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Abstract: The magnetic nanochain-like material has been regards as one of the most promising elec-
tromagnetic (EM) absorbing material but remains a challenging. Herein, magnetic chain-like ferrite
(included Fe3O4, CoFe2O4 and NiFe2O4) are successfully produced through a general solvothermal
method, using PVP as the structural-liking agent. Experimental results confirm the ultimate sample
possess a 3-dimensional chain-like structure which are constructed by numerous ferrite’s nanoparti-
cles with ~60 nm in diameter. Their electromagnetic parameters can be also manipulated by such a
chain structure, especially the dielectric loss, where a sharply increases can be observed on within a
lower filling ratio. It greatly benefits to the EM absorbing property. In this article, the electromagnetic
absorption layer made with a lower content of ferrite possess the excellent electromagnetic absorption
ability, where the optimized effective absorption band was nearly 6.4 GHz under a thickness of
1.8 mm. Moreover, the filling ratio is only 30 wt%. Our method for designing of chain-like magnetic
material can be helpful for producing wideband electromagnetic absorption in a low filling ratio.

Keywords: magnetic chain-like material; ferrite; dielectric loss; electromagnetic absorption

1. Introduction

Recently, great achievements are being made in wireless techniques, especially more
and more wireless-related electronics have been used in our daily life [1–3]. However, the
frequently utilization of these electronics will inevitably lead to the serious electromagnetic
(EM) radiation or interference, which would not degrade the normal working of neigh-
boring electronics, but also threat human being’s health [4,5]. The exhibition of EM issue
has stimulated researchers to produce functional materials, which enabling to absorb the
EM energy and then dissipate it into heats [6–8]. These functional materials are termed as
EM absorbing materials that the mechanism for dissipating the EM energy is via magnetic
or dielectric loss ability [9,10]. The key requirement for an exceptionally EM absorber is
included wideband, strong absorption, thin thickness etc. [11,12]. Among these candidates,
spinel of ferrite (such as Fe3O4, CoFe2O4) has attracted a great deal of research interest,
owing to the dual magnetic and dielectric loss ability [13,14]. For example, Wang et.al.
fabricated a CoFe2O4 nanoparticle, with a minimum reflection loss value (RL) of −9.8 dB
under a thickness of 2.8 mm [15]. Zhu and co-workers have developed a hierarchical
shaped CoFe2O4, which possessed a minimum RL value of −17.5 dB within a thickness of
2.5 mm [16]. According to these two cases, it is unfortunate that currently ferrites did not
present ideal EM performance, which are specific reflected in the smaller RL value, narrow
effective absorption region (frequency region with RL exceeding −10 dB), larger thickness
(for commercial application, thickness < 2.0 mm) [17,18]. More importantly, the fill ratio
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of ferrite is usually higher than 60 wt%, which would result in high cost and excessive
weight [19,20]. The in-depth analysis revealed that the EM performance of ferrites are
mainly restricted by the low dielectric loss ability [21,22]. To strength the dielectric loss
intensity, designing of ferrite-based composites has been an effectively strategy, which
were constructed the ferrite with the material than higher in dielectric loss ability [23,24].
These higher dielectric materials are primarily included graphene, multiwall nanotube,
metal etc. [25–28]. As a result, the dielectric loss intensity of ferrite composites would
increase significantly, which are helpful for the EM absorption. For example, the ε” value of
original CoFe2O4 was nearly 1.0, but sharply increased to 4, after decorated with graphene,
according to the example of Jason [29]. This method is effectively to dielectric loss, however,
the preparation method is complicated, some are involving three or more steps. Mean-
while, due to the exhibition of nonmagnetic component, the integrated magnetic loss
ability actually possessed a decreased tendency, thus would weaken the EM absorption
ability. Consequently, the electromagnetic performance has improvement a little, but is still
insufficient for commercial application.

In this article, herein, we designed a chain-shaped ferrite which using the structural
strategy to increase the dielectric loss ability. The as-prepared chain-shaped ferrite (Fe3O4,
NiFe2O4, CoFe2O4) were easier to form a 3D network structure after dispersing into the
matrix. Once 3D network structure is formed, the dielectric loss ability can be increased
sharply, based on the conductive percolation threshold. Such a chain-like sample possess a
wideband EM absorption ability under a thin thickness. The method of utilizing structural
strategy to formation of chain-shaped ferrite has great significance in making wideband
high-performance absorber.

