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Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary

infections during hospitalization and after hospital discharge. Studies show that the

mitochondrial function and oxidative metabolism of monocytes and macrophages are

impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such

as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with

toll-like receptors and other pattern recognition receptors on leukocytes induces

a state of innate immune memory that confers broad-spectrum resistance to

infection with common hospital-acquired pathogens. Priming of macrophages with

MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage

metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative

metabolism in parallel with increased glycolysis, cell size and granularity, augmented

phagocytosis, heightened respiratory burst functions, and more effective killing of

microbes. The mitochondrion is a bioenergetic organelle that not only contributes to

energy supply, biosynthesis, and cellular redox functions but serves as a platform

for regulating innate immunological functions such as production of reactive oxygen

species (ROS) and regulatory intermediates. This review will define current knowledge

of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further

discuss therapeutic strategies that target leukocyte mitochondrial function and might

have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.

Keywords: sepsis, infection, trauma, trained immunity, mitochondria, metabolic reprogramming

INTRODUCTION

Serious infection is a major threat to critically ill patients and frequently precipitates sepsis, a
complex disease spectrum that includes systemic inflammation and organ dysfunction. As such,
sepsis is the leading cause of death in non-cardiac intensive care units (ICU) and accounts
for 40% of ICU expenditures (1). Early investigators postulated that systemic inflammation
was the underlying factor driving the pathogenesis of sepsis and septic shock (2–4). High
concentrations of pro-inflammatory mediators such as tumor necrosis factor, IL-1, and platelet
activating factor were present in plasma and fluids of septic animals and humans (3, 5). Blockade
of pro-inflammatory mediators in experimental animals attenuated or prevented the development
of septic shock (6, 7). Those observations prompted clinical trials aimed at blocking cytokine and
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non-cytokine mediators of inflammation, which were not
successful at improving survival in patients with severe
sepsis or septic shock (8). Specifically, a trial of anakinra,
a recombinant IL-1 receptor antagonist, was not found to
be effective in improving mortality in sepsis (9). However, a
subgroup analysis found that the use of anakinra improved
survival in patients with concurrent hepatobiliary dysfunction
and disseminated intravascular coagulation, which are specific
features of macrophage activation syndrome (10). Therefore,
subgroup analysis of diverse sepsis patients for underlying
conditions needs to be considered in studies evaluating different
sepsis treatments to better understand the therapeutic benefit in
different sub-populations of sepsis patients. Later investigations
showed that septic patients had impaired innate and adaptive
antimicrobial immunity, which resulted in their inability to
control primary and secondary infections. Likewise, patients
that survive sepsis and severe trauma have long-term physical
and cognitive disabilities and frequently require readmission
to the hospital due to recurrent infections (11). Research
indicates that the septic or severely injured host responds to
severe inflammation by activating anti-inflammatory pathways
to mitigate further inflammatory injury. Among those pathways
are increased production of anti-inflammatory cytokines such
as IL-10 and transforming growth factor-β (TGFβ) and
upregulation of checkpoint inhibitors such as PD-1, CTLA-4,
BTLA, and PDL1 by leukocytes (12, 13). Other investigators have
shown large-scale apoptosis and dysfunction of lymphocytes and
the proliferation of myeloid-derived suppressor cells, which act
to suppress innate and adaptive antimicrobial responses (14, 15).
Most recently, the concept of metabolic dysfunction has emerged
as a factor underlying impaired function of the innate and
adaptive immune systems of septic and severely injured patients.
This paper will review current knowledge of leukocyte metabolic
dysfunction in the setting of sepsis and severe injury and discuss
interventions to improve leukocyte metabolism and function.

OVERVIEW OF SEPSIS-INDUCED
MITOCHONDRIAL DYSFUNCTION

Glycolysis and mitochondrial oxidative phosphorylation form
the backbone of cellular metabolism. Glucose is primarily
metabolized to pyruvate through glycolysis, along with a net
generation of two ATP molecules. Cells transport pyruvate
into mitochondria where it is metabolized to acetyl-CoA via
the enzymatic action of the pyruvate dehydrogenase complex
(PDH). Acetyl- CoA is metabolized through a series of enzymatic
reactions in the mitochondrial tricarboxylic acid (TCA) cycle to
produce reducing intermediates including NADH and FADH2,
which feed electrons into the TCA cycle-linked electron transport
chain (ETC). Optimal flow of electrons through ETC complexes
(I-IV) is required for maintenance of mitochondrial membrane
potential and proton gradient, which ultimately facilitate ATP
generation (16). Recent studies show that mitochondria not only
generate adenosine triphosphate (ATP), but also are intricately
involved in cellular signaling pathways that regulate calcium
homeostasis, reactive oxygen species (ROS) generation, redox

signaling, and maintenance of immune cell competence, all of
which are critical for our survival (17–19).

The 3rd International Consensus Conference defined sepsis
as organ dysfunction caused by a dysregulated host response to
infection (20). Evidence indicates that mitochondrial dysfunction
is a key player in induction and propagation of sepsis-induced
organ injury, which is demonstrated in both animal and
human studies (21, 22). Brealey et al., were among the first to
demonstrate that sepsis leads to significant impairment of skeletal
muscle mitochondrial ETC activity (specifically complex I),
which correlates with the severity of septic shock in humans (23).
Furthermore, decreased skeletal muscle ATP concentrations were
predictive of increasedmortality among sepsis patients. A clinical
study by Matkovich et al., showed a striking 43% decline in
levels of mRNA that encode proteins involved in mitochondrial
TCA cycle and ETC complexes in the hearts of septic patients
(24). Numerous animal studies also demonstrate a role for
mitochondrial dysfunction in sepsis pathology. Using animal
models, sepsis has been shown to cause a significant impairment
of mitochondrial function in multiple organs including heart,
kidney, liver, and skeletal muscle (25–28). Although these studies
demonstrate a role for mitochondrial dysfunction in sepsis
pathology, discrepancies in various studies also show a highly
variable mitochondrial function in multiple organs depending
on the sepsis model used, severity of sepsis induced, time
course studied, and methodology used for measurement of
mitochondrial function (29). Therefore, there remains some
controversy in the field as to whether mitochondria are the actual
initiators or concurrent amplifiers of organ dysfunction during
sepsis (29).

SEPSIS-INDUCED MITOCHONDRIAL
DYSFUNCTION IN LEUKOCYTES

Recent studies demonstrate that sepsis-induced impairment
of leukocyte mitochondrial function contributes to impaired
antimicrobial immune responses and increased susceptibility
to secondary infections (30, 31). The majority of the studies
implicating a role for sepsis-induced leukocyte mitochondrial
dysfunction used Peripheral Blood Mononuclear Cells (PBMCs)
isolated from septic patients (summarized in Table 1). Adrie
et al., demonstrated significant sepsis-induced depolarization
of mitochondrial membrane potential and increased expression
of cell death markers in peripheral blood monocytes. Eventual
non-survivors demonstrated higher depolarization of the
mitochondrial membrane as compared to survivors (32).
Other studies showed a reduction in mitochondrial respiration
in the presence of high ADP and Pi (also known as state 3
respiration), ATP synthase complex activity and mitochondrial
spare respiratory capacity in PBMCs from sepsis patients
(33, 34, 39). Reduced mitochondrial respiration in leukocytes
was associated with increased incidence of organ failure (34).
Garrabou et al., demonstrated a significant impairment of
mitochondrial ETC complexes I, III, and IV in PBMCs of
patients with confirmed systemic infection but without septic
shock (35).
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TABLE 1 | Summary of clinical studies showing sepsis-induced alterations in leukocyte mitochondrial function.

References Sepsis definition and

patient age

Sample

analyzed

Time of sample collection

after sepsis diagnosis

Major alterations in mitochondrial function (as

compared to controls)

Adrie et al. (32) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 72 h

- Between 7th and 10th day

- Increased membrane depolarization

- Increased cell death markers

Belikova et al. (33) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 48 h of

ICU admission

- Reduced ADP-stimulated state 3 respiration and

increased basal oxygen consumption

Japiassu et al. (34) Septic shock

(>18 years)

PBMC - Within 48 h - Reduced ADP-stimulated state 3 respiration and

ATP synthase activity

Garrabou et al.

