedside monitors, laboratory tests, Inter-
national Classification of Diseases and Ninth Revision 
(ICD-9) codes diagnoses, and other clinical character-
istics. The users were required to pass a test to qualify 
to register for the database and to be approved by the 
MIMIC-III database administration staff. The second 
cohort of patients was from the Telehealth Intensive Care 
Unit (eICU) Collaborative Research Database (eICU-
CRD) as a validation dataset. The eICU-CRD, a multi-
center critical care database, covers more than 200,000 
ICU stays of 139,367 unique patients admitted to ICUs 
between 2014 and 2015 from 208 hospitals in the United 
States [18]. After passing a training course, “Protecting 

Human Research Participants,” on the website of the 
National Institutes of Health, we had permission to 
extract data from the two databases for research pur-
poses (certification number: 37903239).

Study population
The study focused on ICU patients with heart failure. We 
exported the patients who were diagnosed with heart fail-
ure at admission to an ICU from the MIMIC-III and the 
eICU-CRD through ICD-9 codes or who were recorded 
as heart failure patients. Other criteria for inclusion were 
(I) heart failure without sepsis at admission to the ICU; 
(II) older than 16 years old and younger than 90 years old; 
(III) first hospital stay and the first ICU admission; IV) 
longer than 24-h stay in the ICU; (V) ICU vital signs data 
and laboratory test data available.

Data extraction
Initially, we extracted as many features as possible for 
constructing the baseline model and feature screening 
from the MIMIC-III database. First, we collected demo-
graphic data, including age, gender, weight, height, and 
ethnicity. Then, the vital signs data and laboratory data 
during the first 24  h after admission to the ICU were 
extracted, including heart rate, blood pressure, res-
piratory rate, temperature, oxyhemoglobin saturation 
(SpO2), creatinine, chloride, glucose, hematocrit, hemo-
globin, platelet count, potassium, partial thromboplas-
tin time (PTT), prothrombin time (PT), sodium, blood 
urea nitrogen (BUN), white blood cell (WBC) count, red 
blood cell count, red cell distribution width (RDW), Pap-
penheimer O2 (pO2), partial pressure of carbon dioxide 
(pCO2), and HCO3. The clinicians and nurses collected 
these data hourly. For mining more information about 
these features, we took the maximum, minimum, mean, 
and range values of vital signs and laboratory data over 
a period as candidate features. Comorbidities of patients 
were also collected. The urine output and Glasgow Coma 
Scale were calculated in the first 24  h after ICU admis-
sion. The primary endpoint was all-cause in-hospital 
mortality, so patients without discharge information were 
excluded from the final cohort. Finally, these features 
were integrated into a single data frame for analysis. The 
data extraction process was conducted by use of the Post-
greSQL programming language.

Data preprocessing
After data extraction, the data set was preprocessed. 
The records with physiologically impossible values were 
eliminated. We then transformed character variables 
into categorical variables. If categorical variables were 
unordered, we coded them by One-Hot Encoding. Miss-
ing data, which were common in the databases, would 
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introduce bias to subsequent analysis [19, 20]; to avoid 
introducing this bias, we excluded covariates with > 40% 
missing data and patients with > 20% missing covari-
ates. In the missing data imputation stage, we compared 
three methods: (1) median imputation, (2) random 
forest imputation, and (3) Extreme gradient boost-
ing (XGBoost) imputation. Since the XGBoost method 
had the best effect to predict in the baseline model, we 
selected it to handle the missing data.

Model development
Generating the risk prediction model consisted of two 
stages: feature selection and model building. The fea-
ture selection stage selected the smallest and most pre-
dictive subset of features that were included in the final 
prediction model to minimize overfitting, as overfitting 
can lead to over-training of the training cohort and loss 
of prediction power in other populations. We used the 
permutation-based XGBOOST selection method, which 
ranks features by the variable importance metric of the 
XGBOOST and eliminated features one by one to get the 
best predictive subset (details in Additional file  1: Fig. 
S2).

Since the aim was to provide decision-making support 
for clinicians in evaluating the risk of in-hospital mor-
tality of heart failure patients after ICU admission, the 
primary outcome of the model was the mortality rate of 
the ICU patients. The machine learning model was devel-
oped with the XGBoost algorithm [21, 22]. The algo-
rithm was dependent on continuous iterative correction 
of residuals from previous weak models, meaning that 
the current classifier is determined based on the previ-
ous classifier to optimize predictive power [23, 24]. The 
MIMIC-III dataset provides more detailed information 
than the eICU dataset: First, through data preprocess-
ing, the number of candidate feature set in the MIMIC-
III dataset is 177, while the eICU is 89. All the features 
in eICU were incorporated in the MIMIC-III dataset, 
whereas the MIMIC-III dataset contains additional fea-
tures regarding blood gas analysis and comorbidity infor-
mation, such as arterial base excess, plasma bicarbonate, 
hematocrit, chronic pulmonary heart disease, valvular 
disease, pulmonary circulation, hypothyroidism and so 
on. Second, the size of the study cohort of the MIMIC-
III dataset is 5676, while the eICU is 1349. In order to 
construct superior models and explore the most dis-
criminating subset of variables, we used the MIMIC-
III dataset as derivation data. We randomly divided the 
derivation data into a training cohort (90%) and a test-
ing cohort (10%). The training cohort was used to train 
the predictive model, and the testing cohort was used 
to validate the performance of the predictive model. To 
train the machine learning model, we used the tenfold 

