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Copper is critical for the Central Nervous System (CNS) development and function. In
particular, different studies have shown the effect of copper at brain synapses, where it
inhibits Long Term Potentation (LTP) and receptor pharmacology. Paradoxically, according
to recent studies copper is required for a normal LTP response. Copper is released
at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking
effects on excitatory neurotransmission. Our results indicate that copper also enhances
neurotransmission through the accumulation of PSD95 protein, which increase the levels
of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors located at the
plasma membrane of the post-synaptic density. Thus, our findings represent a novel
mechanism for the action of copper, which may have implications for the neurophysiology
and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive
to transient changes in transition metal homeostasis. Our results suggest that copper
increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA
receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will
review the role of copper on neurotransmission of CNS neurons. In addition, we will
discuss the potential mechanisms by which copper could modulate neuronal proteostasis
(“neuroproteostasis”) in the CNS with focus in the Ubiquitin Proteasome System (UPS),
which is particularly relevant to neurological disorders such as Alzheimer’s disease (AD)
where copper and protein dyshomeostasis may contribute to neurodegeneration. An
understanding of these mechanisms may ultimately lead to the development of novel
therapeutic approaches to control metal and synaptic alterations observed in AD patients.
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INTRODUCTION
Copper has a role in different pathways on the Central Nervous
System (CNS; Linder and Hazegh-Azam, 1996; Gaier et al., 2013).
It is essential for brain function since its deficiency lead to
brain abnormalities and defects in brain development (Everson
et al., 1967; Scheiber et al., 2014). This is highlighted by Menkes
disease, an inherited disorder of intestinal copper absorption
that has a multitude of symptoms including severe neurological
degeneration and typically results in death by the age of five
(Tümer and Møller, 2010). Bioavailable copper is found in the
cerebrospinal fluid (∼70 µM) as well as in the brain extracellular
space (∼1 µM) (Stuerenburg, 2000).

Copper concentration varies by brain region and becomes
progressively detectable during postnatal stages (Kozma and
Ferke, 1979). In rat brain, copper rapidly increases between day
5–14 postnatal (Tarohda et al., 2004) and is concentrated in
the neuropil, where is mainly found on presynaptic boutons
that innervate postsynaptic densities of locus ceruleus neurons

Abbreviations: AD, Alzheimer’s disease; AMPA, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid; ATP, Adenosine triphosphate; CNQX,
6-cyano-7-nitroquinoxaline-2,3-dione; CTR1, copper transporter 1; GABA,
γ-aminobutyric acid; LTP, long term potentiation; UPS, Ubiquitin Proteasome
System.

(Sato et al., 1994). In effect, copper seems to be concentrated
in synaptosomes and synaptic vesicles relative to magnesium,
zinc and iron (Colburn and Maas, 1965). In synaptic vesi-
cles, copper can form complexes with neurotransmitters. For
example, copper can form ternary complexes with Adenosine
triphosphate (ATP) and norepinephrine (Colburn and Maas,
1965). Interestingly, uptake of norepinephrine is inhibited by
ethylenediamine hydrochloride, indicating that copper can par-
ticipate in the uptake of neurotransmitters (Colburn and Maas,
1965). It is also known that there is a reduction in dopamine
associated with dietary copper deficiency in humans (Prohaska
and Bailey, 1994), highlighting its role in neurotransmitter syn-
thesis. In addition, copper might be co-ordinating with mem-
brane constituents of synaptic vesicles and hence may play
an important role in membrane structure and function. In
fact, copper can form complexes with phophatidyl-L-serine and
phosphatidyl inositide, which is modulated by ATP (Maas and
Colburn, 1965). These early studies supported a role for copper
on neurotransmission.