(35)

SIRS with infection (no

septic shock)

PBMC - Exact time point

not mentioned

- Decreased activities of ETC complexes I, III, and IV

- Unaltered mitochondrial mass

Sjovall et al. (36) Severe sepsis and

septic shock

(>18 years)

PBMC - Within 48 h

- Days 3–4

- Days 6–7

- Basal respiration and ETC complex I, II, and IV

activities increased over time up to day 7

Weiss et al. (37)

(pediatric study)

Septic shock with

organ failure

(<18 years)

PBMC - Within 48 h

- Days 5–7

- Unaltered basal and ATP linked respiration on days

1–2

- Spare respiratory capacity (SRC) decreased on days

1–2

- SRC recovered over days 5–7

Cheng et al. (31) LPS infusion in

healthy volunteers

Bacterial and fungal

sepsis patients

(>18 years)

PBMC and

monocytes

- LPS infusion for 4 h

- Within 24 h for

septic patients

- Decreased oxygen consumption in all models

- Both glycolytic capacity and mitochondrial function

impaired in septic PBMCs

- Impaired ability to respond to a second stimulus

Merz et al. (38) Septic shock

(> 18 years)

Monocytes - 24 and 48 h

- At shock resolution

- ETC complex I, IV, and ATP synthase activities

elevated

- No difference in ATP content

Jang et al. (39) Sepsis and

septic shock

(>18 years)

PBMC - Within 24 h - Decreased ATP-linked respiration and reduced

uncoupled complex I activity, and no differences in

ETC complex II and IV activities.

- Decreased spare respiratory capacity

Kraft et al. (40) Sepsis with evidence of

organ injury

(>18 years)

PBMC - Days 1, 3, and 5 - Reduced mitochondrial DNA and mitochondrial

biogenesis

- Increased plasma D-loop indicating mitochondrial

damage

- Alterations normalized over a week with

patients’ recovery

Weiss et al. (41)

(pediatric study)

Sepsis and

septic shock

(<18 years)

PBMC - Days 1–2, 3–5 and 8–14 - Decreased spare respiratory capacity (SRC) and

increased mitochondrial content on days 1–2

- SRC recovered over time as patients improved over

14 days.

- Low SRC associated with residual organ injury at

day 14.

Weiss et al. (42)

(pediatric study)

Severe sepsis and

septic shock

(<18 years)

PBMC - Within hours

- Days 3–5 and 8–14

- Decreased mitochondrial respiration observed in

those septic PBMCs which showed reduced

LPS-induced TNF-α and HLA-DR expression.

Clere-Jehl et al.

(43)

Septic shock

(<18 years)

PBMC - Within 12 hours of

noradrenaline start

- Increased basal and maximal respiratory capacity

- Lower ATP synthase activity

In a major study, Cheng et al., showed that both bacterial
and fungal sepsis leads to a shift in cellular metabolism
toward glycolysis (Warburg effect), and leukocytes isolated from
septic patients, as well as those treated with lipopolysaccharide
(LPS), demonstrated a reduced oxygen consumption capacity
signifying mitochondrial defects (31, 44). Furthermore, these
metabolic defects were associated with impaired ability of
leukocytes to produce pro-inflammatory cytokines in response
to a secondary stimulus, which the authors refer to as a state of

immunoparalysis (31). A study by Kraft et al., brings to light an
important observation that effective reversal of the initial sepsis-
induced leukocyte mitochondrial damage via early activation
of mitochondrial biogenesis improved clinical outcomes among
septic patients (40). They showed that mRNA levels of genes
related to mitochondrial biogenesis, including PGC-1α, NRF1,
and TFAM, were significantly reduced 1 day after the initiation of
sepsis along with a decrease inmitochondrial DNA copy number.
Recovery of these parameters was paralleled by improved
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clinical outcome and discharge from the ICU over a 1 week
period (40). In multiple pediatric studies using PBMCs, Weiss
et al., demonstrated that sepsis leads to a significant decrease
in mitochondrial respiration and spare respiratory capacity
implying a decreased bioenergetic reserve and mitochondrial
dysfunction (37, 41, 42).

In contrast to these studies demonstrating sepsis-induced
impairment of mitochondrial respiration, some studies show
unaffected or increased mitochondrial respiration. Using PBMCs
and monocytes from patients with severe sepsis and septic shock,
Sjovall et al., and Merz et al., showed a significant increase in
activities of mitochondrial ETC complexes I, II, and IV and did
not observe a difference in these parameters among survivors vs.
non-survivors (36, 38). In line with these studies, Clere-Jehl et al.,
showed that sepsis leads to a significant increase inmitochondrial
respiratory capacity of PBMCs (43). However, mitochondrial
respiration was impaired upon suspending the PBMCs in septic
plasma, implying a role for a soluble plasma factor, which
the authors attributed to a high level of HMGB1 (43). The
contrasting findings might be attributed to the vast heterogeneity
in sepsis patient populations, differing time points selected
for measurements and underlying co-morbidities. Leukocyte-
specific mitochondrial function in freshly isolated systemic
immune cells has not been assessed in animal models.

In summary, the majority of studies implicate mitochondrial
dysfunction as an important contributor toward sepsis-induced
leukocyte and organ dysfunction. Importantly, early recovery
of mitochondrial function correlates positively with improved
clinical outcomes in septic patients (40, 45). Therefore, therapies
targeting recovery of mitochondrial function hold potential for
reversing leukocyte dysfunction during sepsis. Agents that target
the AMP kinase pathway, such as AICAR (5-aminoimidazole-4-
carboxamide ribonucleotide), or the mTOR signaling pathway,
such as metformin, could provide benefit. Recent studies
demonstrate that activation of pattern recognition receptors
of innate leukocytes, especially monocytes and macrophages,
augments mitochondrial function and rewires mitochondrial
metabolism leading to accumulation of specific TCA cycle
intermediates such as citrate, itaconate, succinate, fumarate,
and others. Prophylactic treatment with TLR4 agonists can
protect against severe infections for up to 14 days (46–48).
That benefit is due, in part, to heightened mitochondrial and
antimicrobial functions in macrophages Therefore, TLR agonist-
induced mitochondrial metabolic reprogramming in innate
leukocytes is associated with the generation of distinct innate
immune memory. Mitochondrial reprogramming and innate
immune memory are now being widely investigated as novel
strategies for developing mitochondria-targeted therapies for
protection against infections and sepsis in critically ill patients.

THE IMPACT OF TRAUMA ON
LEUKOCYTE METABOLISM

Although similar to sepsis, trauma provides a different set of
signals to the immune system.While infection and sepsis can be a
complication of trauma, the direct impact of trauma on immune

system function is generated through tissue injury, inflammation,
and tissue ischemia and reperfusion (49, 50). The effect of
trauma on immune function is variable and largely dependent
on the severity of injury (51, 52). The release of endogenous cell
products, such as mitochondrial DNA, oxidized phospholipids,
and ATP can activate toll-like receptors and inflammasomes
to precipitate immune system activation (53, 54). Excessive or
inappropriate immune system activation following major trauma
could lead to immune dysfunction. Impairment of neutrophil
andmonocyte chemotaxis and antimicrobial functions have been
described (55–57) as have alterations in lymphocyte function
(58). However, little is known about the impact of major trauma
on the metabolic state of leukocytes, which raises an area
for research.

POTENTIAL THERAPEUTIC STRATEGIES
TARGETING LEUKOCYTE
MITOCHONDRIAL FUNCTION DURING
SEPSIS AND TRAUMA

Effective mitochondrial biogenesis requires a coordinated action
of complex intracellular pathways including both nuclear and
mitochondrial genome encoded proteins (59, 60). PGC-1α
is recognized as one of the most important and inducible
transcription factor that drives mitochondrial biogenesis in
response to external stimuli for maintaining mitochondrial
homeostasis (61). The activity of PGC-1α is regulated by
post-translational modifications. Sirtuin 1 (SIRT1)-induced
deacetylation and adenosine monophosphate-activated protein
kinase (AMPK)-induced phosphorylation are known to activate
PGC-1α (62). Along with PGC-1α, other cellular transcription
factors and mediators, including NRF1 and NRF2, PGC-
1β, TFAM, ERRα, CREB, also play an important role in
regulating mitochondrial biogenesis (63). The following section
will discuss some of the promising therapeutic strategies targeting
augmentation of mitochondrial biogenesis, which could be
applicable for protecting or restoring leukocyte mitochondrial
function during sepsis and trauma.

