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Abstract: Hypersecretion of proinflammatory cytokines and dysregulated activation of the
IL-23/Th17 axis in response to intestinal microbiota dysbiosis are key factors in the pathogenesis of
inflammatory bowel diseases (IBD). In this work, we studied how Lactobacillus and Bifidobacterium
strains affect AIEC-LF82 virulence mechanisms and the consequent inflammatory response linked
to the CCR6-CCL20 and IL-23/Th17 axes in Crohn’s disease (CD) and ulcerative colitis (UC)
patients. All Lactobacillus and Bifidobacterium strains significantly reduced the LF82 adhesion and
persistence within HT29 intestinal epithelial cells, inhibiting IL-8 secretion while not affecting the
CCR6-CCL20 axis. Moreover, they significantly reduced LF82 survival within macrophages and
dendritic cells, reducing the secretion of polarizing cytokines related to the IL-23/Th17 axis, both in
healthy donors (HD) and UC patients. In CD patients, however, only B. breve Bbr8 strain was able to
slightly reduce the LF82 persistence within dendritic cells, thus hampering the IL-23/Th17 axis.
In addition, probiotic strains were able to modulate the AIEC-induced inflammation in HD,
reducing TNF-« and increasing IL-10 secretion by macrophages, but failed to do so in IBD patients.
Interestingly, the probiotic strains studied in this work were all able to interfere with the IL-23/Th17 axis
in UC patients, but not in CD patients. The different interaction mechanisms of probiotic strains with
innate immune cells from UC and CD patients compared to HD suggest that testing on CD-derived
immune cells may be pivotal for the identification of novel probiotic strains that could be effective
also for CD patients.

Keywords: probiotics; AIEC; intestinal inflammation; IL-23/Th17; Crohn’s disease; ulcerative colitis;
pro- and anti-inflammatory mechanisms

1. Introduction

The two major types of inflammatory bowel diseases (IBD) include Crohn’s disease (CD) and
ulcerative colitis (UC). The former is characterized by chronic inflammation involving most commonly
the distal part of the small intestine, ileum and colon, while the latter is characterized by a more
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restricted inflammation localized to the colonic mucosa and submucosa [1]. IBD pathogenesis is a
complex process, mainly linked to uncontrolled mucosal inflammation in genetically predisposed
individuals, due to an abnormal immune response against luminal antigens and microbiota [2—4].
This overly inflammatory response can be triggered by a breakdown in the intestinal homeostasis
among the microbiota and resident innate and adaptive immune cells [5,6]. Consistent with this notion,
the gut microbiota of IBD patients exhibit a reduction in total bacterial diversity [7-9]. Indeed, several
metagenomic studies of human gut microbiota have revealed a hallmark shift, in both CD and
UC patients compared to healthy individuals, from predominant “symbiont” microorganisms to
potential harmful “pathobionts”, characterized by an expansion of Enterobacteriaceae at the expense
of beneficial bacteria, such as Fusobacterium, Clostridium, Ruminococcus, Lactobacillus and Bifidobacterium
genus [10-12]. Indeed, an increase in mucosa-associated Escherichia coli strains is characteristic of
IBD patients: in particular, the adherent-invasive E. coli (AIEC) pathotype, highly enriched in the
inflamed ileum of CD patients and present also in colonic mucosa of UC patients, has been suggested
to be an important contributor to IBD pathogenesis [13-15]. Several virulence factors confer AIEC
the ability to adhere, invade, survive and replicate within host cells, resulting in severe barrier
dysfunction [16]. Consequently, AIEC triggers a strong proinflammatory response via a series of
signaling pathways: AIEC strains proficiently evade clearance and replicate within phagocytic cells
inducing the release of tumor necrosis factor-oc (TNF-) [17,18] and also cardinal proinflammatory
polarizing cytokines which drive Th1/Th17 differentiation [19]. In fact, even if IBD appear to differ in
their inflammatory mechanisms, with CD having been classically linked to Th1 and Th17 cells, while
UC to an atypical Th2 and Th17 condition [20,21], the IL-23/Th17 axis is thought to play a central
role in both conditions [22,23]. Strong evidence for this common mechanism comes both from the
elevated expression of IL-17 and IL-23 in the gut mucosa of active UC and CD patients compared to
healthy controls and from genome-wide association studies linking single nucleotide polymorphisms
(SNPs) in the IL-23 receptors (IL-23R) and in STATS3 to an increased risk for IBD [24,25]. Notably, it is
now widely accepted that IL-23, predominantly produced by activated dendritic cells in response
to both pathogenic and nonpathogenic bacteria [26-28], plays a fundamental role—together with
IL-1p—in the differentiation and maintenance of pathogenic Th17 cells, in turn contributing to the
pathogenesis of IBD [29,30]. Therefore, inhibiting the activation of the IL-23/Th17 pathway may have
a therapeutic potential in IBD [31]. Indeed, many anti-inflammatory drugs are commonly used to
treat IBD, such as mesalazine (5-ASA) and 6-mercaptopurine (6MP), however, although they have
proven effective in decreasing intestinal inflammation, they induce a sustained remission in only a
minority of patients [32]. Moreover, they also lead to a nonspecific decrease in relative abundance of
both pathogenic and beneficial commensal bacteria [33,34] thus exacerbating gut dysbiosis.

Therefore, selective blocking of the IL-23 dependent Th17 differentiation pathway through the
employment of the anti-inflammatory properties of probiotic strains, simultaneously restoring the
eubiotic state of the gut microbiota ecosystem, remains an attractive therapeutic strategy in IBD [35].
Many works have reported the positive effects of distinct probiotic strains in induction or maintenance
of remission, both in UC and in CD patients [36,37]. Although the understanding of probiotic
mechanisms of action has recently improved considerably, many questions on the functional role of
distinct probiotic strains in modulating the innate immune response related to the IL-23/Th17 axis in
CD and UC patients remain to be addressed.

