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Different countries have adopted various control measures for the COVID-19 pandemic

in different periods, and as the virus continues to mutate, the progression of the

pandemic and preventive measures adopted have varied dynamically over time. Thus,

quantitative analysis of the dynamic impact of different factors such as vaccination,

mutant virus, social isolation, etc., on transmission and predicting pandemic progress

has become a difficult task. To overcome the challenges above and enable governments

to formulate reasonable countermeasures against the ongoing COVID-19 pandemic, we

integrate several mathematical methods and propose a new adaptive multifactorial and

geographically diverse epidemiological model based on amodified version of the classical

susceptible-exposed-infectious-recovered (SEIR) model. Based on public datasets, a

multi-center study was carried out considering 21 regions. First, a retrospective study

was conducted to predict the number of infections over the next 30 days in 13

representative pandemic areas worldwide with an accuracy of 87.53%, confirming the

robustness of the proposed model. Second, the impact of three scenarios on COVID-19

was quantified based on the scalability of the model: two different vaccination regimens

were analyzed, and it was found that the number of infections would progressively

decrease over time after vaccination; variant virus caused a 301.55% increase in

infections in the United Kingdom; and 3-tier social lockdown in the United Kingdom

reduced the infections by 47.01%. Third, we made short-term prospective predictions

for the next 15 and 30 days for six countries with severe COVID-19 transmission and the

predicted trend is accurate. This study is expected to inform public health responses.

Code and data are publicly available at https://github.com/yuanyuanpei7/covid-19.

Keywords: adaptive multi-factor model, COVID-19, vaccination, virus mutation, social isolation

INTRODUCTION

With the global spread of the coronavirus disease-2019 (COVID-19) to over 200 countries (1),
different countries or regions have taken various measures to curb the pandemic, such as wearing
masks, maintaining social distancing, contact tracing, regional blockades, etc. (2, 3); many countries
are also actively implementing vaccination plans (4, 5). However, the effectiveness of available
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vaccines and the timelines for implementing vaccination vary
between countries, and some countries are still facing vaccine
shortages (6). Furthermore, the virus mutates, leading to variants
such as B.1.1.7 and B.1.351 (7, 8). In addition, the control
measures applied have also varied throughout the pandemic in
different stages. As a result of the factors above, quantitative
analysis and prediction of the spread of the COVID-19 pandemic
are challenging.

Mathematical modeling is an effective method for quantitative
analysis of the COVID-19 pandemic. There are twomain types of
these models, the propagation dynamics models represented by
SEIR and the probability models. Their functions are: analyzing
the dynamic transmission of COVID-19, assessing the impact
of different factors on the COVID-19 pandemic, and predicting
the pandemic trend. Through mathematical modeling, it is
helpful for early intervention, reasonable allocation of medical
resources, and helping the government to formulate response
measures. For example, Della Rossa et al. demonstrated an
analysis model indicating that intermittent regional strategies
can alleviate the pandemic (9). Gu et al. used a predictive
model to assess the number of deaths between the apex and
endpoints of the COVID-19 pandemic (10). Reno et al. used
the SEIR model to predict the dynamic spread of COVID-
19 and its burden on hospital care under different social
distances (11). Kissler et al. used an improved SEIR model to
predict the COVID-19 spread and emphasized the importance
of intermittent distancing and serum monitoring (12). Russell
et al. studied the effect of internationally imported cases on
domestic transmission (13). Bayham and Fenichel analyzed the
impact of closing schools onAmerican healthcare workers during
the pandemic (14). Li et al. used age-structured modifications
of the SEIR model to investigate how to reduce the spread
of COVID-19 (15). All these models have contributed to the
study of the COVID-19 pandemic. The SEIR model shows
good performance for the dynamic transmission of SARS-CoV-
2 in different populations but requires a large number of cases
to simulate, while the probability model has the advantage of
analyzing the data but does not depict the dynamic propagation
process well. However, these models were studied early in the
COVID-19 pandemic when there was not enough knowledge
about COVID-19, for example, Della Rossa et al. did not predict
the number of cases and deaths (9). Moreover, no vaccines
were used and no new mutant viruses emerged in the early
years of the pandemic. Hence, it is vital to study multifactorial
epidemiological models applicable to different geographical
regions in the new pandemic environment.