Pharmacological Agents Targeting
Mitochondrial Biogenesis and Function
Studies included in this section are summarized in Table 2.

Modulators of AMPK Activity
AMPK is one of the key cellular mediators required for
maintaining cellular energy homeostasis. AMPK exists in
multiple isoforms and it is a heterotrimeric complex composed
of one alpha subunit (either α1 or α2), beta subunit (either
β1 or β2), and gamma subunit (either γ1, γ2, or γ3) (113).
Previous studies show that AMPK induced transcriptional
upregulation of genes involved in mitochondrial metabolism
require PGC-1α (114) and overexpression of AMPK increases
PGC-1α expression (115). AMPK regulates PGC-1α activity
via direct phosphorylation at threonine-177 and serine-
538, and the effect of AMPK on increased expression on
mitochondrial proteins and function is regulated via PGC-1α
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TABLE 2 | Pharmacologic agents targeting mitochondrial biogenesis and function.

Agent class Specific agent References Model Effect

AMPK

activity

enhancer

AICAR Canto et al. (64) Mouse - Reduced acetylation of PGC1α

- Induced expression of PGC1α-target genes in skeletal muscle

Inata et al. (65) Mouse CLP - Protected against cardiac architecture derangement and dysfunction

Hall et al. (66) Mouse endotoxemia - Protected against loss in muscle mass

Escobar et al. (67) Mouse CLP - Reduced pro-inflammatory cytokines

- Reduced kidney and liver injury markers

Metformin Wang et al. (68) Mice fed high fat diet - Improved hepatic mitochondrial complex activity and mitochondrial

density in AMPK-dependent manner

Detaille et al. (69) HMEC-1

(human immortalized

endothelial cell line)

- Inhibited of mitochondrial complex I leading to modulation of the cellular

AMP/ATP ratio to activate AMPK

Meng et al. (70) Hepa1–6

(mouse hepatoma cell line)

- Activated AMPK via increased phosphorylation of AMPKα at Thr-172

Suwa et al. (71) Rats - Increased PGC-1α expression and mitochondrial biogenesis in

skeletal muscle

Tzanavari et al. (72) Mouse endotoxemia - Rescued cardiac dysfunction

- Increased ATP synthesis

- Reduced inflammatory markers

Vaez et al. (73) Isolated rat hearts exposed

to LPS

- Activated AMPK

- Decreased TLR4 activity

- Improved cardiac function

Vaez et al. (74) Rat endotoxemia - Activated AMPK in lung tissue

- Reduced inflammatory cell infiltrate in alveolar walls

Vaez et al. (75) Rat endotoxemia - Activated AMPK in cardiac tissue

- Decreased myocardial TLR4

- Improved cardiac function

Tang et al. (76) Mouse CLP - Decreased brain edema, preserved BBB, improved cognitive function,

improved survival

Liang et al. (77) Metanalysis of cohort

studies

- Preadmission metformin use was associated with decrease mortality in

patients with sepsis and DM

5HT Freire-Garabal et al.

(78)

Isolated mouse peritoneal

macrophages

- Augmented phagocytic capacity of peritoneal macrophages

Mikulski et al. (79) Isolated mouse alveolar

macrophages

- Increased expression of MCP-1(CCL2)

PPAR

activators

Rosiglitazone Drosatos et al. (80) Mouse endotoxemia - Protected mitochondria, reduced cardiac dysfunction, and

improved survival

Pioglitazone Tsujimura et al. (81) Mouse CLP - Reduced inflammation and improved survival

Majer et al. (82) Mouse Candida albicans

sepsis

- Reduced renal pathology and improved survival

15d-PGJ(2) and Zingarelli et al. (83) Rat CLP - Reduced inflammation, neutrophil infiltration in lung, colon, and liver,

hypotension, and improved survival

Ciglitazone

15d-PGJ(2) and

Troglitazone

Maggi et al. (84) RAW 264.7 cells and

CD-1 mouse peritoneal

macrophages

- Reduced iNOS, COX-2, IL-1 in cells treated with LPS and IFNγ

15-PGJ(2) Guyton et al. (85) Isolated rat peritoneal

macrophages

- Inhibited LPS-induced peritoneal macrophage inflammatory mediators

15-PGJ(2)

Troglitazone

Guyton et al. (86) Isolated rat peritoneal

macrophages

- 15-PGJ(2) inhibited LPS, E. coli, and S. aureus-induced NO and TXA

- Troglitazone inhibited TXA synthesis in each condition

Fenofibrate Tancevski et al. (87) Murine Salmonella

typhimurium sepsis

- Reduced pro-inflammatory cytokines, increased neutrophil recruitment,

augmented bacterial clearance, improved survival

- These effects were independent of PPARα

Cree et al. (88) Clinical trial of pediatric

burn patients

- Increased hepatic mitochondrial ATP, maintenance of cytochrome C

oxidase and citrate synthase activity

- Improved insulin sensitivity

Clofribrate Crisafulli and

Cuzzocrea (89)

Isolated mouse peritoneal

macrophages

- Reduced LPS/IFN-γ induced pro-inflammatory cytokine production

(Continued)
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TABLE 2 | Continued

Agent class Specific agent References Model Effect

PDE

inhibitors

Milrinone Barton et al. (90) Pediatric sepsis clinical trial - Increased cardiac index, stroke volume index, and oxygen delivery

- Decreased systemic vascular resistance

Ro 20-1724 Carcillo et al. (91) Rat

endotoxemia

- Improved renal function and survival

Thomas et al. (92) Rat endotoxemia - Protected cardiac contractility and function

Rolipram Holthoff et al. (93) Mouse CLP - Improved renal blood flow, protected renal microcirculation, improved

GFR and renal function

Sims et al. (94) Rat pup CLP - Improved renal, cardiac function, and survival

Sanz et al. (95) Rat endotoxemia - Reduced leukocyte-endothelial interactions

Rolipram and

Roflumilast

Schick et al. (96) Rat endotoxemia - Reduced capillary leakage

- Stabilized endothelial barrier

Rolipram Wollborn et al. (97) Rat endotoxemia - Improved hepatic microcirculation and protects liver architecture

Cilostazol Zuo et al. (98) HUVEC - Induced mitochondrial biogenesis (increased ATP mitochondrial DNA,

cytochrome B, and mitochondrial mass) through PGC1α

Rolipram Ding et al. (99) Mouse renal fibrosis by

unilateral ureteral

obstruction

- Increased mitochondrial biogenesis and PGC1α expression

Natural

products

Resveratrol Biala et al. (100) Transgenic rat model of

heart failure

- Increased PGC-1α, NRF1, NRF2 and Tfam, and

mitochondrial biogenesis

Wang et al. (101) Rat CLP - Inhibited of NFκB

- Decreased kidney injury

- Increased survival

Luo et al. (102) Rat CLP - Decreased renal tubular pathology and proinflammatory cytokines

Wang et al. (103) Young rat CLP - Activated NRF2

- Protects from kidney injury

Shang et al. (104) Rat LPS peritonitis - Protected myocardium and decreased inflammatory markers

Martin et al. (105) Ex-vivo equine leukocytes - Did not increase antimicrobial functions

- Did not alter cytokine profiles

ECGC Valenti et al. (106) Human Lymphoblasts and

fibroblasts

- Increased SIRT1 and PGC1α

- Increased mitochondrial complex activities and oxidative

phosphorylation efficiently

Chiou et al. (107) Mouse endotoxemia - Activated NRF2 via direct interaction with KEAP1

- Reduced LPS-induced TLR4 activation

Wang et al. (108) Mouse endotoxemia - Protected against acute lung injury

- Decreased proinflammatory cytokines

Wheeler et al. (109) Mouse and rat CLP - Decreased hypotension

- Improved survival

Daidzein and

Genistein

(Phytoestrogens)

Cederroth et al. (110) Mouse - Diet containing both compounds increased PGC-1α expression

Daidzein Parida et al. (111) Mouse CLP - Suppressed lung injury, decreased bacterial load

Genistein Yi et al. (112) Mouse endotoxemia - Suppressed proinflammatory cytokines from endothelial cells

(62, 114). AMPK has also been shown to activate SIRT1,
an enzyme which catalyzes deacetylation and activation
of PGC-1α leading to mitochondrial biogenesis (116).
Therefore, activation of the AMPK pathway is a promising
approach to stimulate mitochondrial biogenesis in various
disease conditions, such as sepsis, that negatively affect
mitochondrial function.