In this study, we compared the ability of distinct probiotic strains belonging to either
Lactobacillus and Bifidobacterium genus, among the most commonly present bacteria to be found
in commercially available probiotic preparations used in the treatment of IBD [36,37], to affect AIEC
virulence mechanisms and interfere with the relative inflammatory response directly related to the
IL-23/Th17 axis. For the strain-specific nature of the immunomodulatory effects of probiotic strains,
we decided to evaluate the specific ability of two Lactobacillus and two Bifidobacterium strains to
modulate AIEC-LF82 invasion and survival within intestinal epithelial cells (IECs), macrophages
and dendritic cells isolated from HD and IBD patients. Finally, we tested their potential to impair
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the CCL20-dependent and IL-23-dependent Th17 cells recruitment and differentiation pathways,
in comparison to the anti-inflammatory drug 6-mercaptopurine (6MP).

Our data displayed, for the first time, that Lactobacillus and Bifidobacterium probiotic strains
differentially affect AIEC virulence based on immune cell origin and show different immunomodulatory
effects on the IL-23/Th17 axis in UC and CD patients.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions

Bacterial strains used in this study are listed in Table 1. Bifidobacterium strains were grown in MRS
medium (BD Difco™, Franklin Lakes, NJ, USA) supplemented with a 0.25% L-cysteine (Sigma Chemical
Co, Darmstadt, Germany) and incubated at 37 °C in anaerobic conditions for 24 h. Lactobacillus strains
were cultured in LB medium (BD Difco™) supplemented with a 2% L-lactose (Sigma Chemical Co)
under static conditions at 37 °C for 24 h. Staphylococcus epidermidis was grown under aerobic conditions,
in YESCA medium (10 g/L casamino acids, 1.5 g/L yeast extract) at 37 °C for 24 h. AIEC-LF82 strain
was grown under aerobic conditions, in YESCA medium supplemented or not with 2 ug/mL of
6-mercaptopurine (6MP) [38], at 37 °C for 18 h. In order to determine bacterial titer (CFU/mL) for
infection/coinfection experiments, bacterial cultures were centrifuged and, after spectrophotometer
quantification (Ultrospec 3000—Pharmacia Biotech Cambridge, UK), resuspended to an ODggy = 1.
Serial dilutions were plated onto either MRS agar (Bifidobacterium strains) or LB agar supplemented
with 2% lactose (Lactobacillus strains) or LB agar (LF82, S. epidermidis). Plates were incubated at 37 °C
for 24-48 h.

Table 1. Bacterial strains, origin and relevant characteristics used in this study.

Strains (Blzizoi::fteljel:::er) Relevant Characteristic
By—Bifidobacterium animalis (n/a) § . .
spp. Lactis Bil this work * Probiotic strain
§
By—Bifidobacterium breve Bbr8 thigsn\//jlrk # Probiotic strain
Ly—-Lactobacillus acidophilus LA1 (Pﬂgaiiiof %) Probiotic strain
) . (n/a) § L .
Ly—Lactobacillus paracasei 101/37 this work # Probiotic strain
LF82—Adherent-Invasive Escherichia coli (AIEC) (PRJ N[?:]WSZS) Crohn’s disease (CD)-associated E. coli strain
. . s 5
S.e—Stap hAy{? éocc_cr 555ep idermidis (r[\éa;)] Laboratory nonprobiotic strain

§ n/fa—not available; *—provided by Named® SpA (Milan, Italy).

2.2. Human Peripheral Blood

Human peripheral blood was collected either from HD with no history of immune-mediated
diseases, allergies or malignancies (n = 10) or from patients with active UC (n = 11) or CD (n = 8)
following informed consent.

All IBD patients included in this study were not receiving immunosuppressive therapies and/or
antibiotics and were selected according to the disease activity, using Harvey—Bradshaw index (HBI) for
CD patients or Mayo score for UC patients as previously described [40]. The clinical characteristics
of the included patients and healthy subjects are listed in Supplementary Table S1. The study was
approved by the local ethics committee (Milano Area B), code 566_2015, and was performed in
accordance with the Declaration of Helsinki protocols.
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2.3. HT29 Cell Line Culture Conditions and Infection Assays

HT29 cells were seeded at 4 x 10° cells per well into 24-well tissue culture plates and grown to
confluence (4 days) in complete RPMI medium (10% heat-inactivated FCS, 1 mmol/L sodium pyruvate,
10 mmol/L non-essential amino acids and 1% penicillin/streptomycin). Each confluent monolayer was
infected with LF82 alone or in combination with Bifidobacterium strains (By or B,) or Lactobacillus strains
(L1 or Lp) or S. epidermidis, grown in different conditions and resuspended in complete RPMI without
penicillin/streptomycin, at the final concentration of 7 X 10 CFU/mL. For coinfection experiments,
AIEC-LF82 was mixed at a 1:1 ratio with each probiotic strains or with S. epidermidis. For the experiments
with the anti-inflammatory drug 6MP, LF82 was pre-grown in YESCA supplemented with 2 ug/mL 6MP
(a subinhibitory concentration for LF82 growth inhibition) [38] and the same concentration was added
to confluent monolayers in complete RPMI without penicillin/streptomycin and maintained throughout
the course of infection (referred to as +6MP in all figure legends). After 3 h and 7 h incubation periods,
adhesion and invasion of LF82 was measured using the gentamicin protection assay as previously
described [38]. All bacteria strains were highly sensitive to gentamicin. Results are expressed as
cell-associated (adherent + intracellular) or intracellular LF82 cells in coinfections conditions relative
to those obtained for LF82 alone, set to 100%.