2. Experimental Procedure
2.1. Materials

Cobalt acetate (Co(Ac)2), ferric chloride (FeCl3), ferrous chloride (FeCl2), Nickel acetate
(NiCl2) were obtained from Shandong Chemical Reagent Co., Ltd. (Shandong, China).
Polyvinylpyrrolidone (PVP, MW58000), ethylene glycol (EG), cyclohexane and glycerol
were purchased from Sinopharm Chemical Reagents Co. (Beijing, China). All of the
chemical reagents were analytically pure and used without further purification.

2.2. Preparation of Chain-Shaped Ferrites

The chain-shaped ferrite was prepared by a solvothermal-process. Typically, 1.5 g PVP,
2.0 mmol FeCl3, 1.0 mmol FeCl2 are dissolved into solution, containing ethylene glycol
(20 mL), and then ultrasonic for 1.0 h. Subsequent, the solution was transferred into a
Teflon-lined stainless-steel autoclave and kept at 200 ◦C for 20 h. After cooled to room
temperature, the precipitation can be collected by centrifuge (rotating speed~10,000 rpm),
washed with isopropanol, cyclohexane, and ethanol for 6~10 times. Finally, the dried
sample was continuous to heat at 300 ◦C for 2 h, aiming to removal of PVP. The NiFe2O4
and CoFe2O4 were prepared via replacing the FeCl2 with Co(Ac)2) and NiCl2.

2.3. Characterization and Measurements

The phase compositions of these hybrids are confirmed by powder X-ray diffraction
(XRD) patterns, using Cu Kα radiation (λ = 0.154178 nm). Morphologies, especially the
chain-like structure are observed by a Field emission scanning microscope (FE-SEM, JEOL
JEM-2100, Tokyo, Japan). Fourier transform infrared spectra (FT-IR) was characterized by
the Fourier transform infrared spectrometer (VERTEX80, Bruker, Billerica, MA, USA). Mag-
netization hysteresis loops (M-H) curve was recorded on a vibrating sample magnetometer
(VSM, Lakeshore, Model 7400 series, Westerville, OH, USA) at 298 K.

2.4. Electromagnetic Parameters

To obtain the electromagnetic parameters, the as-prepared ferrites were homoge-
neously blended with paraffin wax in the weight ratios of 10~40 wt%. Subsequent, the
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mixture was pressed into a ring-shaped structure with outer diameter of 7.0 mm and inner
diameter of 3.04 mm, respectively. The electromagnetic parameters were analyzed on
an E5080A vector network analyzer at 2–18 GHz. Finally, the frequency dependency of
reflection loss (RL) curve could be gained by inputting the electromagnetic parameters into
the below formulas [30–32]:

Zin = Zo(µr/εr)1/2tanh[j(2πfd(µrεr)1/2/c)] (1)

RL(dB) = 20log|(Zin − Zo)/(Zin + Zo)| (2)

where Zin relates to input impedance of the absorber, f is the frequency of electromagnetic
wave, d is the thickness of the absorber, while c is the velocity of light. εr (εr= ε′−jε′′) and µr
(µr = µ′−jµ′′) are the relative complex permittivity and permeability of the absorber.

3. Results and Discussion

The chain-like ferries were prepared through a solvothermal route, as see the Figure 1.
During the solvothermal procedure, numerous of ferrite nanocrystals would form first and
then self-assembly into a nanoparticle. The presence of PVP would adsorb on the surface
of nanoparticles and prevent the further growth. Meanwhile, the PVP was constructed by
two types of active covalent bonds, knowing as C=O and C–C, respectively. During the
solvothermal process, C=O and C=C bonds can be break down and convert into unsaturated
–C–O– and –C–C– bonds. These unsaturated activity bonds could continue to link with
PVP that adsorbed on neighboring ferrite nanoparticles. Lastly, it would leaded to the
chain-shaped structure. Usually, the existed PVP are weaken in electromagnetic absorption,
thus needs to be remove. To remove the PVP, the as-obtained samples were processed
at 300 ◦C for 1 h. Relied on such a solvothermal way, three types of chain-like ferrites,
included Fe3O4, CoFe2O4 and NiFe2O4 can be made.
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Figure 1. Schematic illustration for the formation procedure of chain-like ferrite.