Treatment with AICAR will induce mitochondrial biogenesis
and function in skeletal muscle cells, an effect mediated
through activation of SIRT1, which leads to deacetylation and
activation of PGC-1α (64). In a murine cecal ligation and

puncture (CLP) model, AICAR protected against the sepsis-
induced derangements in cardiac architecture and dysfunction
(65). AICAR treatment also protected against LPS-induced loss
in muscle mass (66) and reduced pro-inflammatory cytokine
production and sepsis-induced increases in markers of kidney
and liver injury during CLP-induced sepsis. Inhibition of
AMPK by compound C exacerbated sepsis-associated tissue
injury (67).

Metformin, a clinically used biguanide anti-diabetic drug,
improves mitochondrial function via activation of AMPK (68).
The mechanisms leading to metformin-induced activation of
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AMPK include increased phosphorylation of AMPKα at Thr-
172 and via inhibition of mitochondrial complex I leading to
modulation of the cellular AMP/ATP ratio (69, 70). Studies
by Suwa et al. recognized that metformin, a first line oral
drug for the treatment of type 2 diabetes, increases PGC1-α
and mitochondrial protein content in muscle through AMPK
activation (71). Metformin has been shown to be protective
in studies employing animal models of sepsis (117). During
LPS- and CLP-induced sepsis, metformin protected against
sepsis-induced injury in brain, heart, liver, and lung. These
benefits were mediated through inhibition of oxidative stress and
inflammation, reduced infiltration of neutrophils, maintenance
of mitochondrial membrane potential, and preservation of
mitochondrial function (72–76, 118). In humans, a metanalysis
including five observational cohort studies found that pre-
admission use of metformin was associated with decreased
mortality among patients with sepsis and diabetes mellitus (77).
This association warrants further study of causality and the
mechanism behind this association to assess the therapeutic
benefit of metformin during sepsis.

Despite the described benefits of AICAR and metformin
in reducing inflammation and providing organ protection in
experimental models of sepsis, little is known about the impact of
these drugs on immune function in the septic or severely injured
host, which provides fertile ground for future research.

5-Hydroxytryptamine Receptor (5HT) Agonists
Specific agonists of the 5HT receptor family have been shown
to induce mitochondrial biogenesis (119). 5HT is the chemical
name for endogenous neurotransmitter serotonin. 5HT receptors
are G-protein coupled receptors with serotonin functioning as
its endogenous ligand. It remains to be determined if 5HT
receptor agonists could provide therapeutic benefit to protect
against sepsis-induced organ injury. Immune cells including
macrophages, monocytes and T cells express 5HT receptors
(120). Serotonin has been shown to augment the phagocytic
capacity of murine peritoneal macrophages via 5HT1A receptor
subtype (78). Serotonin has also been shown to activate alveolar
macrophages via 5HT2c receptor leading to increased expression
of the monocyte chemoattractant MCP-1 (79). Various studies
have shown the stimulatory effect of serotonin on other immune
cells including Natural Killer cells, dendritic cells, and T cells
(120, 121). Studies evaluating the effect of serotonin and synthetic
5HT receptor agonists on mitochondrial biogenesis in leukocytes
is currently lacking.

Peroxisome Proliferator-Activated Receptor (PPAR)

Activators
PPARs are a class of nuclear receptors/transcription factors that
are comprised of three isotypes including PPARα, PPARβ/δ, and
PPARγ (122). PPARs are known to regulate various metabolic
functions including triglyceride and lipoprotein metabolism,
fatty acid synthesis, and oxidation and energy homeostasis to
name a few (123). PGC1-α, the aforementioned transcription
factor known for its role in mitochondrial biogenesis, also
functions as a coactivator PPARγ (124). Thiazolidinediones
are clinically used anti-diabetic drugs, which increase insulin

sensitivity through activation of PPARγ (125). Rosiglitazone,
a thiazolidinedione class drug, was shown to attenuate
LPS-induced cardiac dysfunction and protect mitochondria
leading to improved survival (80). Pioglitazone, another PPARγ

agonist, has been shown to reduce inflammation and improve
survival in a murine CLP and Candida albicans-induced sepsis
(81, 82). Zingarelli et al. showed that treatment with PPARγ

ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), and
ciglitazone attenuated inflammation, reduced excess neutrophil
influx into various organs, decreased hypotension and improved
survival through regulation of NF-κB and AP-1 signaling
pathways using murine CLP model of sepsis (83). Other studies
have also shown similar anti-inflammatory effects of synthetic
PPARγ ligands including 15d-PGJ(2) and troglitazone on
macrophages (84–86, 126). Fenofibrate, a known PPARα agonist
used clinically for the management of dyslipidemia, reduced
pro-inflammatory cytokines levels, promoted neutrophil
recruitment to the site of infection and augmented bacterial
clearance leading to improved survival in a murine model of
Salmonella typhimurium-induced sepsis (87). The beneficial
effect of fenofibrate was shown to be independent of PPARα but
dependent on the preservation of neutrophil CXCR2 expression
(87). Using another PPARα agonist, Crisafulli et al. demonstrated
that clofibrate reduces LPS/IFNγ induced pro-inflammatory
cytokine production in murine peritoneal macrophages (89).
Treatment of pediatric burn patients with fenofibrate within
the first week after burn injury has been shown to increase
hepatic mitochondrial ATP production, maintain cytochrome c
oxidase levels and citrate synthase activity along with improving
insulin sensitivity, thereby indicating the therapeutic utility of
fenofibrate-induced augmentation of mitochondrial function
after burn injury (88). A study by Standage et al. showed that
PPARα expression is decreased in the whole blood of pediatric
sepsis patients and this correlated with the severity of sepsis
outcomes and PPARα is required for maintaining optimal
immune function during sepsis (127). In summary, PPAR
agonists might have therapeutic potential in attenuation of sepsis
induced inflammation and organ injury. However, the specific
effect of various PPAR agonists on mitochondrial biogenesis and
function in various organs and leukocytes in context of sepsis
and trauma has not been investigated in detail and needs to be
evaluated in future studies.

Phosphodiesterase (PDE) Inhibitors
Phosphodiesterases serve to hydrolyze cAMP and cGMP,
increase levels of which reduces vascular tone, tightens
endothelial junctions, and increases cardiac contractility. The
cAMP-response-element-binding protein (CREB) is involved in
transcriptional activation of PGC1α (128). In pediatric sepsis
patients, treatment with PDE3 inhibitors increase both cAMP
and cGMP levels and not only improve cardiac function (90,
129, 130) but also increase survival (131, 132). PDE4 inhibitors
such as rolipram and Ro 20-1724 are selective for cAMP (133).
Inhibition of PDE4 using Ro 20-1724 reduced systemic vascular
resistance and improved cardiac and renal function in LPSmodel
of sepsis in rats (91, 92). Treatment with rolipram improves
renal blood flow, protects renal microcirculation and improves
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glomerular filtrate rate and renal function in a murine model of
CLP-induced sepsis, even when administered 6 h after CLP (93).
Rolipram treatment also improved renal and cardiac function
leading to improved survival in septic rat pups (94). PDE4
inhibitors, rolipram and roflumilast, have been shown to reduce
leukocyte-endothelial interactions which inhibits inflammatory
cell influx, and reduce capillary leakage during LPS-induced
inflammation (95, 96). Wollborn et al. showed that treatment
with rolipram improves hepatic microcirculation and protects
liver architecture in a rat model of LPS induced inflammation
(97). Pharmacological agents such as rolipram and cilastozol
which are specifically inhibit PDE4 and PDE3, respectively,
and have been shown to increase CREB phosphorylation,
upregulate PGC-1α expression and contribute to the induction
of mitochondrial biogenesis (98, 99, 134). Future studies
addressing the impact of PDE inhibitors on mitochondrial
function in organs and leukocytes in context of sepsis and trauma
are warranted.