cross validation method in the training cohort for model 
hyperparameter tuning [25]. We used the best predictive 
model and calculated the area under the receiver operat-
ing characteristic curves (AUC) in the testing cohort. We 
also constructed other models (logistic regression and 
SAPS-II) to compare with the machine learning model 
in the testing cohort. For logistical regression, we con-
structed a new feature set by variable interactions. Then, 
the performance of stepwise logistical regression, Lasso, 
Ridge and Elastic Net was compared between the original 
feature set and the new feature set (details in Additional 
file 1: Fig. S2). The stepwise logistic regression model was 
conducted using these significant variables identified by 
forward stepwise analysis with each variable iteratively 
added to minimize the Akaike Information Criterion 
(AIC). Finally, the best model was selected and compared 
with the machine learning model. The data extraction 
process and model building were conducted with Python 
3.8.3.

Results
Statistical analysis
A total of 5676 patients diagnosed with heart failure 
by MIMIC-III met our selection criteria. The selection 
cohort was divided into two groups based on whether 
they survived before discharge. Their data were pre-
sented by continuous variables (as means and standard 
deviation) or categorical variables (as frequencies and 
percentages) (Table  1). To identify the differences, the 
Kolmogorov–Smirnov test was used for continuous vari-
ables of normal distribution, and the Mann–Whitney U 
test was used for continuous variables of non-normal 
distribution. The differences of categorical variables 
between groups were tested with a Chi-squared test. 
The mean length of stay in the ICU was 5.1  days, and 
595 patients died in the ICU, which was 10.5% of the 
deviation dataset. The patients who died in the hospital 
were older and had a lower BMI (p < 0.01) than did those 
who survived (Table  1). Other differences between the 
patients who survived and those who died are also given 
in Table 1).

Features selected in models
Through the feature screening stage, 24 features were 
selected in the final model. The cross validation AUC 
score declined slowly before the feature set was 24 
(details in Additional file  1: Fig. S1). We used the 
XGBoost model to rank each features’ contribution for 
predicting. Mean anion gap, mean Glasgow Coma scale, 
urine output, mean BUN, maximum pO2, age, minimum 
glucose, mean calcium, mean respiratory rate, mean arte-
rial base excess, mean creatinine, mean temperature, 
BMI, minimum platelet and maximum temperature were 
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the top 15 most important features from the predictive 
models (Fig. 1).

Internal validation and model comparisons
In internal validation, the GWTG-HF, SAPS-II, logistic 
regression, and XGBoost model had discriminator per-
formance with AUC of 0.667 (95% CI 0.656–0.678), 0.72 
(95% CI 0.710–0.736), 0.817 (95% CI 0.798–0.835) and 
0.831 (95% CI 0.820–0.843), respectively (Fig.  2). The 

XGBoost model had better predictive power than did the 
others. The calibration plots of the XGboost model are 
described in Fig. 3, which agreed well with the validation 
cohort.

Using the risk predictive model, we determined the risk 
probability stratification of heart failure patients in the 
testing dataset (Table 2). In that dataset, 60.3% of patients 
had a risk of 10% or less, which corresponded to a low 
hospital mortality rate. Moderate risk strata (10–30% 

Table 1  Baseline characteristics, vital signs, and laboratory test results of survivors compared with patients who died

SD standard deviation, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, SpO2 Oxygen saturation, GCS, Glasgow Coma scale, PTT 
partial thromboplastin time, INR international normalized ratio, PT prothrombin time, BUN blood urea nitrogen, WBC white blood cell count, MCHC mean corpuscular 
hemoglobin concentration, RBC red blood cell count, RDW red blood cell distribution width, Ph potential hydrogen, PO2 partial pressure of arterial oxygen, PCO2 
partial pressure of arterial carbon dioxide