2.4. Biofilm Formation

Biofilm formation of LF82 either alone or in combination with Bifidobacterium strains (B; or
By) or Lactobacillus strains (L1 or Ly) or S. epidermidis, was determined using the crystal violet (CV)
assay. Bacterial cultures, grown in different conditions, were diluted to ODgyy = 0.02 and then
incubated in triplicates (200 puL/well) in a polystyrene 96-well round bottom plate for 16 h at 37 °C.
For coinfection experiments, LF82 and each of the other bacterial strains were mixed (ratio 1:1) and
incubated in triplicates as before. LF82 was also grown in the presence of 2 pg/mL 6MP which strongly
inhibits biofilm formation. After 18 h of incubation, the plates were washed with phosphate-buffered
saline (PBS) to remove unattached strains and then stained with 1% CV solution for 20 min at room
temperature. After washing, adherent stains were dissolved in a solution containing 96% ethanol in
water and quantified at 550 nm in a microplate reader (SAFAS, MP96, Monaco). The adhesion index of
LF82, alone or in competition experiments, was calculated as ODs55¢(CV)/ODgqg (planktonic culture).
The adhesion index of LF82 alone was set as 100%, and results are expressed as adhesion index of
LF82 in coinfections relative to adhesion index of LF82 alone.

2.5. Generation of Monocyte-Derived Macrophages (MDM) and Monocyte-Derived Dendritic Cells (MoDC)

Human monocytes were purified from heparinized blood samples derived from CD, UC or
healthy subjects by Ficoll density gradient separation and by positive selection using CD14* selection
(CD14 Microbeads, Miltenyi Biotec, Bergisch Gladbach; Germany).

For generation of monocyte-derived macrophages (MDM), CD14* cells were seeded into flat
bottom 96-well culture plates at a density of 2 x 10° cells/well in complete RPMI medium supplemented
with 100 ng/mL of recombinant human macrophage-colony stimulating factor (rh-M-CSF, Miltenyi
Biotec). The cells were incubated in a humidified atmosphere at 37 °C with 5% CO,. After 2 and 4 days,
all the unattached cells were discarded by removing half of the culture media and replacing it with
complete RPMI with twice the final concentration of M-CSE. On day 7 the total number of MDM cells
per well, as well as the morphology and the expected immunophenotype, were confirmed by flow
cytometry (data not shown).

For generation of monocyte-derived dendritic cells (MoDC), CD14" cells were cultured into
24-well culture plates at a density of 10° cells/mL in complete RPMI medium supplemented with
100 ng/mL of recombinant human granulocyte-monocyte colony stimulating factor (rh-GM-CSEF,
Miltenyi Biotec) and 50 ng/mL of Interleukin-4 (IL-4, Miltenyi Biotec). After 3 days, culture media were
replaced by removing half of the complete medium and replacing it with complete RPMI with twice the
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final concentration of cytokines used for differentiation. Thereafter, MoDC were collected and seeded
into round bottom 96-well culture plates at a density of 10° cells/well in complete RPMI medium
without pen/strep for the coinfection experiments. The morphology, as well as the immunophenotype
analysis to check for proper differentiation of monocytes into MoDC, were confirmed at this time point
by flow cytometry before the infection experiments (data not shown).

2.6. Phagocytosis and Intracellular Survival Assays

MDM monolayers and MoDC were infected with 10° CFU/mL of LF82 alone (MOI 10:1 bacteria
per phagocytic cells) or coinfected with LF82 together with each Bifidobacterium strains (B; or Bp)
or single Lactobacillus strains (L, or L) or S. epidermidis mixed in a 1:1 ratio (final concentration of
10% CFU/mL for each strain). Following 1 h of phagocytosis, gentamicin (20 pg/mL, Sigma-Aldrich,
Darmstadt, Germany) was added to kill extracellular bacteria. Subsequently, infected MDM and
MoDC were washed and maintained in RPMI supplemented with gentamicin (2 pg/mL) for additional
7 and 23 h, respectively. At each time point, MDM and MoDC were washed twice with PBS, and cells
were lysed with a solution of Triton X-100 (1% vol/vol, Sigma-Aldrich) in deionized water for 15 min to
release internalized bacteria. The number of internalized LF82 bacterial cells within MDM or MoDC,
either in simple infections or in coinfections with probiotic strains, was determined by plating serial
dilutions on LB agar plates, and CFU were determined after 24 h growth at 37 °C by viable count.
Results were expressed as percentage of intracellular LE82 cells in coinfection experiments compared
to percentage of intracellular LF82 in simple infections, taken as 100%.

2.7. Immunofluorescence and Confocal Microscopy

MDM monolayers on glass coverslips were infected with LE82 alone or coinfected with LF82 and
Lactobacillus Ly as previously described. After 1 h of incubation in RPMI medium and 1 h of incubation
with gentamicin, cells were washed, fixed in 4% paraformaldehyde/PBS, blocked in 2% FBS/PBS and
stained with rabbit anti-E. coli antibody (ab20640, 1:100, Abcam, Cambridge, UK) for 1 h. Coverslips were
then incubated with anti-rabbit Alexa Fluor 488 (1:500 Invitrogen, Eugene, Oregon, USA) for 1 h, washed,
and then nuclei were stained with 4’,6-diamidino-2phenylindole (DAPI, Molecular Probes, Eugene, Oregon,
USA). The Z-stacks images were acquired by a Nikon A1 laser scanning confocal microscopy using a 20X
dry objective (NA 0.75) or a 60x oil immersion objective (NA 1.4).