To make sure the successfully removal of PVP, FT-IR spectra of Fe3O4 sample was
provided in Figure 2a, aiming to observe the changes of covalent bonds. Clearly, without
annealing treatment, two Fe-O peaks can be observed at 553 and 655 cm−1 which are
ascribed to the FeO4 (550 cm−1) and FeO6 (670 cm−1) [33,34]. It suggests the spinel phase
of Fe3O4. In addition, another two peaks at 1389 and 1620 cm−1 are belonging to C–O and
C–C, which are original from the PVP. After annealed at 300 ◦C, C-based peaks are entirely
disappeared, which may be due to the decomposition of PVP.

The magnetization properties were compared by the VSM at room temperature.
Figure 2b shows the magnetic hysteresis loops (M–H). The chain-like sample after treated at
300 ◦C has a higher magnetization value of 84.3 emu/g than the sample without annealing,
which attributing to the removal of nonmagnetic PVP. Considering the evidences of FT-IR
and M-H loops, the adsorbed PVP can be totally decomposed after conducting annealing
treatment. The phase composition of these heated chain-like ferrites are characterized by
XRD patterns. As shown in Figure 2c, these diffraction peaks at 2θ = 30.1, 35.3, 37.1, 42.9,
45.3, 53.4, 57.0 and 62.8 o are corresponding to (200), (311), (222), (400), (331), (422), (511)
and (440) crystal planes of spinel Fe3O4 (JCPDS: card no: 75–1609). In comparison with
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Fe3O4, the diffraction peaks of CoFe2O4 and NiFe2O4 present a slight right shift, which is
due to varied unit cell volume after dotted by Co or Ni.
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Figure 2. (a) FT-IR spectra and (b) M–H loops of the chain-like Fe3O4 sample with and without
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The chain-like structures were investigated by the TEM images, as showed in Figure 3.
In Figure 3a–d, the Fe3O4 nanoparticles closely contact well with each other and resulting in
distinct chain-shaped structure. The average sizes of Fe3O4 nanoparticles are approximately
60 nm, as statists in Figure 3e. The inserted element mappings reveal that Fe and O
elements are evenly distributed in each nanoparticle. Similarly, CoFe2O4 and NiFe2O4 both
possess the same chain-like structure, as depicted in Figure 3f–i. Meanwhile, the presented
nanoparticles have same shapes. Based on TEM images, one conclusion can be made that
this method has been proven effectively to form various ferrite nanochains.
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(h,i) NiFe2O4.

Subsequent, the as-prepared ferrites were homogeneous mixed with paraffin in var-
ious certain weight ratio, which was used to test the EM parameters. Figure 4 shows
the measured permittivity parameters. It is well-known that permittivity values con-
tain two parts, namely real and imaginary part of permittivity value (ε′, ε′′), which are
account for the electrical storage and dielectric loss capability, respectively [35,36]. In
Figure 4(a1–a4), we observe that all ε′ values exhibit the decreased tendency without any
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remarkable fluctuation. Meanwhile, ε′ linearly increases significantly as enhancing the
weight ratio of ferrite. It is interesting that exceeding 30 wt%, ε′ values become slowly
increases. Among these ferrites filling absorption layers, Fe3O4 has the largest ε′ value
at whole 2~18.0 GHz. For example, the absorption layer containing 10 wt% of Fe3O4 has
a ε′ value about 4.3~3.9, which is greater than CoFe2O4 (3.8~3.1) and NiFe2O4 (3.4~3.1),
respectively. At 30 wt%, Fe3O4 still reaches the largest ε′ value of 9.4–7.4. The ε′′ value as a
function of frequency are shown in Figure 4(b1–b4). With regarding to the ε′′ value, similar
phenomenon can be observed, and two conclusions are summarized as follows:

1. A higher content of ferrite would lead to the strong dielectric loss ability. Besides, the
distinct enhancement of ε′′ can be observed at ferrite weight regions of 10~30 wt%,
but slowly increases between 30~40 wt%.

