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Abstract
Hemoglobin switching is largely complete in humans by six months of age. Among infants

with sickle cell anemia (HbSS, SCA), reticulocytosis begins early in life as fetal hemoglobin

(HbF) is replaced by sickle hemoglobin (HbS). The objective of this study was to determine

if absolute reticulocyte count (ARC) is related to HbF levels in a cohort of pediatric SCA

patients. A convenience sample of 106 children with SCA between the ages of 1 month and

20 years who were not receiving hydroxyurea or monthly blood transfusions were enrolled

in this observational study. Hematologic data, including ARC and HbF levels, were mea-

sured at steady state. F-cells were enumerated by flow cytometry. Initial studies compared

infants with ARC greater than or equal to 200 K/μL (ARC� 200) based upon the previously

reported utility of this threshold as a predictive marker for SCA severity. Mean HbF and F-

cell levels were significantly lower in the ARC� 200 group when compared to the ARC <

200 group. Both HbF and F-cell percentages were negatively correlated to ARC in infants

and in children between the ages of 1 and 9 years. However, the inverse relationship was

lost after the age of 10 years. Overall, decreased expression and distribution of HbF during

childhood SCA is well-correlated with increased reticulocyte production and release into the

peripheral blood. As such, these data further support the clinical use of reticulocyte enumer-

ation as a disease severity biomarker for childhood sickle cell anemia.

Introduction
Sickle cell anemia (HbSS, SCA) results from a single amino acid substitution in the beta globin
protein. During infancy, fetal hemoglobin (HbF) production is reduced with balanced increases
in production of sickle hemoglobin (HbS). HbS polymerizes and causes hemolysis and a
shorter life span of circulating red blood cells. The hemolysis further causes decreased oxygen
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delivery to the tissues [1]. In response, erythropoietin increases erythroblast generation and the
release of reticulocytes into the peripheral blood. The cycle of hemolysis causing stressed eryth-
ropoiesis/reticulocytosis with additional hemolysis occurs during the lifetime of the host [2]. In
rare patients who manifest persistent expression of fetal hemoglobin, less severe SCA pheno-
types develop [1].

The protective effects of HbF upon SCA severity continue to motivate basic and clinical
research aimed toward therapeutic manipulation of HbF [3]. To date, clinical trials of hydroxy-
urea, sodium butyrate, and 5-azacytidine have been explored as a pharmaceutical means for
HbF-augmentation [4,5]. HbF levels also increase during times of acute stressed hematopoiesis
and erythropoiesis, such as during recovery from hematopoietic stem cell transplant [6] or fol-
lowing an acute anemic episode after phlebotomy or transient erythroblastopenia of childhood
[7]. Erythroid stress related HbF expression may be due to a change in erythropoietic kinetics
[8], signal transduction [9], or other changes in the erythroid environment.

In response to erythropoietin, the absolute number of reticulocytes increases in the periph-
eral blood [10]. Efforts to induce HbF and thereby improve the SCA phenotype with pulsed
doses of erythropoietin resulted in more HbF-containing reticulocytes in adults [11]. In con-
trast, increased levels of reticulocytosis among infants with SCA are associated with more
severe clinical phenotypes during childhood [12,13]. However, the potential relationships
between the magnitude of reticulocytosis and HbF expression remain largely unresolved in
children with SCA. To further explore this topic, steady-state reticulocyte levels were quanti-
tated in infants and children with SCA and correlated with the expression and distribution of
HbF in their blood.

Materials and Methods

Subject Eligibility
Discarded samples collected for clinical purposes during steady state (at least 60 days after
pRBC transfusion and 30 days after an acute illness that required a hospital visit) were analyzed
from a convenience sample of SCA patients receiving supportive care alone at the Children’s
National Medical Center Sickle Cell Program. Patients who were receiving hydroxyurea or
chronic transfusion therapy were excluded from this study. Consent and assent was obtained
prior to enrollment in this observational study, which was approved by the Children’s National
Institutional Review Board.

