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Orthodontic Treatment Planning 
based on Artificial Neural Networks
Peilin Li1, Deyu Kong2, Tian Tang1, Di Su1, Pu Yang1, Huixia Wang1, Zhihe Zhao1 & Yang Liu2

In this study, multilayer perceptron artificial neural networks are used to predict orthodontic treatment 
plans, including the determination of extraction-nonextraction, extraction patterns, and anchorage 
patterns. The neural network can output the feasibilities of several applicable treatment plans, offering 
orthodontists flexibility in making decisions. The neural network models show an accuracy of 94.0% 
for extraction-nonextraction prediction, with an area under the curve (AUC) of 0.982, a sensitivity of 
94.6%, and a specificity of 93.8%. The accuracies of the extraction patterns and anchorage patterns are 
84.2% and 92.8%, respectively. The most important features for prediction of the neural networks are 
“crowding, upper arch” “ANB” and “curve of Spee”. For handling discrete input features with missing 
data, the average value method has a better complement performance than the k-nearest neighbors 
(k-NN) method; for handling continuous features with missing data, k-NN performs better than the 
other methods most of the time. These results indicate that the proposed method based on artificial 
neural networks can provide good guidance for orthodontic treatment planning for less-experienced 
orthodontists.

Malocclusion is a common disease that impairs occlusal function, increases the incidence of caries, causes psy-
chological discomfort, endangers health and reduces the quality of life1–3. An epidemiologic survey in America 
showed that 57% to 59% of each racial group has at least some degree of orthodontic treatment need4. The Health 
Policy Institute of the American Dental Association reported that 33% of young adults avoid smiling due to the 
condition of their mouth and teeth, and 82% of adults believe that the good appearance of the mouth and teeth 
can help them advance in life5. To achieve satisfactory orthodontic treatment effects, treatment planning must 
be carefully performed before the treatment process begins6. Comprehensive and deliberate evaluation of many 
factors makes treatment planning a complex process without any objective patterns, and heavily depends on the 
subjective judgment of the orthodontists.

Researchers have attempted to make orthodontic treatment planning procedures more objective by using 
some prediction methods. Rule-based expert systems (RBESs) were used to help orthodontic students and inex-
perienced practitioners with problem-solving and decision-making7. RBESs use formulated rules to construct a 
decision tree but suffer from considerable knowledge lost in the rule determination. To overcome the limitations 
of RBESs, case-based expert systems (CBESs) have been developed. CBESs acquire new knowledge by analyzing 
and taking in new cases, thereby acquiring better indexing features7. The difficulty of using CBES lies in finding 
an exact case that matches the new case; thus, some new cases have to be properly modified to be identified. A 
software that combined RBES and CBES was proposed in Noroozi’s work8, and the application of fuzzy logic 
made it more practical. Takada9 and Yagi10 proposed a CBES that used a k-nearest neighbors (k-NN) algorithm 
to perform classification in tooth-extraction decisions. However, the k-NN algorithm is a type of instance-based 
learning that is sensitive to the local structure of data and requires an increasing number of calculations as the 
number of cases increases. The artificial neural network (ANN) has the advantage of excavating features from 
massive medical data11,12, and the past decade has witnessed the rapid development of this approach. It has also 
been applied to determine necessary tooth extraction13 and extraction patterns (specific teeth to be removed)14 
in orthodontic treatment planning.

It is important to note that different orthodontists can have markedly different plans for a specific case15. 
Considerable variety can occur particularly in the decision of which teeth to extract16. In addition to outputting a 
recommended treatment plan, an ANN that can output the feasibilities of multiple extraction options will allow 
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orthodontists greater flexibility. Additionally, anchorage (resistance to unwanted tooth movement) is another 
important factor that should be considered when making plans6. In extraction cases using maximum anchorage, 
the early use of appropriate means to reinforce anchorage must be taken into account in the beginning. Related 
data are not always available in the actual application environment of ANNs17–19. ANN models cannot predict 
missing data; and thus a case with incomplete data may not be predicted by the models20–22. Providing methods 
that can handle missing data may make the model more applicable. Statistical approaches, such as imputation 
with average value or normal value, and k-NN imputation method have been intensively studied22,23. However, 
the comparison of different methods have showed different results and there is not a unique solution that can 
obtain best results in each neural network18,21,24. In this study, the traditional statistical approaches (average value 
method, frequent value method, specific value method and median value method) and the k-NN method are used 
to evaluate which method may be the best for increasing the accuracy.