Variables Survived (n = 5081) Died (n = 595) p

Age, mean (years, SD) 70.2 (12.7) 74.5 (11.8)  < 0.001

Gender, n (%) 2842 (55.9%) 319 (53.6%) 0.281

BMI, mean (kg/m2, SD) 29.3 (7.5) 28.4 (7.9)  < 0.001

Heart rate, mean (bpm, SD) 84.0 (16.2) 86.9 (17.3)  < 0.001

SBP, mean (mmHg, SD) 117.6 (16.2) 115.7 (19.1) 0.002

DBP, mean (mmHg, SD) 58.5 (10.0) 56.8 (10.9)  < 0.001

Mean bp, mean (mmHg, SD) 76.7 (10.1) 75.6 (9.8) 0.014

Respiratory rate, mean (/min, SD) 19.0 (3.8) 20.3 (4.7)  < 0.001

Temperature, mean (°C, SD) 36.8 (0.6) 36.7 (0.8) 0.011

SpO2, mean (%, SD) 97.1 (2.0) 96.7 (2.9) 0.039

GCS, mean (SD) 12.1 (3.3) 10.3 (4.0)  < 0.001

Anion gap, mean (mmHg, SD) 13.8 (3.2) 15.9 (3.9)  < 0.001

HCO3, mean (mmol/L, SD) 24.8 (4.6) 23.6 (5.4)  < 0.001

Creatinine, mean (μmol/L, SD) 1.5 (1.4) 1.9 (1.4)  < 0.001

Chloride, mean (mmg/dL, SD) 104.5 (5.7) 103.7 (6.1) 0.004

Glucose, mean (mg/dL, SD) 144.1 (48.8) 160.7 (64.2)  < 0.001

Hematocrit, mean (%, SD) 31.8 (5.3) 31.9 (5.3) 0.358

Hemoglobin, mean (g/dL, SD) 10.7 (1.8) 10.6 (1.8) 0.961

Platelets, mean (× 109/L, SD) 213.6 (96.7) 208.2 (104.8) 0.174

PTT, mean (s, SD) 41.4 (21.3) 46.6 (26.1)  < 0.001

INR, mean (SD) 1.5 (0.8) 1.7 (1.0)  < 0.001

PT, mean (s, SD) 16.0 (6.1) 17.2 (7.4)  < 0.001

Sodium, mean (mmol/L, SD) 138.2 (4.0) 138.6 (4.9) 0.002

BUN, mean (mmol/L, SD) 29.8 (21.9) 42.0 (27.0)  < 0.001

WBC, mean (× 109/L, SD) 12.0 (7.0) 14.3 (20.0)  < 0.001

MCHC, mean (× 10 g/L, SD) 33.8 (1.5) 33.3 (1.5)  < 0.001

RBC, mean (× 109/L, SD) 3.6 (0.6) 3.6 (0.7) 0.246

RDW, mean (%, SD) 15.1 (1.9) 15.8 (2.2)  < 0.001

Ph blood, mean (SD) 7.4 (0.1) 7.4 (0.1) 0.239

PO2, mean (mmHg, SD) 156.0 (73.8) 137.9 (74.4)  < 0.001

PCO2, mean (mmHg, SD) 42.8 (9.7) 42.0 (11.5)  < 0.001

Urine output, mean (mL, SD) 1963.2 (1160.0) 1442.1 (1126.5)  < 0.001

Comorbidities

Cardiac arrhythmias, n (%) 2958 (58.2) 377 (63.4) 0.016

Hypertension, n (%) 3187 (62.7) 299 (50.3)  < 0.001
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predictive risk), high risk strata (30–50% predictive risk), 
and very high-risk strata (> 50% predictive risk) were pre-
sent in 11.5%, 21.2%, and 56.2% hospital-mortality rate, 
respectively. The decision curve analysis of four models 
is illustrated in Fig. 4, in which the threshold risk prob-
ability of patients is about 10–80%. The XGBoost model 
to predict patients in-hospital mortality had more ben-
efits than the treat-none strategy or the treat-all-patients 

Fig. 1  Feature importance derived from the XGBoost model

Fig. 2  The receiver operating characteristic curves of the XGBoost 
model, elastic net model, SAPS-II score, and GWTG-HF score

Fig. 3  Calibration plot for the XGBoost model. The model had good 
calibration with in-hospital mortality risk

Table 2  Rates of mortality in 5 different risk strata predicted by 
the XGBoost model in the internal validation dataset (n = 568)

Risk strata Predictive hospital-
mortality risk (%)

Rate of total study 
population (%)

Hospital-
mortality 
(%)

Very low ≤ 5 245 (43.1%) 2.0

Low 5–10 98 (17.2%) 10.2

Moderate 10–30 130 (22.9%) 11.5

High 30–50 47 (8.3%) 21.2

Very high > 50 48 (8.5%) 56.2
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strategy. The net benefit for the XGBoost model was 
more significant than other models, suggesting the 
XGBoost model was optimal.