2. Fe3O4 is easier to present the strongest dielectric loss behavior than CoFe2O4 and NiFe2O4.
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To reveal the varied permittivity, the conductive percolation has been used in this arti-
cle. As we known, ε′ and ε′′ are actually highly associated with their relaxation polarization
and conductive loss ability [37,38]. Of particularly note, polarization relaxation at GHz is
mainly ascribed to the dipole polarization of ferrite and the interfacial polarization from the
interface between ferrite nanoparticles and paraffin wax [39,40]. Either dipole and interface
occurs, it would affect ε′ and ε′′ value both, which two typically physical phenomena can
be observed, that is, sharply decreased ε′ value since the frequency dispersive effect, and
dielectric resonance peak in ε′′ [41]. Concerning the frequency dispersive, the plots of ε′

versus ε′′ will turn to be a single semicircle, normally denoted as the Cole-Cole semicircle,
according to the classic Debye-theory. In details, the relative complex permittivity can be
drawn as follow [42,43]:

εr = ε∞ +
εs − ε∞

1 + j2π f τ
= ε′ − jε′′ (3)

where εs, ε∞, τ are static permittivity, relative dielectric permittivity at high-frequency limit,
and polarization relaxation time, respectively. After the separation of real and imaginary
parts, gives:

ε′ = ε∞ +
εs − ε∞

1 + (2π f )2τ2
(4)
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ε′′ =
2π f τ(εs − ε∞)

1 + (2π f )2τ2
(5)

Based on the Equations (4) and (5), the ε′-ε′′ can be expressed as above:(
ε′ − ε∞

)2
+ (ε′′ )2 = (εs − ε∞)2 (6)

According to Equation (6), each Cole-Cole semicircle is corresponding to one Debye
relaxation process. Taking the 30 wt% of ferrites as cases, they did not present obviously
semicircles, as shown in Figure 5a–c. In this case, it can be deduced that the ferrite-
paraffin wax material systems are weakening in polarization. Hence, the dielectric loss
is mainly original from the conductive loss. The effect of structure on the conductive are
illustrated in Figure 5d. Dispersing a low content of ferrite into the paraffin wax would
result in various discontinuous conductive network. Hence, the conductive loss ability is
very weakening, owing to the limited transport of electrons. When increases to a certain
value, these discontinues are turned to connect with each other and forming a continues
conductive network, which greatly enhances the ε′ and ε′′ both. Usually, the weight value
for fabricating continuous conductive network was denoted as percolation threshold [44].
Before reaching the percolation threshold, ε′ and ε′′ values increases as rising the weight
ratio. Once beyond the percolation value, ε′ and ε′′ possess slowly increasing tendency. In
our case, the percolation threshold value of ferrite is estimated to be 30 wt%, which are
almost a half of current advances [45,46]. The percolation threshold is not only related to
the physical performance of filler, but also influenced by the nanostructure. In this article,
the chain-like structure of ferrite can be regarded as the benefited nanostructure, so that a
lower filling ratio is enough to form such a continuous conductive network. Hence, these
ferrite filling absorption layer enables a good dielectric loss under a relative low filling
ratio. Among these ferrites, Fe3O4 with the highest ε′′ value which may due to the strongest
electron hoping between Fe3+ and Fe2+ [47].
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Figure 5. (a–c) Cole-Cole curves for the 30 wt%-ferrite-paraffin wax composite; (d) schematic illustra-
tion of the relationship between weight ratios and conductive loss.

The permeability values are investigated in Figure 6, which contains real and imagi-
nary part of permeability values (µ′ and µ′′). Generally, the µ′ and µ′′ values are standing
for the storage and dissipation capability of magnetic field, respectively [48]. At 10–20 wt%,
µ′ values of these ferrites filling absorption layer are only a tiny bigger than 1.0. After
increasing to 30 wt%, these µ′ values are ranging in 1.25~1.15 and simultaneous possessing
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a decreased tendency. Up to 40 w%, µ′ values have a distinct improvement and all of µ′

values are larger than 1.25. But overall, µ′ of either Fe3O4, CoFe2O4 or NiFe2O4 has a little
difference in µ′ values, which were attributed to the nearly magnetization behaviors. Be-
cause of similar crystal structure and magnetization, their present approximately magnetic
loss ability.
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tains of ferrites: (a1) µ′-10 wt%; (a2) µ′-20 wt%; (a3) µ′-30 wt%; (a4) µ′-40 wt%; (b1) µ′′-10 wt%;
(b2) µ′′-10 wt%; (b3) µ′′-30 wt%; (b4) µ′′-40 wt%.