The pandemic, populations, and various restraining measures
interact with one another and vary over time (16), consistent with
the descriptions of the susceptible-exposed-infectious-recovered
(SEIR) model regarding the transmission dynamics of infectious
diseases. SEIR is a compartmental model that is often applied
to the mathematical modeling of infectious diseases, wherein
the population is assigned to compartments with labels, for
example, S, E, I, or R (Susceptible, Exposed, Infectious, or
Recovered), and people progress among compartments. In this
study, we propose a new approach designed to perform a
quantitative analysis of the impact of various interventions on the

pandemic by modifying the classical SEIR propagation dynamics
model and combining it with ordinary differential equations and
mathematical integration functions. We selected data from 21
regions distributed in different parts of the world that are the
most significant contributors to the outbreak and performed
seven experiments to quantitatively analyze the impact of two
vaccination methods, viral variants, and social blockade on
the spread of the pandemic, additionally, the progress of the
pandemic is predicted.

METHODS

Data Sets
In this multi-center study including data on 21 countries or
regions, sourced from the Johns Hopkins Center for Systems
Science and Engineering (JHU.CSSE) and the World Bank’s
public dataset for Global Health, and OpenStreetMap (1, 17),
the collected publicly available datasets includes newly diagnosed
infections per day, existing confirmed infections, number of
people recovered, and deaths. Globally, we selected some of the
countries and regions most affected by the pandemic based on
infection rates and numbers of infections, and then excluded
some countries and regions by checking the completeness of the
raw data. In addition, Considering the COVID-19 distribution in
different regions, for example, the pandemic in Hong Kong is not
particularly severe worldwide, but it is severe in East Asia. Finally,
we identified 21 countries and regions.

We also collected other publicly available data from the
Internet, including the total population data of the 21 countries
or regions mentioned above. To study the impact of different
vaccination methods on the pandemic, we chose New York,
owing to New York’s easily available data and large population,
we also obtained its daily vaccination data by consulting publicly
available government information, and it was confirmed that the
majority of people were administered the Pfizer vaccine (18).
Furthermore, the effectiveness of the Pfizer vaccine has been
reported in the literature (19, 20). In addition, we obtained the
date of the initial discovery and spread of the UK virus variant
(21) as well as the start date of the UK 3-tier lockdown (22). All of
the information above was used in this study. We have published
the data and code used to model the 21 regions mentioned here
experimentally; it is available at the URL https://github.com/
yuanyuanpei7/covid-19.

As all the data of patients were de-identified, the requirement
for written informed consent and ethical approval was waived.
All procedures performed in studies involving human
participants were in accordance with the National Research
Committee and the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Establishing a New Adaptive Multi-Factor
Model
In this study, considering that the propagation of COVID-
19 is determined by various factors, the classic SEIR model
is modified (23). First, redefining the function of the model,
(1) we consider the viral incubation period. (2) Patients in
the incubation period are also infectious, however, they are
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less infectious than fully infected people. (3) Vaccination or
social isolation of susceptible populations, the immune efficacy
of the vaccine or the protective of the isolated population is
between 0 and 1. Second, new dynamic propagation parameters
“α” and “σ ” are added to include the analysis functions
of vaccination and social isolation in the model. Third, a
set of ordinary differential equations has been developed
based on the functions and transmission dynamics of the
new model.

The population is classified according to the transmission
dynamics of the new SEIR model, as follows.

S (Susceptible): A healthy person who lacks immunity is
susceptible to infection after contact with an infected person.
E (Exposed): People who have been in contact with an
infected person.
I (Infectious): Infectious patients can spread the virus to S and
turn them into E or I.
R (Recovered): People who have immunity after recovery will
not revert to S, E, or I.
N: The total number of people in an area, not considering
new births and immigration and deaths. This total number
remains unchanged.

The definition of parameters is crucial to realizing the functions
of the model. According to literature reports, we set or
adjust the values of these parameters in the model (24–
27). Different geographical areas have different epidemiological
characteristics, such as diverse populations and densities,
interventions, and viral variations, and therefore, the values
of some parameters are variable, such as “β”, “q,” “α”, “σ ”,
and “t”. Other parameters have fixed values, such as “ε” being
the reciprocal of the incubation period (5.2 days) and “γ ”
being the reciprocal of the recovery time of the infections
(14 days). In the new model, the parameters are defined
as follows.