COPPER AND SYNAPTIC FUNCTION
Koefoed-Johnsen and Ussing revealed that copper converts the
frog skin membrane into a structure, which becomes selectively

Frontiers in Aging Neuroscience www.frontiersin.org July 2014 | Volume 6 | Article 143 | 1

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnagi.2014.00143/abstract
http://community.frontiersin.org/people/u/40672
http://community.frontiersin.org/people/u/169037
http://community.frontiersin.org/people/u/9578
mailto:carlos.opazo@florey.edu.au
mailto:Ashley.bush@florey.edu.au
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Opazo et al. Copper modulates neurotransmission and neuroproteostasis

impermeable to chloride ions (Koefoed-Johnsen and Ussing,
1958; Palmer and Andersen, 2008), suggesting that copper could
modify the permeability of plasma membrane at the presynaptic
or postsynaptic levels. In agreement with a role for copper on neu-
rotransmission, copper is released from isolated rat brain cortical
synaptosomes stimulated by 50 mM KCl (Kardos et al., 1989),
which was corroborated in later studies using isolated guinea-
pig cerebrocortical synaptosomes (Hopt et al., 2003). Moreover,
glutamate receptor activation by NMDA promotes a rapid release
of copper on primary hippocampal cultures (Schlief et al., 2005).

It in this regard that it has been suggested that CNS neurons
possess the machinery to uptake copper and subsequently release
it at the synaptic cleft (Hartter and Barnea, 1988), where it
may modulate excitatory and inhibitory neurotransmission. In
agreement with this, copper blocks GABAergic and AMPAergic
neurotransmission when it is applied acutely on cultured rat
olfactory bulb neurons (Trombley and Shepherd, 1996). It also
blocks AMPAergic neurotransmission on rat cortical neurons
(Weiser and Wienrich, 1996) and GABAergic neurotransmission
in acutely isolated cerebellar Purkinje cells from rat (Sharonova
et al., 1998), indicating that copper modulates neurotransmission
of different CNS neurons in a similar fashion. Interestingly, a
recent study indicated that extra-synaptic GABA receptors are
susceptible to copper modulation (McGee et al., 2013), suggesting
that a spillover of copper at extrasynaptic sites, after it is released
at the synaptic space, can regulate extra-synaptic receptors.

Studies performed using rat brain slices have demonstrated the
acute inhibitory effect of copper on Long Term Potentation (LTP;
Doreulee et al., 1997; Goldschmith et al., 2005; Leiva et al., 2009),
which can be related to the effect of copper on NMDA receptor
pharmacology acting as a non-competitive antagonist (Vlachová
et al., 1996). Moreover, copper can inhibit LTP in the CA3
region of mouse hippocampus by a NMDA receptor-independent
mechanism (Salazar-Weber and Smith, 2011). However, recent
studies indicate that the role of copper on LTP regulation is more
complex, because copper has shown to be required for a normal
LTP response (Gaier et al., 2013, 2014a,b).

Therefore, until a few years ago, copper was considered as
a negative modulator of neurotransmission. However, the effect
of copper on synaptic activity has been recently evaluated in
more detail (Peters et al., 2011). We have studied the synaptic
activity of primary cultures of rat hippocampal neurons in the
presence of copper (up to 10 µM) at different timepoints (0, 3
and 24 h). As previously described, copper blocks neurotrans-
mission when is acutely applied to the neurons. However, after
3 h of exposure, copper promotes an increase in the AMPAergic
neurotransmission, which correlates with the accumulation of
PSD95 protein and with a concomitant clustering of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
at the plasma membrane. Therefore, copper regulates neurotrans-
mission by a novel biphasic mechanism, which have implications
for the neurophysiology and neuropathology of the CNS. This
biphasic response to copper may be not limited to hippocam-
pal cultures and AMPAergic neurotransmission, because copper
can promote a similar biphasic response on NMDA currents in
cultured neonatal rat cerebellum granule cells (Marchetti et al.,
2014).

Primary hippocampal neurons (10–14 DIV) treated with cop-
per (CuCl2; up to 10 µM) for a short period of time (3 h)
display a significant increase either in the frequency, amplitude
and the time constants of synaptic events. In addition, copper
increases the frequency of calcium transients, which correlated
with the increase in the frequency of miniature synaptic cur-
rents, supporting the role of copper as a neurotransmission
enhancer (Peters et al., 2011). Under these conditions both
AMPAergic and GABAergic neurotransmission are enhanced in
neurons exposed to copper. All neurotransmission parameters
including amplitude, frequency and time constant of AMPA
receptors were modified. However, while both the amplitude
and the frequency of miniature synaptic currents were enhanced,
the time constant of AMPA miniature events was decreased in
copper-treated neurons (Peters et al., 2011). Interestingly, copper-
treated neurons displayed changes only in the amplitude and
time constant parameters of GABAergic neurotransmission. In
this case, both amplitude and time constant of GABA synaptic
events were increased in neurons exposed to copper. The increase
in the amplitude of GABAergic currents was accompanied by an
increase in GABAA receptors immunostaining. Therefore, both
AMPAergic and GABAergic neurotransmission contribute to the
changes in total synaptic activity induced by copper.