The reflection loss values (RL) values of these samples can be obtained via coaxial-line
method. One can see that ferrite filling absorption layer shows the poor electromagnetic
absorption, which the reflection loss value is as bigger as−10 dB (regarding as the standard
absorption value) at entirely thickness region (Figure 7). But concerning the thickness, the
exceptionally EM absorption performance is requested to be thin thickness (<2.0 mm). In
order to give a visual effect of the thickness and absorption performance, the RL values of
the ferrites filling absorption layer with a thickness region of 1.5~2.0 mm were converted
into 2D maps, as presented in Figure 8. When containing 10 wt% of ferrites, their minimum
RL values are greater than−5 dB, suggesting the poor EM absorption performance. Increas-
ing to 20 wt%, their minimum RL values decreases, but still larger than −10 dB, thus can’t
be used. Significantly enhancement can be found for the absorption layer with a filling
ratio of 30 wt%. Specifically, the minimum reflection loss value of −25.5 dB can be gained
within a thickness of 2.0 mm. At 1.8 mm, the frequency region with RL < −10 dB can reach
maximum (6.4 GHz, 11.6~18.0 GHz), showing desirable wideband absorption ability.

In comparison with Fe3O4, the minimum RL value of CoFe2O4 absorption layer equals
to −57.8 dB with a matched thickness of 2.0 mm. Meanwhile, the maximum effective
absorption region is estimated to be 6.2 GHz under identical 1.8 mm. As for the NiFe2O4,
the optimized RL value and effective absorption region respective −17.1 and 4.2 GH, and
corresponding thickness are 2.0 and 1.8 mm. But continues increases to 40 wt%, minimum
RL value and effective absorption band do not enhance significantly. To comprehensively
consider the bandwidth, thickness and filling ratio, the absorption layer made with 30% of
Fe3O4 would be the optimized electromagnetic performance. Compared with the ferrite-
based EM materials in recent advances (listed in Table 1), it is clearly the Fe3O4-paraffin
wax exhibited the excellent within a lower filling ratio.
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Table 1. Ferrites based electromagnetic absorption performance according to recent advances.

Samples Thickness (mm) Filler Ratio (wt%) Mini. Reflection
Loss Value (dB)

Effective Absorption
Region (GHz) Ref.

NiFe2O4 2.7 20 −70.7 3.5 [49]
Fe3O4/C 2.1 50 −54.6 6.0 [50]

G–4 1.5 50 −43.9 6.0 [51]
NiCo2O4/CNTs 4.0 30 −45.1 4.0 [52]

Fe3O4/MWCNTs 2.0 50 −63.6 3.0 [53]
Co7Fe3 2.0 20 −78.4 6.7 [54]

Fe3O4@NPC 3.0 30 −65.5 4.5 [55]
Chain-like-Fe3O4 1.8 30 wt% −25.5 6.4 GHz This work

4. Conclusions

To summary up, magnetic chain-like ferrites (such as Fe3O4, CoFe2O4 and NiFe2O4)
constructed by 60 nm of nanoparticles have been prepared by a facile solvothermal route.
The as-prepared chain-like structure are highly favoring for the permittivity values under a
relatively low filling ratio. The results indicate that ε′′ value of the absorption layer filling
with 30% were beyond 2.5. Meanwhile, such a magnetic ferrite possessed moderately
magnetic loss ability. Owing to the dielectric and magnetic loss behavior, a wideband
absorption region of 6.4 GHz under a thinner thickness of 1.8 mm. The EM absorption
mechanism can be obtained at a lower filling ratio has been in-depth investigation, which
are greatly benefits to the chain-like structure.
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