External validation
We further validated the XGBoost model in the exter-
nal dataset by using the eICU database with the same 
data extraction process as the derivation dataset. The 
main baseline variables of the two datasets are summa-
rized in Table 3. Among 50 features selected by logistic 

regression, 18 (36%) features were not available in the 
eICU dataset. In comparison, for the XGBoost model, 
24 features were selected and all but one features (arte-
rial base excess) were available in the eICU dataset. 
Therefore, we consider it suboptimal to apply the logistic 
regression to the validation cohort. Since the arterial base 
excess feature was not available in the eICU database, we 
imputed the values of this feature by a regression model, 
which was constructed by the final feature set and the 
derivation dataset. We also performed an imputation 
by the regression analysis, which was constructed by 
the final feature set and the derivation dataset. We then 
evaluated the performance of the XGBoost model on 
this new dataset. The XGBoost model had a slight dete-
rioration of performance, with an AUC of 0.826 (95% CI 
0.805–0.847) in this dataset. The AUC in the external 
validation dataset was 0.809 (95% CI 0.805–0.814). Using 
the risk predictive model, we determined the risk prob-
ability stratification of heart failure patients in the exter-
nal validation dataset (Table 4). The observed in-hospital 
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Fig. 4  Decision curve analysis of models. The X axis indicates the 
threshold probability for in-hospital mortality, and the Y axis indicates 
the net benefit

Table 3  Baseline patient characteristics between MIMIC-III and eICU

SD standard deviation, BMI body mass index, SBP systolic blood pressure, PTT partial thromboplastin time, GCS Glasgow Coma Scale, bp blood pressure, NA not 
available

Variables MIMIC-III (n = 5676) eICU (n = 1349)

Age, mean (years, SD) 70.7 (12.6) 67.8 (13.7)

Men, n (%) 3161 (55.7) 802 (59.5)

BMI, mean (kg/m2, SD) 29.2 (7.5) 31.5 (12.9)

SBP, mean (mmHg, SD) 117.4 (16.5) 119.1 (19.8)

PTT, mean (s, SD) 41.9 (21.9) 42.0 (18.7)

Temperature, mean (°C, SD) 36.8 (0.6) 36.7 (0.6)

GCS, mean (SD) 11.9 (3.4) 13.4 (2.7)

Respiratory rate, mean (/min, SD) 19.1 (3.9) 20.3 (4.1)

Phosphate, mean (mg/dL, SD) 3.8 (1.3) 4.1 (1.4)

Calcium, mean (mmol/L, SD) 8.4 (0.8) 8.5 (0.7)

Glucose, mean (mg/dL, SD) 145.8 (50.9) 148.6 (58.3)

Urine output, mean (mL, SD) 1908.6 (1167.4) 1837.4 (1408.6)

Arterial base excess, mean (mmol/L, SD) 0.03 (4.3) NA

Mortality (%) 10.5 12.8

Table 4  Rates of mortality in 5 different risk strata predicted by 
the XGBoost model in the external validation dataset (n = 1060)

Risk Stata Predictive hospital-
mortality risk (%)

Rate of total study 
population (%)

Hospital-
mortality 
(%)

Very low ≤ 5 532 (50.2%) 3.2

Low 5–10 195 (34.3%) 5.6

Moderate 10–30 231 (21.8%) 19.5

High 30–50 61 (10.7%) 41.0

Very high > 50 41 (7.2%) 53.7
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mortality rates of very low, low, moderate, high, and very 
high risk strata were 3.2%, 5.6%, 19.5%, 41.0% and 53.7%, 
respectively. Thus, the XGBoost model also had good 
predictive performance in independent external popu-
lations. However, the robustness of the XGBoost model 
needs further clinical evaluation with other populations.

Discussion
In this work, we used innovative machine-learning to 
construct a risk predictive model for hospital mortal-
ity among heart failure patients in intensive care units. 
Compared with traditional risk prediction, machine-
learning techniques can capture the nonlinearity between 
risk predictors and mortality from large amounts of high 
dimensional data [26–28]. The techniques can overcome 
the challenge of accurately identifying high-risk patients 
in the ICU, especially for those with complex pheno-
types, such as heart failure [29]. Matthew et al. [30] dem-
onstrated the superiority of machine learning methods 
to predict the risk of heart failure. Our machine learning 
model had the best ability to distinguish among the three 
predictive models, with an AUC of 0.831 in the internal 
validation dataset. According to the DCA of the three 
models, the net benefit for the XGBoost model was maxi-
mum, suggesting that the XGBoost model is optimal. It 
also had acceptable performance, with an AUC of 0.809 
(95% CI 0.805–0.814) in the external validation. The 
XGBoost model had satisfactory calibration and good 
risk stratifying ability both in the internal testing dataset 
and the external validation dataset.