2.8. Cytokine Analysis

IL-8 (IL-8/CXCL8 ImmunoTools, Friesoythe, Germany) and chemokine (C-C motif) ligand 20
(CCL20/MIP-3«, R&D Systems, Minneapolis, MN, USA) secretion by intestinal epithelial HT29 cells
after 7 h of infection was analyzed by ELISA assays according to the manufacturer’s instructions.

Supernatants of MDM were collected at 8 h post-infection and analyzed for TNF-c, (BioLegend,
San Diego, CA, USA), IL-6 (ImmunoTools) and IL-10 (Thermo Fisher, Rockford, IL, USA) by ELISA
assays. The levels of IL-13 (BioLegend), IL-12p70 (BioLegend), IL-23p19 (R&D Systems) and IL-10
(Thermo Fisher) in supernatants of infected MoDC were analyzed after 24 h by ELISA assays. The Elisa
plates were read on microplate reader (SAFAS MP96), and data were analyzed with Prism software
(version 7; GraphPad Software, Inc., La Jolla, CA, USA).

2.9. Statistics

Independent sample groups were assessed for normality and equality of variances.
Statistical significance was evaluated by nonparametric Wilcoxon signed-rank test (100% as reference
value) to analyze variables that were not normally distributed or by one sample t-test to analyze
variables that were normally distributed. The p-values were corrected using FDR.

For not normalized data, statistical significance was evaluated by nonparametric Kruskal-Wallis
test (Dunn’s multiple comparison) to analyze variables that were not normally distributed or by
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one-way ANOVA (Dunnett’s multiple comparisons) to analyze variables that were normally distributed.
All experiments were performed at least 3 times.

Significance was defined at p < 0.05. Statistical calculations were performed with Prism software
(version 7; GraphPad Software, Inc., La Jolla, CA, USA).

3. Results

3.1. Probiotic Strains Reduced AIEC-LFS82 Invasion of IECs, Blocking the Inflammatory Response, but Not the
CCR6-CCL20 Axis

As several probiotic strains can inhibit AIEC invasion of IECs [41,42], we first assessed whether the
Lactobacillus (L1—Lactobacillus acidophilus LA1, Ly—Lactobacillus paracasei 101/37) or Bifidobacterium
(By—Bifidobacterium animalis spp. Lactis Bil, B)—Bifidobacterium breve Bbr8) strains were able to impair
AIEC invasion of IECs and the consequent inflammatory response. HT29 cells were coinfected with the
AIEC-LF82 strain either alone or in the presence of the probiotic strains at a 1:1 ratio (Figure 1). We chose
these strains for our study, as they are highly representative of probiotic most widely used in IBD and
are found in the commercial probiotic formulation LD Proactiv@ 50 (Named SpA, Italy). To verify that
inhibition of LF82 invasion was not simply due to competition by any bacterial strain, we also performed
coinfection experiments in the presence of S. epidermidis ATCC 155, a nonprobiotic Gram-positive strain.
The anti-inflammatory drug 6MP, which is also a strong inhibitor of LF82 virulence determinants [38],
was also tested in these experiments for comparative purposes.

Our results show thatboth Lactobacillus (L1 and L,) and Bifidobacterium (B; and Bp) strains, consistent
with their probiotic nature, and in contrast to S. epidermidis, significantly reduced LF82 adhesion to
HT29 cells, as well as biofilm formation (Supplementary Figure S1A), thus suggesting that probiotic
strains may inhibit LF82 adhesion by blocking specific adhesion determinants.

Next, we assessed the ability of probiotic strains to modulate the invasion and survival of
LF82 within IECs at either 3 and 7 h after infection (Figure 1B), as well as the induction of
proinflammatory chemokines IL-8 and CCL20 at 7 h post-infection (Figure 1C). In the presence
of either Lactobacillus strain, LF82 invasion (Figure 1B) was significantly impaired probably as a
consequence of reduced adhesion to IECs (Figure 1A). Likewise, By and B, reduced LF82 invasion and
survival, albeit to a slightly lesser extent than L; and L,. Finally, 6oMP was able to completely hamper
LF82 invasion and survival within HT29 cells (p < 0.001), while no effect was observed in coinfections
with S. epidermidis.

IECs respond to bacterial invasion by releasing IL-8 and CCL20, a pivotal step in the
recruitment of granulocytes and CCR6* lymphocytes (Th17 and Th1/17 cells) to the site of infection.
Consistently, in confluent HT29 cell monolayers, LE82 triggered high levels of IL-8 and CCL20 after
7 h of infection (Figure 1C), while either S. epidermidis or single probiotic strains induced little or no
secretion of either cytokine (Supplementary Figure S1B).

Interestingly, despite lower inhibition of LF82 survival in IECs compared to the anti-inflammatory
drug 6MP, probiotic bacteria induced a similar reduction of IL-8 secretion in co-culture experiments.
This was observed both with Lactobacillus strains (from 475.3 pg/mL to 139.7 pg/mL L;, and to
123.7 pg/mL Ly; respectively) and Bifidobacterium strains (102.1 pg/mL By, 86.77 pg/mL By; respectively),
but not with the nonprobiotic S. epidermidis (383.1 pg/mL). In contrast, no suppressive effect was
observed on the production of CCL20 with any bacteria tested (Figure 1C), indicating that a significant
reduction in intracellular bacterial load is not sufficient to attenuate the production of CCL20 by
HT29 cells and suggesting a direct effect of probiotics on IL-8 production only.