β : Infection rate of the infections. β means: for example, that
on average, an infected person is exposed to M individuals and
the probability of infection after exposure is P (0∼1), β =M∗P,
Therefore, β > 0.
q: The infectivity of latent relative to infections, with a ratio
between 0∼1.
α: The vaccination rate of the susceptible population and the
isolation rate of the susceptible population. For example: 20
out of 100 people are vaccinated, and the other ten people are
quarantined, the value of α is 30%. Therefore, the value of α is
0∼ 1.
σ : The protective effect of the vaccine and the effectiveness
of isolation. For example, 50 out of 100 people are vaccinated
and 30 develop an immune response. The other 50 are isolated
and 30 of them are fully protected, so the value of q is 60%.
Therefore, the value of σ is 0∼ 1.
ε: Proportion of latent converted to infections, reciprocal of
5.2 days.
γ : Proportion of persons recovered from infections, reciprocal
of 14 days.
t: Represents the number of days.

In the new model, the population of each category is
dynamically changed, which is expressed by ordinary differential
mathematical equations as follows.

Rate of transmission from infections to susceptible
(unvaccinated or unisolated susceptible) is obtained as

βS(1− α)I/N (1)

Rate of transmission from latent to susceptible (unvaccinated or
unisolated susceptible persons) is obtained as

βS (1− α) qE/N (2)

Rate of transmission from infections to susceptible (people
who have been vaccinated but have not acquired immunity or
people who have been infected because of insufficient quarantine
measures) is obtained as

βαS (1− σ) I/N (3)

Rate of transmission from latent to susceptible (vaccinated but
unimmunized) is obtained as

βαS (1− σ) qE/N (4)

The new SEIR model considers that latent patients are
also infectious, but does not account for new immigrant
populations, neonatal populations, or natural deaths. The new
SEIR population expression formula is as follows:

N = S+ E+ I + R (5)

In the new SEIR model, a set of ordinary differential
equations represents the dynamic spread of the four groups of
“susceptibility,” “exposure,” “infection,” and “recovery” as follows.

dS/dt = −βS(1− α)I/N − βS(1− α)qE/N − βαS(1− σ )I/N

− βαS(1− σ )qE/N − σαS (6)

dE/dt = βS (1− α) I/N + βS (1− α) qE/N + βαS (1− σ) I/N

+ βαS (1− σ) qE/N − εE (7)

dI/dt = εE− γI (8)

dR/dt = σαS+ γI (9)

It is worth noting that formula (6) represents the constant
removal rate from the susceptible population. The susceptible
people have been dynamically decreasing during the pandemic
spread, and it will only decrease. Therefore, the first four rates
of formula (6) are <0. σαS indicates the rate of increase in the
number of people gaining protection after being vaccinated and
being isolated among susceptible individuals. The actual rate of
being protected is also the rate of moving out of the susceptible
population daily, so the rate is also <0.

In formula (9), γI represents the rate of the population
recovering from the infected each day. σαS (Rate of increase
in the number of gaining protection through vaccination or
isolation in susceptible individuals) is constantly moving out of
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FIGURE 1 | Experimental flow.

the susceptible population to the recovered population in the
form of a negative number. It is increasing in the recovered
population, so σαS is a positive number in formula (9). The
recovered population is divided into two parts, those who have
recovered from the infections and those who have been protected
through vaccination and isolation, and therefore are the sum of
the above two parts.

Based on the explanation of formulas (6) and (9), formulas
(7) and (8) can also be understood, and relevant references are
attached (23, 28).

Functions and Scalability
The experimental flow is shown in Figure 1.

These procedures were performed according to the
following steps.