Hematological and HPLC analyses
Reticulocytes were enumerated using a Sysmex XE 2100 hematology analyzer (Sysmex Amer-
ica, Mundelein, IL). HbF levels were quantitated by high performance liquid chromatography
(HPLC) using the VARIANT beta thalassemia short program from Bio Rad Laboratories (Bio
Rad, Munich, Germany). HbF level was corrected for the presence of HbA as previously
described [14].

Flow Cytometry
For F-cell enumeration, samples were washed with 0.1% bovine serum albumin in phosphate
buffered saline and fixed with 0.05% glutaraldehyde. Cells were washed again and permea-
blized with 1% triton-X (Caltag Laboratories, Burlingame CA), then immunostained using
HbF (HbF-PE; Caltag Laboratories, Burlingame CA) fluorescent antibodies. At least 10,000
gated erythrocytes were analyzed using a FACSAria flow cytometer (Becton Dickinson, San
Jose, CA). F-cell percentages were calculated as previously described [14].
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Statistical Analysis
Data analyses were performed using Microsoft Excel 2010 and Social Science Statistical online
calculator (www.socscistatistics.com). All statistical tests were two-sided and significance level
was set at a probability level of<0.05. Correlation coefficients between ARC and HbF or F-
cells were calculated. Student t-test was used to compare means between the two ARC groups.

Results

Study Population and Hematologic Data
One hundred six infants and children were enrolled in this observational study. All enrollees had a
confirmed diagnosis of HbSS. Average age at the time of analysis was 4.6 years (Table 1, range 0.1–
20.0 years). Hemoglobin and absolute reticulocyte count (ARC) had a wide range, likely because of
the significant age range of the patient population. Patients were divided into age groups (< 1
year, 1–9 years and 10–20 years). As expected, younger participants had less hemolysis (as evi-
denced by higher mean hemoglobin and lower mean ARC) than the older children who were stud-
ied. The younger patients also had significantly higher HbF and F-cell levels than the two older
groups (Table 1). HbF levels were corrected for transfusion in six of the 106 (5.7%) patients, and
the differences between uncorrected and corrected HbF values ranged from 0.1–1.5%.

Reticulocyte Levels are Inversely Associated to HbF Levels in Infants
and Children with SCA
Studies were performed to determine if the level of reticulocytosis was related to HbF levels
(Fig 1A and 1B). HbF was negatively correlated with ARC in infants less than 1 year of age and
children between 1 and 9 years of age (r = -0.70, p< 0.0001 and r = -0.63, p< 0.0001, respec-
tively). However, this relationship was lost in older children and adolescents between the ages
of 10 and 20 years of age (Fig 1C, r = -0.20, p = 0.42). As expected, hemoglobin levels increased
with higher HbF levels in infants and children (r = 0.53, p< 0.0001 and r = 0.73, p< 0.0001,
respectively; Fig 1D and 1E). Again, this correlation was lost between the ages of 10 and 20
years (r = 0.33, p = 0.18, Fig 1F).

F-cells and Reticulocyte Count
A similar negative correlation exists between ARC and F-cells (r = -0.8, p< 0.0001, Fig 2A) in
infants with SCA as well as children between the ages of 1 and 9 years (r = -0.53, p< 0.0001,
Fig 2B), but was lost in older children and adolescents (r = -0.26, p = 0.30, Fig 2C). Normal
ARC (for this report defined as less than 100 K/μL) was limited to a small group of infants with
high HbF in a pancellular distribution. As the HbF level dropped below 30%, ARC levels

Table 1. Demographic and Hematologic Characteristics.

Group < 1 year 1–9 years 10–20 years p-value

n (% of total) 42 (39.6) 46 (43.4) 18 (17.0%)

Age (years) 0.4±0.2 4.7±2.9 14.0±2.9 0.000

Female (%) 21 (50.0) 29 (63.0) 4 (22.2)

HbF (%) 44.5±19.2 18.2±9.3 7.9±4.6 0.000

Hemoglobin (g/dL) 8.9±1.7 8.5±1.4 7.8±1.2 0.036

ARC (K/uL) 177±119 310±131 352±106 0.000

F-cells (%) 91.6±11.2 62.0±24.1 34.4±14.3 0.000

ARC: absolute reticulocyte count, HbF: fetal hemoglobin. Mean values ± standard deviation are listed.

doi:10.1371/journal.pone.0136672.t001
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increased to greater than 200 K/μL. Representative flow dot plots of F-cell staining are shown
in Fig 3. Infants had nearly pancellular distribution of HbF and F-cells (Fig 3A). Children and
adolescents had HbF manifested with a heterocellular pattern of distribution (Fig 3B).