Our results suggest that probiotic strains can efficiently reduce the number of AIEC-LF82 that
reach sub-epithelial regions, affecting the invasion and survival of LF82 within intestinal epithelial
cells and strongly attenuate the secretion of IL-8, but not of CCL20, an important chemokine involved
in the recruitment of DCs, Th17 and Th1/17 cells to the gut mucosa [43,44].
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Figure 1. Effects of probiotic strains on adhesion and invasion of intestinal epithelial cells (IECs)
by AIEC-LF82 and the relative inflammatory response. (A) Adhesion to HT29 cell monolayers of
AIEC-LF82 alone (taken as 100%) or in the presence of Lactobacillus acidophilus LA1 (+L;), Lactobacillus
paracasei 101/37 (+Ly), Bifidobacterium animalis spp. lactis Bil (+By), Bifidobacterium breve Bbr8 (+Byp), S.
epidermidis ATCC-155 (+S.e.) at 1:1 ratio or in the presence of 6-mercaptopurine (+6MP, 2 ug/mL) was
quantified after a 3 h incubation period; (B) invasion of AIEC-LF82 alone (taken as 100%) or in the
presence of probiotic strains or S. epidermidis (+S.e.) at 1:1 ratio or in the presence of 6MP was quantified
after a 3 h or 7 h incubation period. Results are expressed as the percentage of cell-associated LF82
(adherent plus intracellular LF82 cells) or intracellular LF82 relative to those obtained in monoinfection
with LF82 alone, taken as 100%; (C) IL-8 and CCL20 secretion by HT29 cells after 7 h of infection with
AIEC-LF82 alone or in the presence of probiotic strains or S. epidermidis (+S.e.) at 1:1 ratio or in the
presence of 6MP was quantified by ELISA. Dot lines (—) represent the median values for cytokine
secretion of HT29 cells infected with LF82 alone. Each experiment was performed in triplicate, and data
are represented with box-plots showing the median, range and upper and lower quartiles of at least
three independent experiments. Means are represented as black cross (+), median as horizontal lines,
and outliers are marked as dots. Statistical significance for each condition compared to HT29 infected
with LF82 alone was reported (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.2. Probiotic Bacteria Reduced Phagocytosis and Intramacrophage Replication of AIEC-LF82 in HD and UC
Patients, but Not in MDM Derived from CD Patients

AIEC strains can survive and replicate within macrophages without inducing host cell death and
promoting secretion of high amount of TNF-« [17,18]. In order to establish the ability of probiotic
strains to reduce AIEC survival and replication within macrophages, MDM isolated from HD, UC
and CD patients were coinfected with LF82 and Lactobacillus or Bifidobacterium strains in a 1:1 ratio
(Figure 2); S. epidermidis and 6MP were included in our experiments for comparative purposes.
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Figure 2. Effects of probiotic strains on phagocytosis and intracellular survival of AIEC-LF82 within
human monocyte-derived macrophages (MDM). Percentage of internalized AIEC-LF82 cells within
MDM derived from HD, UC or CD patients after 1 h (A) or 8 h of infection (C) with LF82 alone (taken
as 100%) or in coinfection with Lactobacillus acidophilus LA1 (+L1) or Lactobacillus paracasei 101/37 (+L;)
or Bifidobacterium animalis spp. lactis Bil (+Bq) or Bifidobacterium breve Bbr8 (+By) or S. epidermidis
ATCC-155 (+S.e.), at 1:1 ratio or in the presence of 6MP (2 pg/mL). Each experiment was performed in
triplicate and data are represented as described in Figure 1. Statistical significance for each condition
compared to MDM infected with LF82 alone was reported (* p < 0.05, ** p < 0.01, *** p < 0.001); (B)
confocal microscopic examination of HD-derived MDM infected with AIEC-LF82 alone or in coinfection
with L. acidophilus LA1 (+L1) at 1 h post infection. Cell nuclei (stained by DAPI) are shown in blue
and AIEC-LF82 in green. Larger images: magnification 200X, scale bars: 50 um. Smaller images:
magnification 630X, scale bars: 20 pum.

Consistent with our previous observations [38] LF82 uptake was strongly reduced in the presence
of 6MP (Figure 2A), suggesting that LF82 adhesion determinants may also play a role in this process.
Similarly, both Lactobacilli and Bifidobacteria significantly impaired LF82 uptake by MDM derived either
from HD or UC patients (Figure 2A). Surprisingly, however, no probiotic strains or 6MP, were able to
affect LF82 phagocytosis by CD-derived MDM. In fact, we even observed a significant increase in the
number of internalized LF82 cells from 100% to 124.9% (p = 0.0078) in the presence of B, (Figure 2A).
An even stronger enrichment was observed in coinfection experiments carried out with S. epidermidis
on MDM derived either from UC (from 100% to 160.6%, p = 0.0006) or CD patients (from 100% to
236.9%, p = 0.0039), but not on MDM derived from HD (p = 0.7344).

Reduction in LF82 phagocytosis by HD-derived MDM in the presence of L. acidophilus LA1 (Ly),
namely, the strain promoting the highest decrease in LF82 uptake in HD and UC patients (Figure 2A),
was confirmed by immunofluorescence assays (Figure 2B).

We also determined LF82 survival within macrophages after 8 h of infection (Figure 2C). LF82 was
unable to replicate in MDM originating from HD, where their intramacrophage concentrations remained
constant during 8 h of infection, or in MDM from UC patients, where intracellular LF82 concentration
was reduced to a half (Supplementary Table S2). In contrast, despite a significantly lower uptake,
LF82 appeared to survive and replicate more efficiently in MDM from CD patients. Our results confirm
previous reports showing that replication was not related to the initial phagocytosis level [38] and
suggest that CD-derived MDM may be impaired in LF82 killing (Supplementary Table S2), consistent
with deficient autophagy mechanisms observed in CD macrophages [45].