Natural Products That Induce Mitochondrial

Biogenesis
Resveratrol, a polyphenol compound found in grapes and red
wine, has been shown to activate PGC1α and mitochondrial
biogenesis through SIRT1 or AMPK signaling (135). Resveratrol
upregulates PGC-1α, NRF1, NRF2 and Tfam leading to
potentiation of mitochondrial biogenesis (100). In multiple
studies using a CLP model of polymicrobial sepsis in rats,
resveratrol treatment results in increased survival as well as
decreased kidney injury associated with inhibition of NFκB (101,
102). In a similar model of pediatric sepsis-induced kidney injury
in young rats, resveratrol was shown to activate NRF2 and protect
from injury (103). Shang et al. report that resveratrol is protective
in LPS-induced cardiomyopathy in rats also through inhibition
of NFκB (104). In horses, however, Martin et al. showed that
a 3 week course of resveratrol did not increase antimicrobial
function or alter cytokine release profiles of ex vivo stimulated
leukocytes (105).

Epigallocatechin gallate (ECGC), a natural compound found
in tea, promotes cAMP dependent signaling and increases
SIRT1 and consequently PGC1α (106). In murine LPS-induced
endotoxemia, ECGC protected against acute lung injury and
decreased proinflammatory cytokine production (108). ECGC
has been shown to induce the NRF2 antioxidant response
element through direct interaction with its inhibitor KEAP1
thereby leading NRF2 activation (107). NRF2, like PGC1α,
is known to be involved in mitochondrial biogenesis. In
the CLP model, ECGC attenuated hypotension and improved
survival (109).

Estrogen receptors are known to regulate mitochondrial
biogenesis, so it follows that phytoestrogens may also induce
mitochondrial biogenesis and have protective affects in
sepsis. A diet high in two phytoestrogens daidzein and
genistein has been shown to increase PGC-1α expression, and
these two compounds were separately shown to decreases
proinflammatory cytokines in LPS-induced endotoxemia, and
increase survival and bacterial clearance in CLP-induced sepsis
respectively (110–112).

METABOLIC REPROGRAMMING OF
INNATE LEUKOCYTES BY MICROBIAL
LIGANDS

Stimulation of innate immune cells with microbial ligands
such as LPS, peptidoglycan, or β-glucan reprograms their
metabolism, which supports the increased physiological demands
needed to augment antimicrobial capacity to combat invading
infections (47, 136, 137). The reprogrammed phenotype of
innate leukocytes manifests as distinct augmentation of glycolysis
and mitochondrial tricarboxylic acid cycle flux and oxidative
phosphorylation, as detailed below (Figure 1).

Reprogramming of Glycolysis
Hard et al. discovered that immune macrophages, defined
as those from peritoneal cavities of mice injected with
bacteria, produced more lactate and consumed less oxygen than
controls (138). Further investigations showed that macrophages
stimulated with LPS manifest increased glucose uptake, an
elevated glycolytic rate and augmentation of the pentose
phosphate pathway (139, 140). These findings were reminiscent
of the aerobic glycolysis noted by Warburg et al. in cancer
cells, which preferentially utilize glycolysis, even in aerobic
conditions that should favor oxidative phosphorylation as more
energetically efficient (141). Aerobic glycolysis in macrophages
in facilitated, in part, by stabilization of hypoxia-inducible factor
(HIF)-1α. Early macrophage activation induces accumulation
of succinate and itaconate, which are transported out of
mitochondria in the cytosol where it acts to stabilize HIF-1α by
impairing the activity of prolyl hydroxylases (142, 143). HIF-
1α facilitates increased expression of numerous gene products
that regulate inflammation including enzymes that promote
glycolysis (140). Though this effect is notable in multiple types of
murine macrophages, Vijayan et al. reported that LPS does not
increase glycolysis in human PBMCs (144). Multiple purposes
for this increase in glycolysis, over oxidative phosphorylation
at the expense of energy efficiency, have been hypothesized.
West et al. described that classically activated macrophages
require mitochondrial reactive oxygen species for effective
bacterial clearance (145). The contributions of mitochondrial
complex I to ATP synthesis during oxidative phosphorylation
may detract from mROS generation (145). As suggested in
Viola et al., glycolysis may also be advantageous because it
supplies biosynthetic intermediates important for rapid cellular
adaptations, as well as NADPH through the pentose phosphate
shunt, which is important for generation of ROS. The Warburg
effect in macrophage activation is specific to the classical M1
phenotype, but not in alternatively activated M2 macrophages,
which rely on oxidative phosphorylation (146). Interestingly,
increases in oxidative phosphorylation and glycolysis occur
in macrophages activated by the TLR4 agonist MPLA 72 h
after exposure, resulting in a hybrid phenotype with metabolic
characteristics common to both M1 and M2 macrophages (47).

LPS also induces the TCA cycle metabolite itaconate, in
both murine and human macrophages (147) (Figure 1). It
has been recently shown that itaconate inhibits glycolysis via
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FIGURE 1 | Metabolic reprogramming of leukocytes. Inflammatory stimulation of leukocytes, specifically monocytes and macrophages, with Toll-like receptor 4 (TLR4)

ligands like lipopolysaccharide, has been shown to rewire mitochondrial metabolic pathways including upregulation of immunoresponsive gene 1 (Irg1) leading to

increased itaconate generation, and increased accumulation of other TCA cycle metabolites including succinate, fumarate, malate, and citrate which continue to be

replenished via additional pathways including glutamine anapleurosis and aspartate-arginosuccinate shunt. Itaconate produced by Irg1 inhibits succinate

dehydrogenase, which causes an increase in mitochondrial reactive oxygen species (mROS). Itaconate and mROS augment antimicrobial capacity of leukocytes.

inhibiting glycolytic enzymes aldolase A and glyceraldehyde-
3-phosphate hydrogenase in RAW 264.7 macrophage cell
lines (148, 149). Itaconate has also been shown to inhibit
succinate dehydrogenase, which might reprogram citric acid
cycle function and facilitate mROS generation due to reverse
electron transport secondary to inhibition of SDH-dependent
complex II (150).

Reprogramming of Mitochondrial
Metabolism
The majority of recent studies demonstrate significant alterations
in the generation of TCA cycle intermediates upon TLR
agonist-induced inflammatory stimulation of monocytes and
macrophages. Studies from our laboratory, and others, show that
citrate, itaconate, and succinate accumulate during metabolic
rewiring of macrophages and monocytes (47, 140, 151, 152).
Recent studies have elucidated a unique role for each of
these metabolites in the context of cellular metabolic and
antimicrobial functions.