The ANN in this study can promptly output both a recommended plan and feasible probabilities of sev-
eral alternative options. The plan covers the most crucial concerns of orthodontists for most cases, including 
the extraction-nonextraction decision, extraction patterns and anchorage patterns (whether to use maximum 
anchorage to retract anterior teeth). We further calculated the relative contribution of features in each network 
model with the partial derivatives (PaD) method25 and, for the first time, investigated the effect of several comple-
mentary methods on handling missing data in orthodontic treatment planning.

Results
Orthodontic treatment planning with ANNs.  Three neural networks are trained with 302 cases from 
the Department of Orthodontics, West China Hospital of Stomatology. As shown in Fig. 1a, the first neural net-
work determines whether a patient needs tooth extraction. If the patient needs extraction, the second and third 
neural networks then predict the specific extraction pattern and anchorage pattern, respectively. The network 
to determine extraction patterns, for example, is a three-layer fully connected multilayer perceptron (MLP), as 
shown in Fig. 1b, which consists of 24 input nodes, 10 hidden nodes, and 4 output nodes. The other two neural 
networks share the same model structure as this network but have different numbers of output nodes. The extrac-
tion-nonextraction neural network has 2 output nodes, and the anchorage patterns neural network has 3. The 
trained neural network models are provided in the Supplementary Information, together with the demonstration 
of the treatment planning process.

The accuracies of the ANNs.  As illustrated in Fig. 2, the receiver operating characteristic (ROC) curve 
shows the performance of the ANN on the extraction decision. The model yields an area under the curve (AUC) of 
0.982 (95% CI 0.968–0.995). The closer the point on the ROC curve is to the upper left corner, the higher the accu-
racy of the model, and the point closest to the upper left corner is the best cutoff value with the least error. The opti-
mum diagnostic cutoff value of this model is 0.692, with which the model reaches a sensitivity of 94.6% (95% CI 
0.894–0.964) and a specificity of 93.8% (95% CI 0.870–0.984). If the prediction probability of a case for extraction 
is greater than 0.692, it will be diagnosed as an extraction case and passed to the other two models to determine the 
extraction pattern and anchorage pattern. Figure 3 shows the predictive accuracies of the ANNs. The accuracy of 
the extraction-nonextraction decision-making is 94.0%, and the accuracies of the learning set, validation set, and 
test set are 94.0%, 95.0%, and 93.3%, respectively. The predictive accuracy of the extraction patterns is 83.3%, and 

Figure 1.  (a) The data processing flow chart; (b) structure of the neural network to predict the extraction 
patterns. The network structure is a three-layer fully connected multilayer perceptron consisting of 24 input 
nodes, 10 hidden nodes, and 4 output nodes.
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the accuracies of the learning set, validation set, and test set are 83.6%, 84.1%, and 81.8%, respectively. The overall 
accuracy of the anchorage patterns is 92.8%, and the accuracies of the learning set, validation set, and test set are 
93.3%, 90.9%, and 93.2%, respectively. The decision-making of the extraction patterns is the most complicated 
part of the treatment planning, and different doctors may use different extraction patterns16. This explains why its 
prediction accuracy is lower than the other two parts of the treatment planning, and this gap is comparable to the 
results of another study14. Considering the subjectivity of decision-making on extraction patterns, the model offers 
several practicable alternatives for doctors to choose, which makes it more applicable.

Relative contribution of features for planning decisions.  In clinical practice, doctors may not always 
have access to all the required data used by ANNs. Therefore, investigating the contribution of all features for 
each decision part will be of practical importance. We used the PaD method25 to calculate the features’ rela-
tive contributions and ranked them in order. The results are illustrated in Table 1. With respect to extraction 
decision-making, features “crowding, upper arch” “crowding, lower arch” and “U1-NA°” are the three that con-
tributed most. “ANB” “overbite” and “lip incompetence” are the three features that are most related to the predic-
tion of extraction patterns. The three most important features for anchorage pattern determination by the model 
are the “curve of Spee”, “nasolabial angle” and “UL-EP”. The results demonstrate that these features are selected or 
“thought” as important by the models when making decisions. When the models make different predictions, they 
treat different features as the most important.