Step 1: The model is defined by the function “SEIR_model.”
Loading the daily data table “pd.read_csv” of existing infected
people and the area’s population into the “SEIR_model”
function of the model. The number of recovered people was
loaded directly onto the program.
Step 2: Ensuring the model’s adaptability through training
and fitting historical data is the focus of this study. Owing
to different characteristics of the pandemic in different
regions and different stages, appropriate upper and lower
limits were set for the parameter group (β , q, α, σ , ε,
and γ ). Then the historical data was trained and fitted
20 million times through the “optimize.curve_fit” function.
Finally, a set of optimal parameters and best-fitting curves are
obtained automatically.
Step 3: After loading different factors of the model
(vaccination, viral mutation, social distancing, and the
prediction of pandemic), new quantitative analysis functions
are achieved by calculating the area under the curve using a

mathematical integral equation, given as follows.

y =

∫ end

start
I(t)dt (10)

The formula (10) represents the total time of the disease course
of all people in the infection period during the START and END
periods. The area under the integral curve represents the entire
disease course of the infections during that period, which helps
to clearly describe the pandemic’s impact on the population and
the economy.

Experimental Environment
All the experiments were performed on a personal computer
(Windows 7 Home Edition, 64-bit operating system), the
installed software was PyCharm Professional 2020.

RESULTS

Seven studies were carried out, the first six of which were
retrospective and the last prospective research, yielding the
following results.

Prediction of the Pandemic in 13 Regions
Through training and fitting actual historical data, the COVID-
19 trend curves can be obtained and used to predict the pandemic
trend (28–30). According to this principle, in 13 regions with
severe pandemic transmission distributed in different locations
worldwide, historical data were used to train and fit the new
model, and the number of infections in the next 30 days was
predicted. The two phases of the experiment were as follows.

Phase I: The red line in Figure 2 represents the number of
actual infections per day. First, the model was trained, and the
actual pandemic data of Hong Kong from 31 December, 2020 to
24 February, 2021 were fitted, the fitted curve was obtained as
the yellow line in Figure 2. Parameters of the model adapted to
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FIGURE 2 | Quantitative analysis of fitting and prediction for HongKong. (A) Red area represents the integral under the curve of actual infections during the fitting

period. (B) Yellow area represents the integral under the curve of the fitted infections during the fitting period. (C) Red area indicates the integral under the curve of

actual infections in the prediction period. (D) Blue area represents the integral under the curve of predicted infections in the prediction period.

the pandemic characteristics during this time were also obtained.
Then, using the parameters obtained by fitting and training, the
model predicted the number of infected persons between 25
February and 26 March 2021, as shown in the blue curve in
Figure 2.

The actual and fitted values were obtained by calculating the
mathematical integration of the red area in Figure 2A and the
yellow shaded area in Figure 2B. And the accuracy of the fit
was obtained as 97.24% (fitted/actual). We also compared the
integration of the red curve (actual number of infections) with
the blue curve (predicted number of infections) for the period
from 25 February to 26 March, 2021, as shown in Figure 2C red
area and Figure 2D blue area, and obtained a prediction accuracy
of 95.29%.

Phase II: The proposed model was tested in 13 different
countries and regions to verify its robustness. We selected eight
countries worldwide and five states with a larger population
and a more severe pandemic in the United States. As may be
observed in Figure 3 and Table 1, the average fitting accuracy
of the SEIR model for actual infections was 97.91%, and the
prediction accuracy for the overall infected population during the
following 30 days was 87.53%, which demonstrates the fitting and

prediction accuracy, adaptability, and robustness of the model in
different regions.

Effect of Vaccination on the Reduction of
Infections
In New York, the initial COVID-19 vaccination drive was
implemented from 3 December 2020 to 26 March 2021, in these
100 days, ∼30% of the population was vaccinated at least once
(18). The reference basis for the effectiveness of vaccination is as
follows (19, 20): (1) The vaccine efficacy after the first shot was
56%. (2) The overall vaccine efficacy after the second shot was
∼90%. (3) An immune response produced occurs in the body
about 15 days after vaccination; therefore, we set the date when
the vaccine became effective as 16 December 2020, and assumed
that the population was inoculated at the same rate each day for
the next 100 days, meaning the average daily vaccination rate
was 0.3%.

In Figure 4, the red curve indicated the actual number
of infections per day. We used the model to train and fit
pandemic data from 7 September, 2020 to 15 December, 2020
(vaccination on 3 December, 2020, immune response in vivo
on 16 December, 2020), the obtained model and parameters
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FIGURE 3 | Retrospective quantitative prediction for 12 countries or regions. Actual infected individuals are represented by red curves. Fitted infections are

represented by yellow curves. Predicted infections are represented by blue curves. (A) California, (B) Florida, (C) Georgia, (D) Virginia, (E) Texas, (F) the United States,

(G) Iran, (H) Peru, (I) Israel, (J) Egypt, (K) Iraq, (L) Brazil.
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TABLE 1 | Fitting and prediction accuracy for 13 countries and regions.