Using the XGBoost model, we divided the risk prob-
abilities into < 5%, 5–10%, 10–30%, 30–50%, > 50% as very 
low, low, moderate, high, and very high-risk strata in the 
derivation population, respectively. In addition, the risk 
strata were presented in the external validation dataset. 
We documented the feasibility of the XGBoost model 
to distinguish risk patients from other populations. 
Through the use of the XGBoost model, the risk prob-
ability of each patient can inform and support clinicians 
in decision making. However, there were some deaths 
in low-risk strata and some survivors in high-risk strata. 
We suspect that these exceptions may be due to differ-
ent phenotypes of heart failure patients in various risk 
stratification. For instance, Matthew et al. [31] identified 
phenogroups of patients with machine learning-based 
unsupervised cluster analysis. Consequently, we may use 
other methods for further analysis and for making exper-
imental validations in future research.

The machine learning-based model identified 24 vari-
ables from the feature set. Anion gap was most asso-
ciated with death among ICU heart failure patients 
through the predictive model. Age was generally associ-
ated with death, and the Glasgow Coma Scale was also 

a predictor of mortality in ICU patients. Blood coagula-
tion status at ICU admission, such as platelet count and 
PTT, was associated with in-hospital mortality among 
heart failure patients. Disturbance of blood coagulation 
has been reported to seriously threaten patients’ sur-
vival [32]. However, most heart failure patients receive 
anticoagulant therapy, which will add to coagulation 
abnormalities. Hence, clinicians should be cautious in 
prescribing anticoagulant therapy for patients who are 
at high risk because the agents may increase the risk of 
inducing coagulopathy. In order to implement faster and 
more accurate coagulation management, we could early 
implement thromboelastography (TEG) or rotational 
thromboelastometry (ROTEM) to high-risk patients 
[33]. Furthermore, the high-risk patients may receive 
mechanical thromboprophylaxis with intermittent pneu-
matic compression, graduated compression stockings, or 
percutaneous left atrial appendage closure [34, 35]. The 
volume of urine output was the third important predic-
tor in the predictive model, and a higher volume of urine 
output may indicate a better prognosis. Lin et  al. [36] 
indicated that decreased urine output could be a com-
pensatory mechanism to maintain intravascular volume, 
and in that circumstance, patients may be at risk of renal 
injury. Meanwhile, oliguria and worsening renal function 
may drive fluid retention increasing the burden on the 
heart, which causes damage to the heart and aggravates 
symptoms of heart failure. Several studies in HF patients 
have demonstrated that fluid overload is independently 
associated with increased mortality [37, 38]. One rea-
son was that HF patients are at risk of death not only 
from cardiovascular disease but also from multiorgan 
failure. Many features in blood gas analysis were among 
the most important features from the predictive models: 
pO2, pCO2, anion gap, and arterial base excess. However, 
through the machine learning method, we could only 
appreciate that heart failure was associated with these 
features; the method could not explain the mechanisms 
responsible for heart failure. Hence, further research is 
needed to determine the role of these features in ICU 
patients with heart failure.

As a retrospective analysis, this study has limitations. 
First, our predictive model was constructed from a sin-
gle-center dataset, which may not be appropriate for 
other populations. Although our model had good per-
formance in the external dataset, it needs verification 
in other datasets and populations. Second, because of 
missing data, some features that have been identified as 
risk predictors of heart failure, such as N-terminal pro-
B-type natriuretic peptide [39, 40], were not assessed. 
Third, we did not make the most of time sequence data 
monitoring from the ICU; we only extracted the mini-
mum, maximum, mean, and range of features within 
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24 h. The pattern of change for a period in a feature may 
contain information that can increase the prediction and 
understanding of mechanisms. In future work, we could 
divide the 24  h into shorter time intervals. One strat-
egy is that the 24 h period can be divided into two time 
periods according to the maximum or minimum point 
of each time series feature. Then, we could extract addi-
tional summary statistics of the feature for the two time 
periods, such as mean value, variance, deviation and 
Shannon entropy, and incorporate them in the statistical 
models [41]. Nonetheless, our model can help clinicians 
identify heart failure in ICU patients who are at high risk 
for in-hospital mortality.

Conclusions
This study showed that machine-learning algorithms 
can generate a high-performance risk-prediction tool 
for patients with heart failure in the ICU. The machine-
learning algorithms monitor patients’ clinical data with-
out requiring specific cardiovascular biomarkers and 
survival of different stages when integrated into elec-
tronic health record systems. The risk-prediction model 
can support clinicians in assessing heart failure patients 
in the ICU and in making personalized treatment plans. 
However, this application needs to be validated in the 
study of more independent cohorts.