Figure 2.  The ROC curve of the neural network to predict extraction. The model yields an AUC of 0.982 (95% 
CI 0.968–0.995). The optimum diagnostic cutoff value is 0.692, where the sensitivity of the model reaches 94.6% 
(95% CI 0.894–0.964) and the specificity reaches 93.8% (95% CI 0.870–0.984).

Figure 3.  The accuracies of the ANNs. The accuracy of the extraction-nonextraction prediction is 94.0%, and 
the accuracies of the learning set, the validation set, and the test set are 94.0%, 95.0% and 93.3%, respectively. 
The predictive accuracy of the extraction patterns is 83.3%, and the accuracies of the learning set, validation set, 
and test set are 83.6%, 84.1%, and 81.8%, respectively. The overall accuracy of the anchorage patterns is 92.8%, 
and the accuracies of the learning set, validation set, and test set are 93.3%, 90.9%, and 93.2%, respectively.
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Comparison of different complement methods.  In the present study, we took a step further to inves-
tigate when the data of the most important features are missing, whether the impact of data loss on accura-
cies can be reduced or minimized by complement methods21,23,24,26. The complement effects are displayed in 
Table 2. The results show that the average value method has better performance than k-NN when dealing with 
discrete features regarding “lip incompetence” and “nasolabial angle”. The accuracies of the four traditional meth-
ods (average value, frequent value, specified value and median value methods) are consistent for processing the 
“nasolabial angle”. When dealing with continuous variables, k-NN performs better than the other methods, except 
for “crowding, lower arch”. With respect to the three features that the models “consider” to make the largest con-
tribution to the treatment decisions, k-NN has the best complement performance. The effect of 2-k-NN is similar 
to that of 3-k-NN, in general.

Rank

Extraction or Non-extraction Extraction Patterns Anchorage Patterns

Features Contribution Features Contribution Features Contribution

1 Crowding, Upper arch 85711.28105 ANB 118465.2103 Curve of Spee 18547.57224

2 Crowding, Lower arch 57736.71377 Overbite 114032.7377 Nasolabial angle 15026.78087

3 U1-NA° 15012.78143 Lip incompetence 41415.55706 UL-EP 14657.07879

4 UL-EP 4954.977657 U1-NA° 18085.09864 Overbite 12976.87069

5 LL-EP 4177.450009 Age 17473.38386 L1-NB° 7938.055508

6 L1-NB° 3401.656971 Curve of Spee 17302.13528 Profile 7680.987385

7 Lip incompetence 3286.95674 Crowding, Lower arch 16905.04732 FMIA 7414.201627

8 Overbite 2942.413326 Nasolabial angle 13745.41489 Age 6187.604495

9 Molar Relationship 1417.233 Overjet 13667.56045 LL-EP 2391.518896

10 Age 589.4921089 Molar Relationship 8798.718 ANB 2347.936804

11 S-Go/N-Me 588.7796549 U1-NA(mm) 7288.337735 S-Go/N-Me 1974.048274

12 Nasolabial angle 555.4425076 L1-NB(mm) 6406.556758 U1-NA° 1720.918869

13 Profile 343.9300483 UL-EP 5119.782824 Crowding, Lower arch 1467.612

14 Sex 307.2066295 FMIA 4089.027359 Lip incompetence 903.411461

15 U1-NA(mm) 208.265139 SNA 4056.661967 SNB 684.2875872

16 IMPA 150.1288817 Crowding, Upper arch 2949.948301 Sex 336.7110245

17 SNA 100.592332 FMA 1812.552422 U1-NA(mm) 258.1374941

18 FMIA 67.34319702 Profile 1437.646045 Molar Relationship 236.3783781

19 Overjet 57.1657521 SNB 1270.734428 IMPA 151.8654525

20 Curve of Spee 34.93226494 Sex 983.4392023 Crowding, Upper arch 106.1314566

21 SNB 5.236208966 IMPA 786.2672013 FMA 91.21057528

22 L1-NB(mm) 4.394215177 LL-EP 262.3915409 SNA 82.06470102

23 ANB 3.231616444 L1-NB° 93.51224553 L1-NB(mm) 34.28285845

24 FMA 1.03176361 S-Go/N-Me 4.960991795 Overjet 16.99804082

Table 1.  Rank of the relative contribution of every feature.