In the presence of probiotic strains, intracellular LF82 concentrations were only slightly, albeit
significantly, reduced in MDM derived from either HD or UC patients, while being unaffected in
CD-derived MDM, with the sole exception of a slight, but significant reduction induced by B. animalis
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spp. lactis Bil (By) (Figure 2C). Interestingly, LF82 survival within UC- and CD-derived MDM was
significantly higher in coinfections with S. epidermidis (Figure 2C), in line with an increase in LF82 uptake
by IBD-derived macrophages. In contrast, a stronger reduction of LF82 survival in macrophages
was observed in the presence of 6MP, regardless of MDM origin (HD, UC or CD). It is unlikely that
this effect may be due to the immunosuppressive and apoptosis-promoting functions of this drug,
as 2 pg/mL of 6MP was unable to induce MDM cell death as assessed by viable cell counting after 8 h
of treatment (data not shown).

3.3. Probiotic Strains Reduced TNF-a Secretion by AIEC-Infected MDM from HD, but Not from UC or
CD Patients

In order to understand whether probiotic strains were able to modulate the inflammatory
response induced by LF82 in MDM, we quantified the levels of proinflammatory cytokine TNF-c,
whose levels positively correlate with LF82 intracellular survival and replication [18] and the
amount of anti-inflammatory cytokine IL-10, an important regulatory cytokine which counteracts the
proinflammatory effects of TNF-« (Figure 3).
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Figure 3. Effects of probiotic strains on cytokine secretion by MDM derived from HD, UC and CD
patients infected with AIEC-LF82 strain. (A) TNF-oc and (B) IL-10 secretion by MDM derived from HD,
UC patients or CD patients after 8 h of infection with AIEC-LF82 alone or in the presence of Lactobacillus
strains (+L, +L;) or Bifidobacterium strains (+Bq, +By) or S. epidermidis ATCC-155 (+S.e.), at 1:1 ratio or
in the presence of 6MP (2 pug/mL) was quantified by ELISA. Dot lines (—) represent the median values
for cytokine secretion of MDM infected with LF82 alone. Data are represented as explained in Figure 1.
Statistical significance for each condition compared to MDM infected with LF82 alone was reported
(*p <0.05,**p <0.01, ** p < 0.001).

Consistent with literature data [45], the TNF-o/IL-10 ratio is higher in HD-derived MDM compared
to either UC or CD patients (Figure 3), thus confirming the positive correlation with these cytokine
levels and LF82 intracellular amounts (Supplementary Table S2).

In HD-derived MDM, probiotic strains induced a significant reduction not only of TNF-« levels
(Figure 3A), in line with the lower LF82 intracellular concentration, but also of IL-10 secretion (Figure 3B).
In contrast, in UC-derived MDM, despite a significant reduction of intracellular LF82 load, TNF-« and
IL-10 levels were unaffected by probiotics, except for B. breve Bbr8 (B,), which induced a significantly
increase of TNF-« secretion (p = 0.0001). Similarly, in CD-derived MDM, in which probiotics did not
affect intracellular LF82 load, TNF-« release was similar or even increased, especially in the presence of
B, (from 417.2 pg/mL to 900.7 pg/mL, p = 0.02). Surprisingly, in contrast to their proposed stimulatory
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effect on IL-10 secretion in macrophages [46,47] both Bifidobacterium strains significantly inhibited the
secretion of IL-10 in MDM derived from CD patients (p < 0.0001).

The TNF-« increase observed in UC- or CD-derived MDM in the presence of probiotic strains was
not due to their ability to promote TNF-« secretion, as MDM infection with probiotic strains alone
resulted in non-detectable levels of TNF-« (Supplementary Figure S2). In contrast, coinfection with S.
epidermidis induced a striking increase in cytokine release by MDM, regardless of their origin (p < 0.001),
likely due to the direct induction of both TNF-« and IL-10 secretion by this bacterium (Supplementary
Figure S2). Finally, exposure to the anti-inflammatory drug 6MP resulted in a significant reduction of
cytokine secretion in HD- and UC-derived MDM (p < 0.01) and of IL-10 in CD-derived MDM, while
TNF-a was unexpectedly unaffected (p = 0.9380).

3.4. Probiotic Strains Reduced AIEC-LF82 Survival and Production of Pathogenic Th17 Polarizing Cytokines
in MoDC Isolated from HD and UC Patients, but Not from CD Patients

The interplay between AIEC and DCs is a crucial step for the secretion of polarizing cytokines,
such as IL-12p70, IL-23 and IL-1f3, in turn driving Th1 or Th17 differentiation and expansion that is
the most distinctive immunological characteristic of CD [19,48]. In order to establish the ability of
probiotic strains to reduce AIEC uptake and survival within monocyte-derived dendritic cells (MoDC),
as well as to modulate the production of proinflammatory polarizing cytokines, we coinfected MoDC
with AIEC LF82 and single Lactobacillus or Bifidobacterium strains in a 1:1 ratio (Figure 4). As for the
previous experiments, the effects of S. epidermidis and 6MP were also tested for comparative purposes.

In contrast to what observed for MDM, MoDC from HD were not significantly more efficient in
LF82 uptake compared to CD patients (p = 0.279), while UC-derived MoDC were even less efficient
in LF82 uptake compared to HD (p = 0.0152), suggesting that they may be somehow impaired in
LF82 recognition (Supplementary Table S3).

All probiotic strains significantly reduced LF82 uptake in both HD- and UC-derived MoDC
(Figure 4A). In contrast, only L. paracasei 101/37 (L) and B. breve Bbr8 (B,) strains, despite not being
able to affect LF82 uptake by MDM, were able to significantly reduce the number of phagocytized
LF82 (—68.9% p = 0.0068 and —70% p = 0.0010; respectively) in MoDC derived from CD patients.

Finally, in line with what observed with HT29 and MDM cells, 6MP strongly inhibited the uptake
of LF82 in MoDC derived either from HD or from IBD patients (Figure 4A), while coinfection with
S. epidermidis did not affect LF82 uptake by MoDC, regardless of their origin, further confirming
that a nonprobiotic Gram-positive bacterium cannot impair LF82 interaction with human innate
immune cells.