Abbreviations
ICU: Intensive care unit; HF: Heart failure; APHACHE-II: Acute physiology and 
chronic health evaluation-II; SAPS-II: Simplified acute physiology score-II; 
GWTGW-HF: Get With Guidelines Heart Failure; XGBoost: Extreme gradient 
boosting; LR: Logistic regression; MIMIC-III: Medical Information Mart for Inten-
sive Care III; ICD-9: International Classification of Diseases and Ninth Revision; 
eICU-CRD: Telehealth Intensive Care Unit Collaborative Research Database; SD: 
Standard deviation; BMI: Body mass index; SBP: Systolic blood pressure; DBP: 
Diastolic blood pressure; SpO2: Oxygen saturation; GCS: Glasgow Coma scale; 
PTT: Partial thromboplastin time; INR: International normalized ratio; PT: Pro-
thrombin time; BUN: Blood urea nitrogen; WBC: White blood cell count; MCHC: 
Mean corpuscular hemoglobin concentration; RBC: Red blood cell count; 
RDW: Red blood cell distribution width; Ph: Potential hydrogen; PO2: Partial 
pressure of arterial oxygen; PCO2: Partial pressure of arterial carbon dioxide; 
Max: Maximum; Min: Minimum; AUC​: Area under curves; ROC: The receiver 
operating characteristic curves; NA: Not available.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​022-​03340-8.

Additional file 1: Figure S1. The AUC of feature screening with fivefold 
CV. The vertical dotted line represents the number of features where the 
hyperparameter tuning was performed. Figure S2. Feature importance 
derived from XGBoost model when the feature set was 177. Figure S3. 
Feature importance derived from XGBoost model when the feature set 
was 86. Figure S4. Feature importance derived from XGBoost model 
when the feature set was 54. Figure S5. The receiver operating character-
istic curves of the eight models.

Acknowledgements
Not applicable.

Authors’ contributions
CL, YZ, CQ and ZW designed the work. CL and YZ extracted and analyzed the 
datasets. YZ, ZZ and RL summarized the patient features. CL, YZ, ZZ and RL 
built model. CL, CQ and ZW wrote this paper. All authors read and approved 
the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that have no competing interests.

Author details
1 South China Normal University-Panyu Central Hospital Joint Laboratory 
of Basic and Translational Medical Research, Guangzhou Panyu Central Hos-
pital, Guangzhou 511400, Guangdong, China. 2 School of Life Sciences, South 
China Normal University, Guangzhou 510631, Guangdong, China. 3 Depart-
ment of Cardiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, 
Guangdong, China. 

Received: 9 November 2021   Accepted: 6 March 2022

References
	1.	 Gianluigi S, Lund LH. global public health burden of heart failure. Card Fail 

Rev. 2017;3. https://​doi.​org/​10.​15420/​cfr.​2016:​25:2.
	2.	 Seferović PM. ESC/HFA guidelines for the diagnosis and treatment of 

acute and chronic heart failure 2016. J Card Fail. 2017. https://​doi.​org/​10.​
1016/j.​cardf​ail.​2017.​08.​005.

	3.	 Komanduri S, Jadhao Y, Guduru SS, Cheriyath P, Wert Y. Prevalence and 
risk factors of heart failure in the USA: NHANES 2013–2014 epidemiologi-
cal follow-up study. J Commun Hosp Intern Med Perspect. 2017;7(1):15–
20. https://​doi.​org/​10.​1080/​20009​666.​2016.​12646​96.

	4.	 Amina G, Amer I, Admir R, Ira T, Selma J, Anes A, Adis K. Predictive value of 
SAPS II and APACHE II scoring systems for patient outcome in a medical 
intensive care unit. Acta Med Acad. 2016;45(2):97–103.

	5.	 Izabela K, Rafał Ś, Karolina B, Paweł T, Wojciech S. Validation of APACHE 
II and SAPS II scales at the intensive care unit along with assessment of 
SOFA scale at the admission as an isolated risk of death predictor. Anaes-
thesiol Intensive Therapy. 2019;51(2):107–11.

	6.	 Marek M, Alexandra B, Martin R, Johannes L. Outcome prediction after 
traumatic brain injury: comparison of the performance of routinely used 
severity scores and multivariable prognostic models. J Neurosci Rural 
Pract. 2017;8(1):20.

	7.	 Metkus TS, Lindsley J, Fair L, Riley S, Berry S, Sahetya S, Hsu S, Gilotra 
NA. Quality of heart failure care in the intensive care unit. J Card Fail. 
2021;27:1111–25.

	8.	 Cheshire C, Bhagra CJ, Bhagra SK. A review of the management of 
patients with advanced heart failure in the intensive care unit. Ann Transl 
Med. 2020;8:828.

	9.	 N PP, S RJ, Li L, M AN, F HA, D PE, C FG, A MF. A validated risk score for 
in-hospital mortality in patients with heart failure from the American 

https://doi.org/10.1186/s12967-022-03340-8
https://doi.org/10.1186/s12967-022-03340-8
https://doi.org/10.15420/cfr.2016:25:2
https://doi.org/10.1016/j.cardfail.2017.08.005
https://doi.org/10.1016/j.cardfail.2017.08.005
https://doi.org/10.1080/20009666.2016.1264696


Page 9 of 9Luo et al. Journal of Translational Medicine          (2022) 20:136 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Heart Association get with the guidelines program. Circ Cardiovasc Qual 
Outcomes. 2010; 3(1):25–32.