The fact that copper-treated neurons displayed an increase in
amplitude of miniature synaptic currents may be explained by
an increase in the levels of receptors located post-synaptically.
In this sense, both the postsynaptic clusters of GABAA and
AMPA receptors, located apparently at the plasma membrane,
are increased after 3 h treatment with copper. GluA1 and GluA2
staining were significantly increased at MAP2-positive dendritic
zones of copper-treated neurons. However, total levels of GluA1
and GluA2 subunits of the AMPA receptor did not change.
Moreover, neurons exposed to copper for 3 h were more sensitive
to AMPA compared to neurons incubated in basal conditions.
Interestingly, the desensitization of AMPA receptors was slower
in neurons exposed to copper as indicated by the values for
peak/plateau of the AMPA evoked currents. In summary, neurons
behave differently to copper under acute vs. prolonged incubation
time, through mechanisms that may involve homeostatic or anti-
homeostatic mechanisms (Carrasco et al., 2007).

Thus we propose that copper enhances AMPAergic neuro-
transmission by promoting the clustering of AMPA receptors at
the plasma membrane (See Figure 1), in a different fashion to
CTR1 (copper transporter 1), the major copper uptake protein
that is endocytosed and subsequently degraded in the presence of
copper (Nose et al., 2010).

The clustering of AMPA receptors to the plasma membrane
was accompanied by an increase in PSD95, a critical scaffolding
protein for the anchoring of AMPA receptors to the cell sur-
face (Colledge et al., 2003). Therefore, copper-treated neurons
accumulate PSD95 by a mechanism that could involve a direct
interaction of PSD95 with copper that increases protein stability
or decreasing its degradation by the proteasome (Colledge et al.,
2003; See Figure 2).

Overall, these results indicate that neurons exposed to a
copper-enriched media display a more efficient neurotrans-
mission, which correlates with changes in AMPA receptor
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FIGURE 1 | Copper modulates neurotransmission by a biphasic
mechanism. The scheme depicts the effect of copper on neurotransmission
in acute and chronic conditions. Copper acts as a channel blocker under acute
conditions. Sustained release of copper from the presynaptic vesicles to the

synaptic cleft will lead to an increase in intracellular copper at the
postsynaptic neuron, where copper might regulate the levels of scaffolding
proteins that modulate the localization of channels at the plasma membrane
(Peters et al., 2011).

localization/clustering and increase in the levels of PSD95. Our
results indicate that copper enhances neurotransmission by
changing the neuronal protein configuration and not simply due
by changes in receptor pharmacology. We propose that copper
might affect the neuroproteostasis of CNS neurons that lead to
changes in neuronal excitability.

In support of this hypothesis, the effect of copper (3 h) on
neurotransmission seemed to be unrelated to an homestotaic
response resulting from the inhibition of AMPAergic neurotrans-
mission, because after blockade of AMPA receptors for 3 h with
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which is a spe-
cific and potent antagonist of AMPA currents, did not change any
parameter of the total miniature synaptic currents, indicating that
at this time frame a compensatory mechanism is not resulting for
receptor blockade. Therefore, the mechanism behind the effect
of copper on this neuronal network might involve intracellular
changes not related to AMPA receptor blockade. Moreover, the
effect of copper on neurotransmission is a transient effect because
the synaptic activity returned to the control levels after 24 h of
incubation, indicating a homeostatic regulation.

These studies indicate that copper might induce biphasic
effects on neurotransmission, suggesting that a fine regula-
tion of this essential metal is probably needed by neuronal
cells to maintain adequate synaptic function. A failure in this

copper-dependent synaptic regulation can be relevant to brain
conditions where the depletion in brain copper levels are asso-
ciated to a cognitive decline such as Alzheimer’s Disease (AD;
Schrag et al., 2011). Therefore, further studies are required to bet-
ter understand the molecular pathways that are affected by copper
in living neurons. The data reviewed here indicates that copper
can regulate the levels of PSD95, an intracellular scaffolding
protein that modulate AMPAergic neurotransmission. Because
PSD95 is degraded by the ubiquitin proteasome system (UPS;
Colledge et al., 2003), copper might regulate PSD95 levels by
targeting components of the UPS critical for PSD95 degradation
(Figure 2).