Complement 
methods

Average 
Value

Frequent 
Value

Specified 
Value

Median 
Value 2-k-NN 3-k-NN

Network Extraction or Non-extraction (accuracy of complete data: 0.9404)

Crowding, Upper arch 0.8642 0.8113 0.8113 0.8742 0.8775 0.8841

Crowding, Lower arch 0.8974 0.8742 0.8709 0.8642 0.8808 0.8808

U1-NA° 0.9106 0.9073 0.8974 0.9007 0.9238 0.9172

Network Extraction Patterns (accuracy of complete data: 0.8333)

ANB 0.8198 0.8063 0.8198 0.8153 0.8268 0.8268

Overbite 0.8198 0.8153 0.8153 0.8108 0.8288 0.8243

Lip incompetence 0.8288 0.8243 0.8243 0.6982 0.8063 0.8018

Network Anchorage Patterns (accuracy of complete data: 0.9279)

Curve of Spee 0.8649 0.8694 0.8694 0.8649 0.8874 0.8829

Nasolabial angle 0.8784 0.8784 0.8784 0.8784 0.8468 0.8559

UL-EP 0.8739 0.8333 0.8739 0.8739 0.8694 0.8919

Table 2.  Complement effects of different methods on important features with missing data. The highest 
complement accuracy for each feature is shown in bold.
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Discussion
In this study, we propose an MLP-based classifier to analyze patients’ medical records and output both a recom-
mended treatment plan and the feasibilities of various treatment plans regarding the aspects of extraction vs. non-
extraction, extraction patterns and anchorage patterns. The feature importance is calculated and ranked, and we 
compared the effects of different complement methods. Since there can be several feasible treatment plans regard-
ing a certain case, the output probabilities of extraction and anchorage patterns offer users considerable flexibility 
as well as guidance. The users can review the recommended plan, compare various treatment options, take other 
aspects into account, and finally, develop a standardized, accurate, and effective treatment plan. Figure 4 illus-
trates the clinical application process of the ANNs. An example patient was used for demonstration. Informed 
consent to publish the information and images in an online open-access publication was obtained, and the exam-
ple patient’s medical data (patient A) can be found in the Supplementary Note 2.

Our neural network models have better performance compared with previous prediction methods. The pre-
dictive accuracy of extraction reached 94.0%, higher than the other prediction models13,27, and made a one per-
cent improvement on the 93% accuracy of Jung’s study14. The AUC of 0.9815 is also higher than the result of 0.904 
in a previous study based on the CBES and the k-NN algorithm9. For the most complex part of extraction pattern 
prediction, the model reached 84.2% accuracy, similar to the result of Jung’s model14, which is also based on a 

Figure 4.  Clinical application illustration of the ANNs. The medical records of a new case were collected, 
and 24 input features, including demographic data, cephalometric data, dental data and soft tissue data, were 
extracted for neural network prediction. The extraction probability (0.955) was higher than 0.692; thus, it 
was determined as an extraction case and was passed to the other two networks. The other networks output 
the feasibilities of different extraction patterns and anchorage patterns. The doctor evaluated these treatment 
options, took other aspects into account, and finally determined an effective treatment plan.
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neural network. In addition, this study is the first to make a prediction of the use of maximum anchorage by an 
ANN, to the best of our knowledge. The accuracy was 92.8%, suggesting the potential of ANN in assisting ortho-
dontists in making more detailed treatment plans.

We used the PaD method to study the contribution of features to the outcome and ranked them in order. Xie13 
used the “weights” method in a previous study and investigated the connection strengths of each neuron in the 
input layer with each neuron in the hidden layer to represent the contribution of every input index. They used 
different input indexes and different methods to calculate the contribution, and they found that “anterior teeth 
uncovered by incompetent lips” and “IMPA” were the two indexes that presented the largest contributions to the 
extraction decision vs. nonextraction. The “weights” method allows for a good classification of the input features 
but lacks stability25. The PaD method presents more complete results and makes a more severe discrimination 
between minor and major contributing variables in comparison to the “weights”25,28.

It is also the first time to investigate the effect of complement methods in similar studies. Our results suggested 
that the average value method outperformed k-NN when dealing with discrete variables, but k-NN performed 
better for the continuous variable. Meanwhile, k-NN is also a better choice when the data of the most important 
feature for each output decision is missing. This research contributes to the handling of missing data and can 
make the model more applicable.