Results of training and fitting using the pandemic data before the

predicted start date

Results of retrospective prediction for the next 30 days

Area Real integral Fitting integral Fitting

accuracy %

real integral Prediction

integral

Prediction

accuracy %

California 2,680,419 2,784,677 96.26 107,520 79,861 74.28

Florida 1,217,351 1,241,724 98.04 147,518 138,462 93.86

Georgia 686,137 677,325 98.72 55,516 50,718 91.36

Virginia 417,076 413,676 99.18 43,116 43,847 98.33

Texas 1,831,788 1,796,822 98.09 151,518 172,968 87.60

United States 22,543,471 22,541,901 97.06 1,878,409 1,438,641 72.45

Iran 266,868 277,238 96.26 240,490 250,904 95.85

Peru 353,923 356,882 99.17 213,540 237,144 90.05

Israel 381,102 378,118 99.76 61,144 42,749 81.56

Egypt 26,899 26,373 98.04 18,724 18,147 96.92

Iraq 76,130 79,508 95.75 142,795 170,067 83.96

Brazil 2,131,338 2,146,708 99.28 2,079,058 1,589,472 76.45

Hong Kong 68,271 66,389 97.24 8,359 7,965 95.29

FIGURE 4 | Quantitative analysis of the two scenarios of vaccinated and unvaccinated individuals. (A) Red area indicates the integral under the curve of actual

infected individuals in the prediction period. (B) The green area indicates the integral under the predicted infected person curve in the vaccinated condition. (C) The

blue area indicates the integral under the predicted infected person curve in the unvaccinated condition.

were used to predict pandemic progression under unvaccinated
conditions within 100 days after December 16, 2020, as shown
in the blue curve in Figure 4C. Then, we used the model to
predict pandemic progression in these 100 days under loaded
vaccine conditions, the green prediction curve of vaccination
in Figure 4A (the number of infections predicted per day after
vaccination) is obtained.

Comparing the mathematical integral of the red curve for
the actual number of infections (Red area in Figure 4A) with
the mathematical integral of the green predicted curve for
implementing the vaccination plan described above (Green
area Figure 4B), the result was 916,966/970,234 = 94.51%.
The prediction results of the model for loading vaccination
conditions were confirmed to be accurate. We also compared the
mathematical integral of the blue prediction curve assuming no
vaccination (Blue area in Figure 4C) with that of the red curve for
the actual number of infections (Red area in Figure 4A), yielding

a result was 2,389,790:970,234. As shown in Figures 4A,C, it
was found that vaccination reduced the number of infections
by 59.40%.

Impact of Different Vaccination Rates in
the Population on the Pandemic
Here, it was assumed that the vaccine efficacy was 90%, and
the vaccination rate was 10, 20, 30, 40, and 50% of the total
population of New York. The model was used to quantitatively
predict the number of infections in the next 30, 45, 60, 75, and 90
days. The result of the relative decline of infections is shown in
Figure 5.

Impact of Vaccination With Different
Potency on the Pandemic
In addition, we assumed that 30% of the total New York
population was vaccinated, with vaccine efficacy of 40, 50, 60,
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FIGURE 5 | Prediction of the pandemic under different vaccination rates in

New York.

FIGURE 6 | Prediction of the spread of the pandemic under vaccination with

different potency in New York.

70, 80, and 95%. We quantitatively predicted the decline in the
proportion of infections at 30, 45, 60, 75, and 90 days from 16
December 2020. The results are shown in Figure 6.

Quantitative Analysis of the Impact of Virus
Variation on the Pandemic in the UK
In the UK, on 15 December 2020, a new coronavirus mutation
B.1.1.7 was detected (21). We trained and fitted the model based
on the pandemic data from 16 October to 15 December 2020,
the fitting accuracy was 99.45%. The predicted infections from
16 December to 28 December, 2020 were performed without
considering virus mutations, and the prediction curve was shown
as the blue line in Figure 8. Here, we quantified the increment
of total disease duration of infection due to viral mutation,
and compared the predicted number of infections under the
assumption of no viral mutation with the actual number of
infections under the condition of mutant virus, comparing the

curve integral of the real infections (Red area in Figure 7A) and
that of the predicted infections (Blue area in Figure 7B), showing
that the mutant virus caused a 301.55% increase in the number of
infections (539,916:179,046= 301.55%).