Fig 1. Relationship of ARC or Hemoglobin with HbF According to Age Group. A-C: Correlation of HbF and ARC in patients with SCA who are less than
1 year of age, 1–9 years of age and 10–20 years old, respectively. D-F: Correlation of HbF and hemoglobin in the same age groups, respectively. HbF% is on
the x-axis in each panel. Correlation coefficients (r) and p- values are shown in each panel. ARC, Absolute Reticulocyte Count; Hb, hemoglobin. Each dot
represents a steady state value for a separate patient.

doi:10.1371/journal.pone.0136672.g001
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HbF and F-cell levels in Infants and Children with ARC Levels below and
above 200 K/μL
Based on prior studies [12,13], we also grouped infants and children according to their ARC
(less than 200 K/μL and greater than or equal to 200 K/μL). Only one patient in the 10–20 year

Fig 2. Relationship of ARC and F-cells by Age Group. A. Correlation of F-cell % and ARC in infants with
SCA (less than 1 year of age) at steady state. B. Same correlation with children with SCA who are between 1
and 9 years of age and C. between 10 and 20 years of age. ARC, Absolute Reticulocyte Count. Each dot
represents a steady state value for a separate patient.

doi:10.1371/journal.pone.0136672.g002
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age group had an ARC less than 200 K/μL. The group of infants who had an ARC less than
200K/μL had significantly higher HbF levels (53.5 ± 17.6% vs. 29.96 ± 10.9%, p = 2.2 E-5) as
well as broader distribution of F-cells (96.6 ± 5.7% vs. 83.5 ± 13.2%, p = 6.2 E-5) than infants
with ARC greater than or equal to 200K/μL (Fig 4A). Differences in HbF and F-cell levels
between children (ages 1 and 9 years) that were grouped according to ARC were even more
striking [HbF: 29.0 ± 4.9% vs. 14.8 ± 7.7%, p = 7.4E-7; F-cells: 83.3 ± 18.4% vs. 55.4 ± 21.9%,
p = 1.7E-6 for ARC< 200K/μL and ARC� 200K/μL groups respectively (Fig 4B)].

Fig 3. Representative Flow Dot Plots for Pancellular vs. Heterocellular HbF Distribution. A.
Erythrocytes from a 3 month old infant with SCA stained with fluorescent antibodies against HbF, revealing a
pancellular HbF distribution. B. Representative F-cell staining from an older child with SCA, representative of
heterocellular HbF distribution.

doi:10.1371/journal.pone.0136672.g003
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Fig 4. Comparison of F-cell and HbF levels in Infants and Children with ARC<200 K/μL and
ARC� 200K/μL. A. F-cell level comparisons in infants less than 1 year of age and children between ages
1–9 years with an ARC < 200 K/μL (open bars) and ARC� 200 K/μL (shaded bars) (*p = 6.2 E-5, **p = 1.7E-
6). B. Comparison of HbF levels in infants and children ages 1–9 years and ARC < 200 K/μL (open bars) and
ARC� 200 K/μL (shaded bars) (*p = 2.2E-5,**p = 7.4E-7). Standard deviation bars are included.