	10.	 J MB, S DN, M BE, Kumar D, Ajay M, Shu-Xia L, N NS, M KH. Analysis of 
machine learning techniques for heart failure readmissions. Circ Cardio-
vasc Qual Outcomes. 2016; 9:629–640

	11.	 Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, Williams BA, 
Haggerty CM, Fornwalt BK. Predicting survival from large echocardiog-
raphy and electronic health record datasets. JACC Cardiovasc Imaging. 
2019;12(4):681–9. https://​doi.​org/​10.​1016/j.​jcmg.​2018.​04.​026.

	12.	 Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow 
GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. 
Machine learning to predict the risk of incident heart failure hospitaliza-
tion among patients with diabetes: the WATCH-DM Risk Score. Diabetes 
Care. 2019;42(12):2298–306. https://​doi.​org/​10.​2337/​dc19-​0587.

	13.	 Yuan KC, Tsai LW, Lee KH, Cheng YW, Hsu SC, Lo YS, Chen RJ. The develop-
ment an artificial intelligence algorithm for early sepsis diagnosis in the 
intensive care unit. Int J Med Inform. 2020;141: 104176.

	14.	 Davagdorj K, Pham VH, Theera-Umpon N, Ryu KH. XGBoost-based frame-
work for smoking-induced noncommunicable disease prediction. Int J 
Environ Res Public Health. 2020;17(18):6513. https://​doi.​org/​10.​3390/​ijerp​
h1718​6513.

	15.	 Ogunleye A, Wang QG. XGBoost model for chronic kidney disease diag-
nosis. IEEE/ACM Trans Comput Biol Bioinform. 2020;17:2131–40.

	16.	 Nwanosike EM, Conway BR, Merchant HA, Hasan SS. Potential applica-
tions and performance of machine learning techniques and algorithms 
in clinical practice: a systematic review. Int J Med Inform. 2022;159: 
104679.

	17.	 Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, 
Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical 
care database. Sci Data. 2016. https://​doi.​org/​10.​1038/​sdata.​2016.​35.

	18.	 Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU 
Collaborative Research Database, a freely available multi-center database 
for critical care research. Sci Data. 2018. https://​doi.​org/​10.​1038/​sdata.​
2018.​178.

	19.	 Wells BJ, Nowacki AS, Chagin K, Kattan MW. Strategies for handling miss-
ing data in electronic health record derived data. eGEMS (Washington, 
DC). 2013. https://​doi.​org/​10.​13063/​2327-​9214.​1035.

	20.	 Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood 
AM, Carpenter JR. Multiple imputation for missing data in epidemiologi-
cal and clinical research: potential and pitfalls. BMJ. 2009. https://​doi.​org/​
10.​1136/​bmj.​b2393.

	21.	 Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume 
responsiveness in patients with oliguric acute kidney injury in critical 
care. Crit Care. 2019. https://​doi.​org/​10.​1186/​s13054-​019-​2411-z.

	22.	 Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O, of ABDCTCGwob. 
Predictive analytics with gradient boosting in clinical medicine. Ann 
Transl Med. 2019;7(7):152–152. https://​doi.​org/​10.​21037/​atm.​2019.​03.​29.

	23.	 Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical 
view of boosting (with discussion and a rejoinder by the authors). Ann 
Stat. 2000. https://​doi.​org/​10.​1214/​aos/​10162​18223.

	24.	 Kanamori T, Takenouchi T, Eguchi S, Murata N. Robust loss functions for 
boosting. Neural Comput. 2007;19:2183–244.

	25.	 Monsalve-Torra A, Ruiz-Fernandez D, Marin-Alonso O, Soriano-Payá 
A, Camacho-Mackenzie J, Carreño-Jaimes M. Using machine learning 
methods for predicting inhospital mortality in patients undergoing open 
repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62:195–201. 
https://​doi.​org/​10.​1016/j.​jbi.​2016.​07.​007.

	26.	 Friedman JH. Greedy function approximation: a gradient boosting 
machine. Ann Stat. 2001. https://​doi.​org/​10.​1214/​aos/​10132​03451.

	27.	 Janabi SA, Mahdi MA. Evaluation prediction techniques to achievement 
an optimal biomedical analysis. Int J Grid Utility Comput. 2019;10(5):512. 
https://​doi.​org/​10.​1504/​IJGUC.​2019.​102021.

	28.	 Richards G, Rayward-Smith VJ, Sönksen PH, Carey S, Weng C. Data mining 
for indicators of early mortality in a database of clinical records. Artif Intell 
Med. 2001;22(3):215–31.

	29.	 Angelo S, Pierpaolo C, Roberta DR, Gennaro G. Big health data and car-
diovascular diseases: a challenge for research, an opportunity for clinical 
care. Front Med. 2019;6:36.