Impact of the Three-Tier Social Blockade
on the Pandemic in the UK
In August 2020, an outbreak of the COVID-19 pandemic
escalated rapidly in the UK. A three-tier social lockdown was
officially launched on October 16, 2020 (22). Training and
fitting the pandemic data that did not adopt the three-tier social
blockade from 1 August to 15 October, and the training and
fitting results are shown in the yellow curve in Figure 8A, the
accuracy of the fitting is 96.57%. Then, the progress of the
pandemic was forecast from 16 October to 3 December in 2020
without considering the three-level lockdown, as shown by the
blue line in Figure 8B. We compared the actual number of
infected people from 16 October to 3 December in 2020 with
the predicted number of infected people without the three-
tier social lockdown, as indicated by the red and blue area in
Figures 8A,B, the result was 985,137:1,859,053 = 52.99% (Real
infections’ integral: Predicted infections’ integral). As a result,
infections were reduced by 47.01% during the lockdown.

Prospective Prediction of the Pandemic in
Six Countries for the Next 15 and 30 Days
We modeled six countries severely affected by the pandemic
based on real historical data up to 25 May 2021, generating
forward projections for the next 30 days (26 May, 2021 to
24 June, 2021). This work was completed on 30 May 2021,
the results are shown in Figure 9. Comparing the prediction
results of the next 30 days with the real data, through
mathematical integration, the accuracy of the previous fitting
and the accuracy of the subsequent prediction are obtained,
respectively, The United States (97.96, 83.77%), Brazil (98.20,
89.96%), India (96.17, 81.80%), Turkey (98.06, 92.30%), Italy
(99.86, 93.17%), Germany (93.33, 88.89%). We selected the six
countries mentioned above to be at the peak of a severe outbreak
for prediction, and their subsequent control measures including
vaccination, therefore deviated from the prediction, but the
model showed a correct trend. Moreover, the prediction accuracy
of the short-term 15-day pandemic progression was >30 days.

DISCUSSION

Capturing the complexity of factors accurately in the real
world is difficult for any analytical model. Based on public
datasets, we selected the data from 21 typical pandemic regions.
Then, by modifying the classical SEIR transmission dynamics
model and combining it with improved mathematical methods,
compared with the traditional SEIR model, our newly added
parameters “α’ and “σ” enable the new model with the analysis
function of vaccination and social isolation, and the newly added
mathematical integral formula (10) under the curve realizes
the quantitative analysis function. We conducted experiments
in seven groups. By analyzing the effects of two vaccination
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FIGURE 7 | Quantitative analysis of the impact of virus mutation on the pandemic in the UK. (A) Red area indicates the integral under the curve of the actual infected

individuals in the prediction period. (B) Blue area indicates the integral under the curve of the predicted infected persons in the prediction period.

FIGURE 8 | (A,B) Quantitative analysis of the impact of the three-tier social blockade on the pandemic in the UK.

methods, virus variation, and social lockdown, it is shown that
the proposed method is capable of quantitatively analyzing
and predicting the impact of different factors on a chaotic,
multifactorial, and dynamically changing pandemic. This implies
that the model can help the government develop a sound
response strategy.

The experiments describe the dynamic transmission of
COVID-19, provide evidence of the influence of various factors
on the pandemic, highlight the adaptive capacity of the proposed
model in different geographical and multi-factor situations, and
the importance of interventions. According to the results of
the present work, it is appropriate to select data from the
period 60–150 days prior to the time point of analysis, this is
critical for obtaining parameters that are consistent with the
characteristics of the pandemic. The experience was used for
the model to fit pandemic data from 13 regions distributed in
different parts of the world, and the fitting accuracy reached
97.91%, showing that the model fitted the data well and a set
of parameters adaptive to each region were obtained. Then, the