Citrate is converted to α-ketoglutarate by isocitrate
dehydrogenase (IDH) through the intermediate cis-aconitate.
Michelucci et al., demonstrated that stimulation of macrophages
with LPS leads to significant upregulation of immunoresponsive
gene 1 (Irg1) enzyme, which catalyzes the production of itaconate
from cis-aconitate in the mitochondria, thus diverting pyruvate-
derived citrate production away from energy generation and
toward production of itaconate (153). Jha et al., also showed
that LPS induces downregulation of IDH and succinate
dehydrogenase (SDH) function in macrophages leading to a
significant accumulation of citrate and succinate (151). In line

with this, studies from our laboratory show that MPLA treatment
reduces TCA cycle flux between citrate and α-ketoglutarate at
24 h after stimulation in association with induction of Irg1
expression and large scale itaconate production (47). Therefore,
it is evident that inflammatory stimulation of macrophages
drives citrate toward production of itaconate. Itaconate has
now been shown to be a critical regulator of macrophage
and monocytic function after LPS stimulation. Intracellular
itaconate concentrations of up to 8mM have been shown
in macrophages at 6 h after LPS stimulation (153), which
subsequently steadily decline over time (152). There are multiple
known downstream cellular effects of this dramatic increase in
itaconate. First, itaconate inhibits mitochondrial complex II or
SDH function in a dose-dependent manner leading to succinate
accumulation (154), which is supported by the observation
that Irg1 knockout macrophages do not accumulate succinate
following LPS stimulation (151). The implications of succinate
accumulation are discussed later. Itaconate also plays a major
role in potentiating cellular anti-inflammatory and anti-oxidant
effects through activation and nuclear translocation of NRF2via
alkylation of KEAP1, a known physiological inhibitor of NRF2
(147). Through activation of NRF2, 4-octyl-itacoante (a cell
permeable analog of itaconate) increases expression of key anti-
inflammatory genes including heme oxygenase 1 and potently
inhibits proinflammatory cytokine release (147). Macrophages
lacking the Irg1 enzyme produce increased proinflammatory
cytokines, including IL-6, IL-18, and IL-1β, in response to
LPS relative to wild type macrophages and treatment with a
cell permeable itaconate derivative decreases proinflammatory
cytokines in response to LPS (147, 155).
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Itaconate is also known to be secreted by macrophages
into the extracellular milieu and have direct antibacterial
effects (156). Itaconate competitively inhibits the microbial
enzyme isocitrate lyase, a required step in the glyoxylate
shunt, thereby limiting bacterial growth under nutrient poor
conditions as occur at the site of infection (157). The microbial
glyoxylate shunt bypasses two decarboxylation steps in the
tricarboxylic acid cycle, facilitating the assimilation of carbon
when only two-carbon sources such as ethanol or acetate
are available (151, 158–160). Pathogens that have shown
sensitivity to itaconate-induced microbial growth inhibition
include Mycobacterium tuberculosis, Staphylococcus aureus,
Legionella pneumonia, Acinetobacter baumanii, and Salmonella
enterica (153, 161, 162). Therefore, itaconate affects cellular
metabolism and affords anti-inflammatory and anti-microbial
protection upon inflammatory activation of immune cells. As
such, our knowledge of the role of itaconate is currently limited
to macrophages and monocytes, and future studies addressing
its effects on other leukocytes such as neutrophils and dendritic
cells will shed more light on the novel aspects of this critical
metabolite. Nonetheless, based on studies, therapeutic utility of
itaconate to protect against life-threatening infections and sepsis
merits further investigation.

Succinate is another TCA cycle metabolite that significantly
accumulates in LPS-stimulated macrophages and monocytes
(150, 152, 163). Succinate is the principal substrate for succinate
dehydrogenase, which not only participates in the TCA cycle
but also in ETC complex II. Oxidation of succinate to fumarate
results in reduction of FAD+ and ultimately Coenzyme Q, which
continues in the ETC via complex III and IV, leading to ATP
generation via ATP synthase (16). Itaconate-induced inhibition
of SDH and facilitation of glutamine anapleurosis are the
major sources of intracellular succinate accumulation upon LPS
stimulation of macrophages (150, 151). High levels of succinate
and succinate dehydrogenase activity are associated with
inducing a pro-inflammatory phenotype in innate leukocytes
as result of succinate-mediated hypoxia inducible factor α

(HIF-1α) stabilization, increased mitochondrial ROS generation,
and protein succinylation (137, 163). LPS-induced succinate
accumulation is associated with stabilization of HIF-1α, leading
to increased IL-1β production and inflammation (140, 164).
Rapid oxidation of increased succinate to fumarate by SDH
requires CoQ, which is consumed under LPS stimulation,
thereby driving reverse electron transport leading to a substantial
generation of mitochondrial ROS (165). Although uncontrolled
generation of mitochondrial ROS can have deleterious effects on
cellular functions, it has also been shown to play an important
role in microbial clearance (145). However, further studies are
needed to establish the antimicrobial role of SDH-generated ROS
in in vivomodels of infection.

Inflammation-induced increases in intracellular accumulation
of citrate also affects cellular metabolism and functions. Activated
macrophages accumulate citrate due to decreased isocitrate
dehydrogenase activity (47, 151). De Souza and colleagues
recently demonstrated that LPS-mediated increase in IFN-γ
limits isocitrate dehydrogenase activity in an autocrine manner
in macrophages, implying a role for IFN-γ in LPS-mediated
increase in citrate levels (166). Accumulated citrate is not

only converted to itaconate (153) in the mitochondria but
also transported from the mitochondria into the cytosol via
mitochondrial citrate carrier (CIC) (167). Increased CIC and
cytosolic citrate has been shown to fuel the LPS-induced
generation of pro-inflammatory mediators such as nitric oxide,
ROS, and prostaglandins in macrophages (168). Our studies
also show that MPLA-stimulated citrate transported into the
cytosol is ultimately converted to malate and pyruvate, and
the cytosolic malate replenishes mitochondrial oxaloacetate
pools to further fuel a sustained increase in mitochondrial
TCA cycle flux (47). Importantly, these alterations in citrate
metabolism are associated with a sustained augmentation of
mitochondrial density and oxygen consumption, along with
increased macrophage phagocytic capacity (47). Therefore,
citrate accumulation not only plays an important role in fueling
acute inflammation but also potentiates a sustained increase
in TCA cycle flux and antimicrobial functions, which need
further evaluation.

Evidence for Metabolic Reprogramming in
Murine and Human Sepsis Studies
The majority of studies demonstrating the effect of inflammatory
activation on metabolic reprogramming of innate leukocytes
such as macrophages and monocytes have been performed in
vitro. Corroborating the changes described in the in vitro studies
described above, metabolic reprogramming of innate immune
cells in response to TLR activation has also been observed in
some in vivo murine and human studies. Sterile endotoxemia
(LPS administration) in mice causes peritoneal macrophages
to more than double glucose uptake, suggesting an increase in
glycolysis in this model (169). Functionally, monocytes from
septic patients were found to have increased basal glycolysis
compared to healthy controls (170). Shalova et al. performed
a gene ontology analysis to compare monocytes from septic
patients relative to healthy controls, and reported that the top 10
most significantly downregulated gene clusters were all related
to cellular metabolism (171). Consistent with this, Cheng et al.
found diminished glycolysis and oxidative phosphorylation in
peripheral blood mononuclear cells (PBMCs) in septic patients
with immunoparalysis as compared to control subjects (31).
Genome-wide microarray analysis of PBMCs from patients with
both bacterial and fungal sepsis in this study identified that genes
for oxidative phosphorylation and glycolysis were both increased
along with evidence of mitochondrial dysfunction pathways,
suggesting that immune cell metabolism is significantly affected
during sepsis. Further studies to separate the adaptive from the
pathogenic changes in leukocyte metabolism could guide the
development of therapies to augment or suppress these metabolic
changes. For example, a study by Pan et al. demonstrated that a
known anti-inflammatory compound, deoxyelephantophin, both
blocks LPS-induced glycolytic increase and protects mice against
endotoxemia (172).