doi:10.1371/journal.pone.0136672.g004
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Discussion
The concentration and distribution of HbF within individual erythrocytes is an important
determinant for disease severity in SCA patients [15,16]. According to this study, increased
ARC is associated with pronounced decreases in HbF and F-cell levels among infants with
SCA. Less robust correlations between HbF levels and ARC are maintained through age 10
years, but are lost in adolescence and young adulthood. For comparison, S1 Fig contains age
correlation data regarding HbF, ARC, F-cell, and hemoglobin for the entire cohort. Our data
confirm that in early infancy, HbF is present in a pancellular distribution in nearly all erythro-
cytes. Consistent with other reports, the distribution of HbF-containing cells decreases as HbF
is silenced in these children [17, 18]. Our data suggest that decreases in bulk HbF and the tran-
sition to heterocellular HbF distribution correlate well with increasing erythroid stress as mea-
sured by ARC. Our data also highlight the gradual change in HbF and F-cell levels throughout
infancy and childhood in patients with SCA. HbF and F-cell levels in the adolescents included
in our study are similar to adult levels [19]. We previously reported that increased reticulocyto-
sis during early infancy is associated with early hospitalizations, stroke and death [12,13].
Given the negative correlations between HbF, F-cell distribution and ARC in infants and chil-
dren in this study, ARC may serve as a surrogate for HbF levels and distribution in patients
with SCA up to 9 years of age. The potential for implementation of less expensive or more
widely available hematological assays may be especially relevant in resource poor countries
where the majority of infants with SCA are born [20].

Among infants and children with SCA, stressed erythropoiesis and increased reticulocytosis
is associated with lower HbF levels as well as a reduced distribution within circulating erythro-
cytes. This is most likely due to the ability of HbF to inhibit HbS polymerization, leading to
decreased hemolysis and, ultimately, a lower ARC. Conversely, regulation of HbF by steady
state erythropoietic stress is not sufficient to overcome the deleterious effects of HbS in this
cohort. These data are consistent with the minor effects upon HbF achieved with pulsed eryth-
ropoietin, hypoxia, or phlebotomy in humans [7,8].

Our prior studies demonstrated a predictive value of decreased reticulocytosis for decreased
disease severity in infants with SCA [12,13]. The level of reticulocytosis produced during the
first six months of life may serve as a very early marker of disease severity among infants with
SCA, and the reticulocyte adhesion characteristics may contribute to the early pathophysiology
as well. Here, high HbF levels and low ARC (< 200K/μL) are rarely found in children over the
age of 10 years. An important limitation of this retrospective study is the small group of older
children and adolescents included. Those patients who were receiving hydroxyurea or chronic
blood transfusions were not included in this study due to potentially confounding effects of
those therapies upon ARC levels. As such, the older children and adolescents included in our
study may have less severe disease, or they may not be receiving hydroxyurea due to a family
preference [1]. We therefore hypothesize that the predictive value of reticulocytosis for disease
severity in SCA may be lost during childhood for those patients treated with supportive care,
but larger prospective studies are needed to further study the role of reticulocytosis in risk strat-
ification for SCA patients of all ages. Consistent with models comparing acute and chronic ery-
throid stress [8], the data also imply that mechanisms that activate HbF ex vivo or in the
setting of bone marrow ablation may be distinct from the steady-state of SCA.

While two thirds of infants had ARC levels below 200K/μL, only 1 of the 18 (~5%) SCA
patients between 10 and 20 years old had a similar low level of reticulocytosis. As evidenced
here, under conditions of chronic erythroid stress, there appears to be an ongoing loss and
silencing of HbF production that lasts well past infancy [21]. As fetal cells with high HbF levels
are replaced with HbS-containing erythrocytes with low levels of HbF, anemia ensues from the
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resultant sickling and hemolysis. Thus begins a vicious cycle of anemia, tissue hypoxia, and
reticulocytosis with continued production of HbS-containing cells. Based upon the more rapid
destruction of these newly produced HbS cells, higher bulk levels of HbF may be expected in
the peripheral blood of newborns during this transition period until the switching phenome-
non is complete. An inverse relationship develops during childhood between the level of reticu-
locytosis (ARC) with HbF and F-cell distribution.

Overall, infants and children less than 10 years of age with SCA and increased ARC have
significantly lower HbF and F-cell levels compared to age-matched SCA patients with less pro-
nounced reticulocytosis. Among this cohort, the negative correlation between ARC and HbF
and F-cells was age-dependent and lost during childhood.

Supporting Information
S1 Fig. Non-age stratified hematologic data for the entire cohort. Correlation of A. HbF (%),
B. Hb (g/dL), C. F-cells (%), D. ARC (K/μL) with age in years. HbF, Fetal hemoglobin; Hb,
hemoglobin; ARC, Absolute Reticulocyte Count. Each dot represents a steady state value for a
separate patient.
(TIF)
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