It takes a relatively long time for orthodontists to accumulate experience. Doctors with less experience often 
require consultation with experts. Since medical developments are uneven and severely affected by economic 
conditions, expert consultation is especially deficient in areas with poor medical conditions. The proposed ANN 
system can not only assist less-experienced orthodontists and students in learning but also help patients obtain a 
clear understanding of their treatment plans.

Methods
Cases Collection.  A total of 302 patients who received orthodontic treatment at the Department of Orthodontics, 
West China Hospital of Stomatology in Chengdu, China, from 2014 to 2018 were included in this study. The inclu-
sion criteria were fixed labial appliance patients with full permanent dentition (except for second or third molars) 
without functional appliance treatment or orthognathic surgery. Their medical records before orthodontic treatment 
were collected, including demographic information, extraoral photos, intraoral photos, pretreatment dental casts and 
lateral cephalometric measurements6,29. Twenty-four commonly used feature variables were extracted from these 
clinical records as input features. The input features were preprocessed to ensure that all of them were quantified 
before being used for model training. Nonquantitative data were converted into numerical values by the encoding 
method. Supplementary Table S3 shows the detailed features used in the ANNs and how the nonquantitative data 
were encoded. All treatment planning was carefully performed by Dr. Zhao and Dr. Tang, who are both orthodon-
tic specialists and have 26 and 12 years of clinical work experience, respectively. This study was approved by the 
West China Hospital of Stomatology Institutional Review Board (WCHSIRB-D-2018-094). Informed consent was 
obtained from all participants or their legal guardians. Informed consent for publication of the medical records of 
four example patients in an online open-access publication was also obtained. All experiments were performed in 
accordance with relevant guidelines and regulations.

The composition of the cases and datasets.  Among the total population, 222 persons were extraction 
cases, accounting for 73.5%, and the other 80 persons were nonextraction cases, accounting for 26.5%. The tooth 
extraction patterns were divided into four types: maxillary and mandibular first premolar extraction (4444), 
maxillary first premolar and mandibular second premolar extraction (4455), maxillary and mandibular second 
premolar extraction (5555) and other extraction patterns including only maxillary first premolar extraction, max-
illary second premolar and mandibular first premolar extraction. These four patterns comprise 41.9%, 19.8%, 
18.5% and 18.5% of the extraction cases, respectively. The anchorage patterns included three types, i.e., maxillary 
maximum anchorage (1100), maxillary and mandibular maximum anchorage (1111), and no use of maximum 
anchorage (0000), accounting for 29.7%, 21.6% and 48.6% of the extraction cases, respectively. Descriptions of the 
extraction patterns and anchorage patterns are shown in Table 3.

The dataset is split into a training set, a validation set and a test set. The neural networks do not have access to 
the test set during the training process until the final evaluation of the accuracy. The reserve part of the dataset 
is split into a training set and a validation set with a ratio of 3/1, which is optimized according to the learning 
curve30. The training set is used to update the weights of the network. The validation set is used to avoid over-
fitting13. Considering that we had a smaller dataset, we used a greater percentage of data to test the models. 

Pattern Description

Extraction Patterns

4444 maxillary and mandibular first premolar extraction

4455 maxillary first premolar and mandibular second premolar extraction

5555 maxillary and mandibular second premolar extraction

others other extraction patterns including only maxillary first premolar extraction, 
maxillary second premolar and mandibular first premolar extraction

Anchorage Patterns

1100 maxillary maximum anchorage

1111 maxillary and mandibular maximum anchorage

0000 no use of maximum anchorage

Table 3.  Descriptions of the extraction patterns and anchorage patterns.

https://doi.org/10.1038/s41598-018-38439-w


www.nature.com/scientificreports/

7Scientific Reports |          (2019) 9:2037  | https://doi.org/10.1038/s41598-018-38439-w

Therefore, the training set, validation set and test set were set with a typical 60/20/20 split to maintain a balance 
between the sets. Cases with different tags were randomly distributed to the three datasets in each simulation so 
that the proportions of various cases are similar among the three sets, reducing the additional bias introduced by 
the data partitioning process. There are 222 extraction cases; thus, the 222 cases are used in the neural network 
models for predicting extraction patterns and anchorage patterns. The number and percentage of different kinds 
of treatment plans in each set are shown in Table 4.