There are limited in vivo studies analyzing the effect of sepsis
on alterations of specific mitochondrial TCA cycle intermediates
during sepsis. A murine study by Chao et al. employing scrub
typhus infection demonstrated a 60-fold increase in plasma
itaconate levels at 10 days after infection (173). A clinical
study by Meiser et al. reported absence of any detectable
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FIGURE 2 | Generation of innate immune memory using microbial ligands. Initial challenge with microbial ligands such as lipopolysaccharide, monophosphoryl lipid A,

CpG, β-glucan potently stimulates host innate effector immune responses in cells such as neutrophils, monocytes, and macrophages, leading to the reprogramming

of their metabolic and epigenetic status. Upon re-exposure of the initially primed host with a secondary inflammatory stimulus or infectious challenge, there occurs a

heightened innate immune response against invading microbes via increased immune cell recruitment leading to improved microbial clearance and survival. This

phenomenon is termed as innate immune memory.

itaconate in the plasma and urine of septic patients, in which
the authors concluded that itaconate may not be a suitable
systemic biomarker for predicting sepsis outcomes (174). That
study evaluated the levels of itaconate at a single time point
among sepsis patients and failed to elaborate on the clinical
condition of patients during sample collection and the exact
time point for collection. A recent study by Beloborodova et al.
detected low concentrations of itaconic acid (0.5–2.3µM) in
the plasma of septic shock patients collected within 24 h and
none was detected in patients at later stages of sepsis (175).
The levels of succinate were higher in the late stage sepsis
patients as compared to early stage, but lower than the control
healthy group. It must, however, be noted that the early and
late stage sepsis patients included in this study were entirely
different patient cohorts and the authors do not report the
changes in plasma itaconate levels as sepsis progressed in each
septic patient subset. It is critical to follow septic patients and
study the alterations in itaconate levels at various time points
after sepsis induction to derive a definitive conclusion for the
use of itaconate as a biomarker for sepsis outcomes or for
supporting itaconate’s use for therapeutic purpose to combat
sepsis. Future studies evaluating sepsis-induced alterations in the
levels of mitochondrial metabolites would be critical to further
the field of metabolic reprogramming toward discovery of novel
therapeutics to protect against infections and sepsis.

INNATE IMMUNE MEMORY AND TRAINED
IMMUNITY

Classically, the role of the innate immune system is to recognize
pathogens and mount a non-specific yet rapid response, whereas

immunological memory has been traditionally considered a
unique hallmark of the adaptive immune system. However,
recent studies indicate that innate immune cells adapt upon
exposure to a pathogen or pathogen-derived ligand, triggering
augmentation of cell physiology and antimicrobial functions
which allows for robust responses to a subsequent challenge
either by the same or different pathogen (176). This phenomenon
by which innate antimicrobial efficiency is increased due
to the priming effect of prior exposure is termed “innate
immune memory” or “trained immunity” (Figure 2). This
immunoregulatory process confers host resistance to infection
in plants and invertebrates that do not have adaptive immunity
but also in mammals (177). The cell type (myeloid, natural killer,
and innate lymphoid cells), stimuli (pattern recognition receptors
and cytokines), genetic mechanism (epigenetic rewiring), and
time scale (persisting weeks to months) are unique to innate
immune memory, independent of those involved in classical
immunological memory (178). An important player in health
and disease, trained immunity may also serve as an innovative
therapeutic strategy for protecting vulnerable patients from life-
threatening infections in the future.

Metabolic Reprogramming and Innate
Immune Memory
Recent findings strongly indicate that metabolic reprogramming
is a key process underlying development of innate immune
memory. Several studies have revealed that expression of key
pro-inflammatory proteins and an effective immune response
relies on intact mitochondrial respiration (179, 180), and the
study of the metabolic demands of mounting an immune
response has been a topic of increasing interest (181). It has
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become widely appreciated that metabolism dynamics regulate
innate immunity via production of metabolite intermediates
which influence cellular phenotype and function (182). β-glucan
immunomodulation has been associated with upregulated
glycolysis in trained macrophages (183) and monocytes (184),
likely to support pro-inflammatory macrophage antimicrobial
functions (182, 185). This has been shown to be dependent
on a shift from oxidative phosphorylation toward glycolysis
through an Akt/mTOR/HIF-1α dependent pathway (183, 186).
We recently reviewed regulation and function of HIF-1α in
myeloid cells (187). On the other hand, TLR ligands (such as
LPS, MPLA, and CPG) increase aerobic glycolysis in concert with
increased antimicrobial functions (such as respiratory burst and
phagocytosis) as well as induce mitochondrial biogenesis and
increased oxidative metabolism (47). These metabolic alterations
allow immediate leukocyte activation, cytokine secretion, and
a more effective innate immune response to infection (46,
47, 188, 189). Our study using HIF-1α deficient macrophages
demonstrated that HIF-1α is required for these metabolic
alterations (46). Another study from our group showed that the
inhibition of mTOR, which stabilizes HIF-1α, diminishes the
protective response of TLR4 ligands (47).

Despite the apparent benefits of inducing innate immune
memory, reprogramming of leukocyte oxidative metabolism
could be a double-edged sword. As noted above, current research
indicates that priming the immune system with microbial ligands
at doses that do not cause damaging systemic inflammation
induces protective immunity in association with an increase
in leukocyte oxidative metabolism (47, 48). It appears that the
heightened metabolic state induced under those conditions
is utilized to facilitate augmented leukocyte antimicrobial
functions such as phagocytosis, oxidative burst, and microbial
killing. However, in cases of tissue injury, reprogrammed
leukocytes could funnel energy to drive hyperinflammation. A
recent paper by Di Gioia and colleagues showed that oxidized
phospholipids derived from 1-palmitoyl-2-arachidonyl-sn-
glycero-3-phosphorylcholine (oxPAPC) can induce increased
leukocyte oxidative metabolism and hyperinflammation,
especially in the presence of microbial ligands such as LPS
(190). Oxidized phospholipids are damage associated molecular
patterns (DAMPS) that are released following tissue injury. Di
Gioia and colleagues reported that oxPAPC and LPS strongly
drive production of pro-IL-1β in macrophages, which is cleaved
and secreted as the mature protein upon activation of the
inflammasome by DAMPS such as ATP (190). However, the
ramifications of these alterations inmodels of acute inflammation
remain to be fully elucidated since a study by Chu and colleagues
showed that oxPAPC inhibits non-canonical inflammasome
activation and is protective in an experimental model of septic
shock (191).

INNATE IMMUNE MEMORY—A NOVEL
THERAPEUTIC TARGET TO PROTECT
AGAINST INFECTIONS AND SEPSIS

The non-specific protection conferred by trained immunity
lends itself to an exciting novel therapeutic approach by which

patients could be primed and protected from a wide array
of infections thus preventing sepsis and subsequent mortality.
Several microbial ligands have immunomodulatory potential,
most notably, TLR and dectin-1 agonists. Rowley first reported in
1956 that primingmice with the TLR4 agonist lipopolysaccharide
(LPS), a structural component of the cell wall of Gram-
negative bacteria, conferred host protection to subsequent
exposure to Gram-negative pathogens (192). Following this
discovery, it has been found that LPS challenge protects against
a wide array of pathogens, including fungal (193), Gram-
positive Staphylococcus aureus (194), and several Gram-negative
pathogens, including Escherichia coli (192), Salmonella enterica
serovar typhimurium (195), and Pseudomonas aeruginosa (196,
197), as well as polymicrobial sepsis (198). Priming with LPS
induces enhanced bacterial clearance (196, 199) and leukocyte
recruitment (194, 200).

Leukocytes primed with LPS can also be described as not
only trained, but also “endotoxin tolerant,” which is defined
by an attenuated pro-inflammatory response upon secondary
challenge with the stimulus. A body of literature suggests
that the phenomenon of endotoxin tolerance is a state of
immunoparalysis during which the host is more susceptible to
infection (201, 202), and results in poorer patient outcomes
(203–206). However, the clear relationship between endotoxin
tolerance and susceptibility to later infections has not been
established. In fact, our group recently demonstrated that the
cytokine response to LPS is not indicative of antimicrobial
immunity (46), and a body of literature illustrates that
altering proinflammatory cytokines during infection has had
no protective benefit (207–210) thereby bringing into question
whether proinflammatory cytokine levels are an essential element
in determining immune competence.