COPPER AND UBIQUITIN PROTEASOME SYSTEM
Ubiquitin plays a critical role in protein degradation driven by
26S Proteasome (Hershko and Ciechanover, 1998). The UPS is
a major pathway by which cells remove normal proteins and
abnormally folded normal or mutant, cytoplasmic and membrane
proteins (Tai and Schuman, 2008). Thus, an important number of
cellular processes are regulated by ubiquitin-mediated signaling
events (Hicke and Dunn, 2003) and UPS dysfunction is associated
with neurodegenerative disorders (Rubinsztein, 2006) that are
characterized by a metal dyshomeostasis, such as AD and Parkin-
son’s disease (PD; Bush, 2003). The connection with ubiquitin
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FIGURE 2 | Proposed model of how copper enhances
neurotransmission by acting on UPS. Ubiquitin (Ub) is sequentially
transferred from E1-activating enzyme to E2-conjugating enzyme, and then
transferred to PSD95 by the action of an E3-ligase, which lead to PSD95
degradation into the Proteasome. Under low copper levels (control), small
number of AMPA receptors are located at the plasma membrane. Under
chronic copper release, levels of PSD95 are increased leading to the
clustering of AMPA receptors located at the plasma membrane. Copper

may promote the ubiquitination of PSD95 by acting as a cofactor of the
E1-E2-E3 enzymes, promoting the ubiquitination of PSD95 and a
subsequent saturation of the proteasome, slowing down PSD95
degradation leading to AMPA receptor clustering at the plasma membrane.
Alternatively, copper can inhibit the proteasome directly impeding PSD95
degradation and promoting the formation of AMPA clusters at the
postsynaptic membrane with a concomitant enhancement of AMPAergic
neurotransmission.

and the proteasome is physiologically hierarchical and can be
biochemically dissected in two main components (Ciehanover
et al., 1978). Proteins are first ubiquitinated (Hershko et al.,
1983) and then recognized by the 26S Proteasome for degra-
dation (Deveraux et al., 1994). The key enzymes that regu-
late protein ubiquitination are E-activating, E-conjugating and
E-ligases (Ciechanover et al., 1982; Hershko et al., 1983).
Protein ubiquitination begins with the fast formation of a thiol-
ester linkage between the C-terminus of ubiquitin and the active
site cysteine of the ubiquitin-activating enzyme (E1) (Hershko
et al., 1981; Pierce et al., 2009). This initial step requires ATP
and ionic cofactors, including Mg2+ and an unknown metal ion
(Ciechanover et al., 1982). The absence of these ionic factors
stop ubiquitination. Thus, copper could act as “the unknown
metal ion” in this enzymatic reaction. Further studies are needed
to validate this possibility. Ubiquitin is then transferred to an
ubiquitin conjugating enzyme (E2) (Hershko et al., 1983) to form
a catalytically activated intermediate such as the UbcH5b Ub
(Sakata et al., 2010). UbcH5b is one of the E2 enzymes that has
been demonstrated to form polyubiquitin chains in cooperation
with several E3 enzymes (Wu et al., 2003; Brzovic et al., 2006;
Sakata et al., 2007; Windheim et al., 2008). These E3 ligases inter-
act with UbcH5b-Ub intermediate, catalyzing the formation of

an isopeptide bond between the C-terminal residue of ubiquitin
(G76) and a lysine located either on a target protein or on
the lysine (usually K48 for degradation) of the most periph-
eral ubiquitin tagged to a protein (Sakata et al., 2010), which
then directs it to the 26S proteasome for degradation (Pickart,
2000).