	30.	 W SM, Muthiah V, V PK, K MD, Javed B, C FG, Mujeeb B, Vaishnavi K, L GJ, 
Brendan E, et al. Machine learning to predict the risk of incident heart 

failure hospitalization among patients with diabetes: The WATCH-DM Risk 
Score. Diabetes Care. 2019; 42(12):2298–2306.

	31.	 Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, Berry J, Grodin 
JL, Pandey A. Phenomapping of patients with heart failure with preserved 
ejection fraction using machine learning-based unsupervised cluster 
analysis. Eur J Heart Fail. 2020. https://​doi.​org/​10.​1002/​ejhf.​1621.

	32.	 Shenkman B, Budnik I, Einav Y, Hauschner H, Andrejchin M, Martinowitz 
U. Model of trauma-induced coagulopathy including hemodilution, 
fibrinolysis, acidosis, and hypothermia: impact on blood coagulation and 
platelet function. J Trauma Acute Care Surg. 2017. https://​doi.​org/​10.​
1097/​TA.​00000​00000​001282.

	33.	 Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography 
(TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment 
versus usual care in adults or children with bleeding. Cochrane Database 
Syst Rev. 2016;2016: Cd007871.

	34.	 Osmancik P, Herman D, Neuzil P, Hala P, Taborsky M, Kala P, Poloczek M, 
Stasek J, Haman L, Branny M, et al. Left atrial appendage closure versus 
direct oral anticoagulants in high-risk patients with atrial fibrillation. J Am 
Coll Cardiol. 2020;75:3122–35.

	35.	 Schizodimos T, Soulountsi V, Iasonidou C, Kapravelos N. Thromboprophy-
laxis in critically ill patients: balancing on a tightrope. Minerva Anestesiol. 
2021;87:1239–54.

	36.	 Lin P-C, Huang H-C, Komorowski M, Lin W-K, Chang C-M, Chen K-T, Li Y-C, 
Lin M-C: A machine learning approach for predicting urine output after 
fluid administration. Comput Methods Programs Biomed. 2019, 177.

	37.	 Balakumar V, Murugan R, Sileanu FE, Palevsky P, Clermont G, Kellum JA. 
Both positive and negative fluid balance may be associated with reduced 
long-term survival in the critically ill. Crit Care Med. 2017;45:e749–57.

	38.	 Schmidt M, Bailey M, Kelly J, Hodgson C, Cooper DJ, Scheinkestel C, 
Pellegrino V, Bellomo R, Pilcher D. Impact of fluid balance on outcome 
of adult patients treated with extracorporeal membrane oxygenation. 
Intensive Care Med. 2014;40:1256–66.

	39.	 Januzzi JL, Sakhuja R, O’Donoghue M, Baggish AL, Anwaruddin S, Chae 
CU, Cameron R, Krauser DG, Tung R, Camargo CA, Lloyd-Jones DM. Utility 
of amino-terminal pro–brain natriuretic peptide testing for prediction 
of 1-year mortality in patients with dyspnea treated in the emergency 
department. Arch Internal Med. 2006;166(3):315. https://​doi.​org/​10.​1001/​
archi​nte.​166.3.​315.

	40.	 McKie PM, Cataliotti A, Lahr BD, Martin FL, Redfield MM, Bailey KR, 
Rodeheffer RJ, Burnett JC. The prognostic value of N-terminal pro–B-type 
natriuretic peptide for death and cardiovascular events in healthy normal 
and stage A/B heart failure subjects. J Am Collage Cardiol. 2010. https://​
doi.​org/​10.​1016/j.​jacc.​2010.​01.​031.

	41.	 Xie L, Li Z, Zhou Y, He Y, Zhu J. Computational diagnostic techniques for 
electrocardiogram signal analysis. Sensors (Basel). 2020. https://​doi.​org/​
10.​3390/​s2021​6318.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jcmg.2018.04.026
https://doi.org/10.2337/dc19-0587
https://doi.org/10.3390/ijerph17186513
https://doi.org/10.3390/ijerph17186513
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.13063/2327-9214.1035
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.21037/atm.2019.03.29
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1016/j.jbi.2016.07.007
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1504/IJGUC.2019.102021
https://doi.org/10.1002/ejhf.1621
https://doi.org/10.1097/TA.0000000000001282
https://doi.org/10.1097/TA.0000000000001282
https://doi.org/10.1001/archinte.166.3.315
https://doi.org/10.1001/archinte.166.3.315
https://doi.org/10.1016/j.jacc.2010.01.031
https://doi.org/10.1016/j.jacc.2010.01.031
https://doi.org/10.3390/s20216318
https://doi.org/10.3390/s20216318

	A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Database
	Study population
	Data extraction
	Data preprocessing
	Model development

	Results
	Statistical analysis
	Features selected in models
	Internal validation and model comparisons
	External validation

	Discussion
	Conclusions
	Acknowledgements
	References