TLR4 Agonist-Induced Innate Immune
Memory and Protection Against Infection
As LPS is toxic to humans, experimental studies have progressed
to investigate other agonists that confer this attractive phenotype
of host resistance to infection after priming. Intriguingly,
prophylactic administration of the vaccine adjuvant MPLA,
which is derived by cleaving the C1 phosphate group from
lipid A and is 100-fold less toxic than LPS (211–213) improves
bacterial clearance, attenuates physiologic dysfunction, induces
leukocyte expansion and recruitment to sites of infection,
enhances antimicrobial functions, and profoundly improves
survival during infection with a wide array of clinically
relevant pathogens (47, 188, 214–217). TLR4 is unique among
TLRs as it can generally signal through both the myeloid
differentiation primary response gene 88 (MyD88)-dependent
and the TIR-domain-containing adapter inducing interferon-
β (TRIF)-dependent pathways. A study of human neutrophils,
however, revealed that TLR4 activation by LPS does not activate
the TRIF-dependent pathway in neutrophils, postulated to be
due to neutrophil’s more prominent role in bacterial responses
compared to viral (218). Our group is investigating the relative
contribution of these pathways in TLR-mediated trained innate
immunity, and has shown that MyD88 deficient mice fail to
augment leukocyte recruitment or G-CSF production in response
to infection following priming with MPLA, both of which are
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known to play a critical role in MPLA-mediated protection
(188, 189). Further, the MyD88-selective TLR9 agonist CpG
oligodeoxynucleotide (CpG) preserves physiologic function and
improves bacterial clearance following infectious challenge with
Pseudomonas aeruginosa (46). CpG similarly provided protection
in a model of intracerebral Escherichia coli (219), which implies
that TLR-mediated resistance to infection is dependent on
MyD88 signaling.

TLR4 agonist-induced antimicrobial properties are
independent of antibiotic therapy. This is of particular
importance due to the current rise in global antibiotic
resistance (220–222). The rate of antibiotic resistance has
been far exceeding the rate of new antibiotic class development,
and current market trends suggests pharmaceutical companies
will not be able to support new antibiotic development
programs (220, 223). Thus, there is an increasing need for
novel antimicrobial therapeutic strategies, lending to the
possibility of adopting agents that induce trained immunity
as independent or adjunct antimicrobial therapeutic agents.
Several synthetic ligands that target TLRs and dectin-1 are
under development. Novel synthetic phosphorylated hexaacyl
disaccharides (PHADs), which target TLR4, are equipotent
with MPLA as agents to augment antimicrobial immunity and
have strong potential to be developed into drug candidates
(48). PHADs are synthesized de novo and are currently under
investigation as immunopotentiating agents (48, 213). The
antimicrobial functions of PHADs are linked to the increased
recruitment of innate leukocytes to the sites of infection and
augmentation of their antimicrobial activity.

Therapeutic Utility of Other Microbial
Ligands
The class of TLR agonists that have strong potential for clinical
translation extend beyond TLR4 ligands. The TLR9-selective
agonist CpG oligodeoxynucleotide (CpG-ODN) is a short single-
stranded synthetic bacterial DNA molecule that has been shown
to confer host resistance to an array of pathogens including the
parasite Leishmania major (224), the Gram-negative pathogens
Francisella tularensis (225), Pseudomonas aeruginosa (226), and
Burkholderia pseudomallei (227–229), Gram-positive Listeria
monocytogenes (230), and viral HSV infections (231). Further,
CpG-ODN also has promise as a vaccine adjuvant (232)
and antitumor therapeutic (233, 234). There are several
classes of CpG-ODN based on their variety of sequence
and structure which elicit specific immunomodulatory profiles
(232). Unlike TLR4, which signals through both MyD88- and
TRIF-dependent pathways, activation of TLR9 triggers MyD88-
dependent signaling alone. CpG-mediated host protection to
infection seems to be dependent on downstream induction
of Th1-type immune response, specifically the production of
Interferon-β (224, 235). Further work is necessary to define the
cellular and molecular underlying mechanisms by which CpG
boosts antimicrobial responses and protects against infection.

Other microbial ligands and infections themselves can
induce innate immune memory and enhance antimicrobial
functions through different signaling mechanisms. β-glucans

are structurally diverse polysaccharide components found
mainly in fungal cell walls that are key pathogen-associated
molecular patterns that trigger an immune response and are the
quintessential inducers of trained immunity (236). Glucans are
potent immunomodulators that augment host resistance against
Gram-negative [Escherichia coli; (237, 238)], Gram-positive
(Staphylococcus aureus) (239, 240), fungal [Candida albicans;
(241)], and parasitic (Leishmania braziliensis) (242) infections.
Glucan binds Dectin-1, which triggers downstream Raf-1/Akt-
dependent signaling to augment phagocytosis, ROS production,
microbial killing, and cytokine production (243–245). Further,
glucan has been shown to decrease infectious complications in
high risk surgical patients (246). The biological mechanisms
underlying the immunomodulatory effects of glucan remain
to be fully understood but glucan strongly induces metabolic
reprogramming and epigenetic changes that alter gene expression
and augment leukocyte function (236). Interestingly, trained
immunity can also be induced by Bacillus Calmette-Guerin
(BCG), which has conferred resistance to Schistosoma mansoni
(247) and Candida albicans (248) infections in mice. These
studies found that BCG-primed macrophages show increased
phagocytosis and ROS production and improved clearance of
pathogens. Epidemiological studies show that BCG, among other
vaccines such as measles and oral polio vaccine, confer beneficial
protective effects to unrelated pathogens in humans (249–251).
Furthermore, evidence suggests that certain viral infections, such
as malaria (252) and murine cytomegalovirus (253, 254), and
parasitic infections [Nippostrongylus brasiliensis; (255)] induce a
state of cross-protection to different pathogens through increased
innate antimicrobial efficiency.

CONCLUSIONS

Here, we have reviewed the impact of sepsis on the mitochondrial
function of innate leukocytes, and potential therapeutic strategies
for reprogramming leukocyte metabolism to induce innate
immune memory and restore host immune competency. Studies
in both animal sepsis models and human septic patients reveal
significant mitochondrial dysfunction in various organ systems,
which correlates with sepsis severity and outcomes. In particular,
sepsis-induced mitochondrial dysfunction in leukocytes is a
key driver of impaired immune responses leading to increased
susceptibility to secondary infections in septic patients. Studies
show that early recovery of mitochondrial function in leukocytes
correlates with improved septic patient outcomes.

TLR agonists are a class of microbial ligands with attractive
immunomodulatory properties. Recent studies demonstrate
that TLR agonists can mediate non-specific protection against
infection with protective effects lasting up to 2 weeks,
independent of the adaptive immune system. This induction of
apparent innate immune memory is mediated by TLR agonist-
induced metabolic reprogramming of leukocytes. The altered
metabolic phenotype is characterized by increased glycolysis,
oxidative phosphorylation, and intra-cellular concentrations of
key metabolic intermediates such as itaconate and succinate,
which influence cellular antimicrobial and anti-inflammatory
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functions. Current studies show that administration of drugs
such as TLR ligands which boost leukocyte oxidative metabolism
days prior to infectious challenge improve survival. Therefore,
pre-treatment of critically, who are at risk for acquiring life-
threatening infections, with immunomodulators that induce
metabolic reprogramming and innate immunity might augment
host resistance to infection and improve survival. In vitro data
demonstrates that oxidative metabolism is boosted ∼3 days after
treatment. Though it is impossible to predict exactly which
patients will face an infectious challenge when, patients at risk for
hospital acquired infections could be dosed at admission or prior
to an event that may lead to infection, such as abdominal surgery.
A recent study by Casilag et al. shows that combination therapy
with MPLA significantly augmented the efficacy of antibiotics
leading to reduced bacterial burden and improved survival in a
murine model of bacterial pneumonia, even when administered
after induction of pneumonia (256). Therefore, treatment with
immunomodulators such as TLR agonists and others may also
be beneficial later in the course of sepsis to augment host innate
immunity and improve outcomes.

With the increasing development of antimicrobial resistance,
host-directed immunotherapies offer a promising approach to
combat the risk of deadly infections in critically ill and injured
patients. Immunomodulatory strategies aimed at augmenting
host immunity provide a means of mediating sustained broad

protection against a variety of common nosocomial pathogens.
This review highlights the prospect of developing microbial
ligands as novel therapeutics with the aim of augmenting
leukocyte mitochondrial function and inducing innate immune
memory for protection against life-threatening infections in
critically ill patients.
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