There are several studies that connect the UPS to transition
metals. For example, Kojima’s group characterized the in vitro
interaction between ubiquitin and copper by using electron
paramagnetic resonance (EPR) approximation (Nomura et al.,
2004). This study strongly suggested that Cu2+, as a part of one
metal complex, is coordinated by ubiquitin with the participation
of a histidine residue (his-68). Other paramagnetic metals,
such as Mn2+ and Gd3+, did not coordinate specifically to
his-68 present in ubiquitin sequence (Nomura et al., 2004).
In fact, ubiquitin is retained to immobilized metal ion
affinity chromatography (IMAC) resins complexed to Cu2+

(Hemdan et al., 1989), where his-68 is critical for this binding.
Interestingly, when his-68, located at the surface of ubiquitin
(Sloper-Mould et al., 2001) is replaced with another residue, the
ubiquitination process (Ecker et al., 1987) or cell growth is altered
(Sloper-Mould et al., 2001). All this data suggests that copper
might participate upstream in the regulation of UPS. However,
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copper complexed to some chelators inhibit the proteasome for
unknown mechanism (Ding and Lind, 2009), suggesting the
possibility that copper can regulate the UPS at different levels
(Figure 2).

Metalloproteins are part of the UPS, acting as E3-Ring lig-
ases or deubiquitinases (Joazeiro and Weissman, 2000; Yao and
Cohen, 2002), but it is unclear if transition metals can par-
ticipate upstream in the regulation of the first steps of ubiq-
uitination. Downstream of the UPS, proteasome activity is
inhibited by copper at milimolar concentration (Amici et al.,
2002) and some copper-chelator complexes can also inhibit
proteasome activity (Ding and Lind, 2009). Zinc is critical
for the activity of E3-Ring ligases and RPN11 deubiquitinase
(Joazeiro and Weissman, 2000; Yao and Cohen, 2002). More-
over, metal response to cadmium toxicity in yeast involves the
inactivation of Skp1-Cullin1-F-box (SCF) ligases complexes (Yen
et al., 2005) and also the activation of UPS (Jungmann et al.,
1993). However, cadmium can also induce the accumulation
of ubiquitinated proteins by an oxidative mechanism that leads
to neurotoxicity (Figueiredo-Pereira et al., 1998). Interestingly,
iron can accelerate the degradation of proteins into the pro-
teasome by inducing oxidative modifications in the targeted
protein (Iwai et al., 1998). Moreover, it can regulate the lig-
ase activity of SKP1-CUL1-FBXL5 protein complex (Salahudeen
et al., 2009; Vashisht et al., 2009). Therefore, metals such as
copper may activate or inactivate early steps of ubiquitina-
tion. Interestingly, copper is specifically coordinated by ubiq-
uitin (Hemdan et al., 1989; Nomura et al., 2004), indicating
that this metal can act at early stages of ubiquitination. In fact,
copper is required for Ctr1 poly-ubiquitination and subsequent
degradation by a mechanism that requires the presence of the
copper chaperone Atox1 (Safaei et al., 2009). Moreover, Clio-
quinol, a copper chelator with moderate affinity, can inhibit in
vitro ubiquitination of Hypoxia-inducible Factor-1α (Choi et al.,
2006), indicating that copper may participate as a cofactor in
ubiquitination.

CONCLUSION
Inherited disorders of Cu metabolism, such as Menkes and Wil-
son’s disease display complex neurodegenerative features, which
highlight the importance of copper homeostasis (Tümer and
Møller, 2010). Moreover, micromolar concentrations of copper
(up to 400 µM) are present in senile plaques in AD brains
(Lovell et al., 1998), which could be a source of copper for
the neurons surrounding these pathological structures. Brain
copper deficiency is a characteristic feature of Menkes disease,
which affects brain physiology, since patients display gray mat-
ter degeneration, hippocampal neuronal loss and Purkinje cell
abnormalities (Okeda et al., 1991). AD is another brain pathology
characterized by neurodegeneration that produces a broad spec-
trum of symptoms that have been linked to copper brain deple-
tion since cupro-proproteins such as ceruloplasmin are decreased
(Connor et al., 1993; Bush, 2003) or less active as observed
for superoxide dismutase 1 (Omar et al., 1999; Maynard et al.,
2005). Currently, the relationship between copper and neuropro-
teostasis within the CNS in health and pathological conditions
is poorly understood. Hence, further studies are required to

determine how neuronal excitability is linked to changes in synap-
tic proteins promoted by copper (Gaier et al., 2013). The studies
described here provide a new perspective on how copper can
regulate the communication between neurons by modifying the
protein configuration and strength of neurotransmission within
the CNS.
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