pandemic trend for the next 30 days in each of these 13 regions
was predicted by these parameters, and prediction accuracy is
87.53%, as shown in Figure 3 and Table 1. It shows that the
model has good robustness, adaptability, and predictive power.
Second, the effectiveness of vaccination against the pandemic
under each of the two scenarios was quantitatively analyzed, as
shown in Figures 4–6. It has been proved that in the absence of
widely available therapies able to eliminate the infectious disease,
the most important means to overcome COVID-19 is universal
vaccination. We also found that the proportion of infected
people continues to decrease over time following vaccination
campaigns. Third, as shown in Figure 7, in the short period from
16 December 2020 to 14 January 2021, the variant virus caused
a 301.55% increase in infections, which confirms the enormous
danger of mutated viruses. Fourth, as shown in Figure 8, the
number of infections in the United Kingdom was reduced by
47.01% owing to three-tier social distancing campaigns. Hence,
social lockdown is essential in areas where vaccines are lacking.
Fifth, the model was used to predict the pandemic course in six
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FIGURE 9 | Real infected individuals are represented by the red curve. Fitted infections are represented by yellow curves. Predicted infections are shown as blue

curves. (A) The United States, (B) Brazil, (C) India, (D) Turkey, (E) Italy, (F) Germany.

countries over the next 30 and 15 days, as shown in Figure 9. The
results confirmed the accuracy of the model’s predictions again.
Also, the experiments suggest that, with the exception of the lack
of a widespread vaccination campaign in Brazil, assuming that
there are no more infectious virus variants, it seems unlikely
that these countries will experience larger waves of pandemic
outbreaks in the near future.

The proposed model does involve some limitations. First,
the essential function of the new model and analysis method

proposed in this paper is to quantitatively analyze the impact
of various factors on the pandemic based on historical data.
However, prediction of the future trend of the pandemic may
sometimes be imprecise, and it is impossible to predict the
pandemic for a very long time because interventions and virus
mutations are dynamically changing. Second, the warehouse-
based SEIR model requires the initial number of infections to be
at least 15 people per day, and is suitable for the middle of the
pandemic. Third, the setting of model parameters and the data
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used may be flawed; some of the model parameters have been
set empirically, for example, the ratio of latent infections to fully
infected people in the model was initially set at 1:3, which may
not be accurate. Some of the actual pandemic data may not be
available owing to opaqueness and incompleteness, for example,
some asymptomatic infections may go undetected (31).

Despite the limitations of the new model, this study has
made the following contributions: (1) A new SEIR model and
a new analysis method using mathematical integral equations
are proposed. (2) Only a few critical dynamic transmission
parameters were used to avoid overfitting in model training.
(3) The model’s adaptability to different regions was verified
experimentally; based on the historical pandemic data in a
particular region, the model required only a few seconds
of training and fitting to obtain the COVID-19 dynamic
parameters of spread in a given region. (4) Several new analytical
functions have been developed based on the compatibility and
extensibility of the model considering impacts of vaccination,
viral mutation, and social blockade on the course of the
pandemic. (5) The robustness and accuracy of the model were
validated through retrospective and prospective multi-center
experiments. The proposed approach is expected to inform
the development of interventions to mitigate, suppress, and
control COVID-19.

CONCLUSION

In this multi-center study, which included both retrospective and
prospective modeling, we have shown the dynamic transmission
process of COVID-19, the impact of different factors on the
pandemic, and the prediction of future pandemic trends. We
have focused on a quantitative analysis of the impact of two
vaccination regimens, a variant mutant strain of the virus and
social distancing requirements on COVID-19. The experimental
results indicate that the integration of various interventions is
required to suppress the pandemic. Moreover, the accuracy of
short-term prediction is higher than that of long-term prediction.
This quantitative analysis can inform the development of
sound intervention strategies to balance economic losses and
reduce human impacts. Owing to the adaptive nature of the
model, the method can be used for various stages of the
pandemic in different regions around the world. Although the
proposed model has some limitations, the method constitutes a
breakthrough in quantitatively analyzing the influence of chaotic
and dynamic multi-factors on pandemic progression. Owing to

the importance of the global public health emergency caused
by the spread of COVID-19, we believe that the proposed new
adaptive multi-factor multifunctional model and the analytical
approach have certain applications.
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