Network models.  All three neural networks used in this work are three-layer MLPs. Each MLP consists of 
three full connection layers. The MLP used to determine extraction patterns is illustrated in Fig. 1b. The activa-
tion function of the hidden layer is tanh. A softmax layer of 4 outputs is applied at the end of the model31,32. The 
cross-entropy33,34 CEtanh is given by

= − ∗ − − ∗ −CE t y t ylog( ) (1 ) log(1 ) (1)

where t is the target value and y is the output of the MLP. Equation (1) returns a numerical value approaching 
infinity, which heavily penalizes output when y approaches −1 or 1. CEtanh approaches its minimum value when 
y approaches t. The weight and bias values are updated according to the scaled conjugate gradient method35. 
Although minimizing CEtanh leads to a good accuracy of classification, considerably minimizing CEtanh may cause 
overfitting. The dropout method is used to prevent overfitting36,37. The detailed training setting including learning 
rate, number of epochs, batch size, et al., are provided in Supplementary Note 4.

For the extraction prediction, the model outputs a probability of extraction. We define a determination of extrac-
tion treatment for each case as the probability of extraction being higher than a cutoff value. The algorithm computes 
sensitivity and specificity by testing a variety of cutoff values. Varying the cutoff point in the interval 0–1 generates a 
conventional ROC curve. Youden’s index38 is applied to obtain the optimum cutoff. If the probability is higher than 
the optimum cutoff, the case will be passed to the prediction of extraction patterns and anchorage patterns.

Relative contribution calculation of features and complement of the missing data.  The PaD 
method, which is supposed to be the most useful method in giving the relative contribution and the contribution 
profile of the input factors, was used to evaluate the relative contribution calculation of the input features. The 
PaD method computes the partial derivatives of the ANN’s output with respect to the input to obtain the profile 
of the variations of the output for small changes of one input variable. For a network with ni inputs (where i rep-
resents the feature index and i = 1, 2, …, 24 in this work), one hidden tanh layer with nh neurons, and no outputs, 
the partial derivatives of the output yj with respect to input xj (where j represents the case index and j = 1, 2, …, 
302 in this work) are:

∑= −
=

d S w I w(1 )
(2)ij j

h

n

ho hj ih
1

2h

where Sj is the derivative of the output neuron with respect to the input, which is the weights between the output 
neuron and hth hidden neuron, Ihj is the output of the hth hidden neuron, and wih is the weights between the ith 
input neuron and the hth hidden neuron.

Then, the relative contribution of the ANN’s output to the dataset with respect to the ith input feature can be 
calculated by a sum of the square partial derivatives as:

SSD d
(3)

i
j

N

ij
1

2∑=
=

where N is the data size and equals 302 in this work. The SSD values enable direct access to the influence of each 
input variable on the output.

We use the average value method, frequent value method, specific value method, median value method, and 
k-NN method to study their complement effects. The four traditional methods complement the missing data with 
the average value, the frequent value, the specified value (standard value of normal population), and the median 
value. The k-NN method is a method to look for the new case’s nearest neighbors from the complete cases and use 
an estimated value to replace the missing data26,39. This value is the weighted average of the values of its k nearest 
neighbors. We used 2-k-NN (2 nearest neighbors) and 3-k-NN (3 nearest neighbors) in this study. Each neighbor 
is given a weight of 1/d, where d is the distance to the neighbor. The neighbors are taken from the dataset for 
which the object property value is known.

Sets

Extraction or Non-extraction Extraction Patterns Anchorage Patterns

Extraction 
(73.5%)

Nonextraction 
(26.5%)

Total 
(100%)

4444 
(41.9%)

4455 
(19.8%)

5555 
(18.5%)

Others 
(18.5%)

Total 
(100%)

1100 
(29.7%)

1111 
(21.6%)

0000 
(48.6%)

Total 
(100%)

Training (60%) 134 48 182 57 26 25 26 134 40 28 66 134

Validation (20%) 44 16 60 18 9 8 9 44 13 10 21 44

Test (20%) 44 16 60 18 9 8 9 44 13 10 21 44

Total (100%) 222 80 302 93 44 41 44 222 66 48 108 222

Table 4.  Number and percentage of different kinds of treatment plans in each set.
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Data Availability
The present neural network models, medical data of example patients, features descriptions and training setting 
are provided in the Supplementary Information.
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