Interestingly, LF82 was not able to replicate within MoDC regardless of their origin: indeed,
intracellular LF82 cells slumped, over 24 h, to 25%—40% of the number initially taken up (Supplementary
Table S3). In HD- and UC-derived MoDC both Lactobacillus and Bifidobacterium strains were able to
maintain a significantly lower number of intracellular LF82 cells over 24 h post-infection (Figure 4B).
In contrast, in CD-derived MoDC, although L, and B, strains were able to strongly interfere with
LF82 uptake (Figure 4A), they failed to maintain a lower intracellular LF82 bacterial load (Figure 4B),
as we observed an increased percentage of LF82 within MoDC from 8 h to 24 h post-infection (from
—68.9% to —37.7% with Ly, and from -70% to —38.7% with B,, respectively). Coinfection with S.
epidermidis, as well as exposure to 6MP, did not substantially alter the kinetics of LF82 killing over 8 h
and 24 h (Figure 4B).
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Figure 4. Effects of probiotic strains on phagocytosis and intracellular survival of AIEC-LF82 within
human monocyte-derived dendritic cells (MoDC). Percentage of internalized AIEC-LF82 cells within
MoDC derived from HD, UC or CD patients after 1 h (A), 8 and 24 h of infection. (B) MoDC were
infected with LF82 alone (taken as 100%) or in the presence of Lactobacillus strains (+Lj, +L;) or
Bifidobacterium strains (+Bq, +By) or S. epidermidis ATCC-155 (+S.e.), at 1:1 ratio or in the presence of
6MP (2 ug/mL). Each experiment was performed in triplicate and data are represented as described in
Figure 1. Statistical significance for each condition compared to MoDC infected with LF82 alone was
reported (* p < 0.05, ** p < 0.01, ** p < 0.001).

As dendritic cells can produce both proinflammatory (IL-13, IL-23 and IL-12) and
anti-inflammatory (IL-10) cytokines involved in differentiation and regulation of adaptive immune
response, we investigated whether the probiotic strains could alter the pattern of cytokine secretion by
LF82-infected MoDC. Interestingly, probiotics affected cytokine release in a manner clearly dependent
on the origin of MoDC (Figure 5). Indeed, LF82 coinfection with either Lactobacilli or Bifidobacteria
strains in HD-derived MoDC resulted in the inhibition of the proinflammatory polarizing cytokines
IL-23 and IL-1p, while stimulating IL-10 secretion, with only IL-12 levels remaining unaffected.
Surprisingly, S. epidermidis was also able to promote IL-10 release, and, unlike any probiotic strain
tested, to impair IL-12 secretion (Figure 5C, left panel). Similarly, in UC-derived MoDC only the release
of proinflammatory cytokines IL-23 and IL-1f3 was significantly reduced by probiotic strains, while no
detectable changes in IL-10 were observed (Figure 5D, center panel). Interestingly, in CD-derived MoDC,
the ratio between the amount of IL-13, IL-23 and IL-10 and the number of intracellular LF82 cells after
24 h of infection was significantly higher compared to HD-derived MoDC (Figure 5 and Supplementary



Cells 2020, 9, 1824

Table S3), while IL-12 levels were significantly lower (Figure 5). Moreover, in coinfection experiments
with probiotic strains, although the amount of intracellular LF82 was unaffected at 24 h post-infection
within CD-derived MoDC (Figure 4B), we observed a sharp decrease of IL-23 secretion (Figure 5B)
especially in the presence of B. breve Bbr8 (B, p = 0.0099), which, unlike the other probiotic strains,
was also able to significantly reduce the levels of IL-1B (p = 0.03). No stimulatory effect was observed
on the very high levels of the anti-inflammatory IL-10 secreted by CD-derived MoDC by any probiotic

strain tested (Figure 5D).
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Figure 5. Effects of probiotic strains on cytokine secretion by MoDC derived from HD, UC and CD
patients infected with AIEC-LF82 strain. Secretion of IL-1f3 (A), IL-23 (B), IL-12 (C) and IL-10 (D)
in the supernatants of MoDC derived from HD, UC patients or CD patients after 24 h of infection
with ATIEC-LFS82 alone or in the presence of either Lactobacillus strains (+L; or +L;) or Bifidobacterium
strains (+Bj or +By) or S. epidermidis ATCC-155 (+S.e.), at 1:1 ratio or in the presence of 6MP (2 ug/mL),
was quantified by ELISA. Dot lines (—) represent the median values for cytokine secretion of MoDC
infected with LF82 alone. Data are represented as described in Figure 1. Statistical significance for
each condition compared to MoDC infected with LF82 alone was reported (* p < 0.05, ** p < 0.01,

w55 < 0.001).
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Remarkably, when we analyzed cytokine secretion by MoDC (from HD, UC and CD) only infected
with single probiotic strains alone, our results displayed undetectable or very low cytokine levels,
except for B, which induced secretion of high levels of IL-23, IL-13 and IL-10 selectively in CD-derived
MoDC (Supplementary Figure S3).

Unlike probiotic strains, which were able, at least in HD-derived MoDC, to redirect
LF82-dependent cytokine production, 6MP led to a nonspecific impairment of both proinflammatory
and anti-inflammatory cytokine production. Indeed, although we observed a significant reduction
of IL-1p and IL-23 secretion in all MoDC analyzed, 6MP also impaired IL-10 in UC-derived MoDC
(Figure 5D). In addition, 6MP was able to inhibit IL-12 levels exclusively in CD-derived MoDC, thus
showing a rather different patterns of cytokine inhibition in MoDC of different origins compared to
probiotic strains.

4. Discussion

Targeting gut dysbiosis and overly intestinal inflammation with resident microbial-targeted
therapies is an attractive strategy for IBD treatment [49,50].

In this work, we analyzed the ability of two Lactobacillus and two Bifidobacterium species, arguably
among the most widely used probiotic strains [51], to counteract, along different steps of the mucosal
immune response, the virulence mechanisms and relative inflammatory response of the E. coli LF82,
representative of the AIEC pathovar closely related to the IBD pathogenesis [15]. We chose these
probiotic bacteria since they are an important part of normal human gut microbiota; they are very
well characterized biologically and are widely used in treating dysbiosis, especially for their ability to
outcompete enteropathogens [52,53]. We focus on individual strain, rather than their combination,
in order to single out any strain-specific contributions to inhibition of AIEC virulence and immune
cell responses.

Our results confirm the proficiency of both Lactobacillus and Bifidobacterium strains analyzed in this
study in inhibiting LF82 adhesion to and invasion of IECs, which represent the first line of interaction
between host and pathogens in the gut mucosa. Moreover, we observed a reduced adhesion index to
abiotic surface in mixed culture biofilm experiments, suggesting that these probiotic strains probably
sequester or inhibit the expression of LF82 adhesion determinants rather than via a competition
mechanism for host cellular receptor sites on IECs.

Interaction of IECs with pathogens or pathobiont bacteria like AIEC induce the release of IL-8 and
CCL20, two proinflammatory chemokines produced at significantly higher amounts in the inflamed
gut mucosa of IBD patients [54,55], thus suggesting a pivotal role of this process in induction of chronic
inflammation. Interestingly, our results show that, even if Lactobacillus were more proficient than
Bifidobacterium strains to counteract the persistence of LF82 strain within HT29 cells over seven hours of
infection, the secretion of IL-8 was strongly suppressed by any probiotic species tested. This outcome
indicates that the amount of intracellular LF82 does not correlate with IL-8 levels and suggest different
molecular mechanisms behind the effects of Lactobacillus and Bifidobacterium species on AIEC persistence
within IECs and on inflammation. Moreover, our results do not show any effect on CCL20 secretion by
any probiotic species tested, in stark contrast with the effect of the anti-inflammatory drug 6MP, which
totally abolished the release of both IL-8 and CCL20. Lack of CCL20 inhibition by Lactobacillus and
Bifidobacterium species is not due to a direct induction of this cytokine by probiotic strains, suggesting
that, unlike anti-inflammatory drugs such as 6MP, probiotics can act specifically on IL-8 signaling.
This immunomodulatory effect of probiotic strains is of particular importance, as the CCR6-CCL20 axis
is a crucial pathway in the recruitment of macrophages, DCs and in the maintaining of Th17/regulatory
T cells (Treg) balance during the initiation of immune tolerance [56-58]. Inhibition of CCL20-mediated
cell chemotaxis and antimicrobial activity may in fact enhance susceptibility to infections, further
promoting the circuit of dysbiosis and chronic inflammation behind IBD pathogenesis, suggesting
that blocking CCR6-CCL20 axis may not be a long-term effective therapeutic approach to IBD [59,60].
Thus, we propose, in contrast to literature data [55], that the ability to selectively inhibit IL-8, but not
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CCL20, secretion may be a crucial property to consider in the screening of probiotic bacteria for their
immunomodulatory activity, in order to identify the most suitable probiotic strains for long-term
treatment of IBD.

Another key player in intestinal inflammation during IBD is the cytokine TNF- [61]. Indeed, very
high TNF-« levels are present in the gut mucosa of IBD patients and positively correlate with
clinical disease severity, thus suggesting a negative contribution for TNF-« to the chronic intestinal
inflammation. In addition, AIEC bacteria are able to use TNF-« to foster their intracellular replication
within macrophages [18], as they induce the release of high levels of TNF-&, which in turn promotes
AIEC intramacrophage replication, in a circuit of inflammation and infection contributing to the gut
inflammation and epithelial cells damage in IBD.

In the conditions used in this work (M-CSF differentiated MDM, MOI 1:10), we observed
significant differences in AIEC-LF82 persistence within human macrophages derived from IBD
patients compared to HD: whereas LF82 is able to survive, but not to replicate, within MDM derived
from HD or UC patients, our data confirm the proficiency of LF82 to replicate within CD-derived
macrophages [62]. Our results show that, although both Lactobacillus and Bifidobacterium strains could
counteract LF82 phagocytosis and intracellular survival within macrophages derived from HD and
UC patients, they resulted ineffective in CD-derived macrophages. In addition, probiotic strains
completely failed to block TNF-« production and to promote IL-10 secretion, a key player in the control
of inflammatory response to enteric microorganisms [63,64], neither in UC-derived MDM, despite
a significant lower LF82 intracellular number at eight hours post-infection, nor in MDM derived
from CD patients. Surprisingly, we even observed a sharp stimulation by some probiotic bacteria
in TNF-« production by AIEC-infected macrophages derived either from UC or CD patients, such
as for instance in the presence of B. breve Bbr8, similar to what observed with the nonprobiotic S.
epidermidis, suggesting that commensal or even probiotic strains, can synergize with LF82 in triggering
proinflammatory cytokine release in CD. Thus, our data indicate that the tested probiotic strains can
impair the uptake and persistence of LF82 within macrophages derived from HD and UC patients,
but their immunomodulatory effects only take place on HD-derived macrophages. Indeed, CD-derived
macrophages result completely refractory to the beneficial effects of probiotic strains, explaining
-at least in part- the negative results yielded in some clinical trials on the use of Lactobacillus and
Bifidobacterium strains in CD patients [37]. This observation, together with clinical evidences that up to
30% of IBD patients do not respond to anti-TNF-« therapies [65-67], underlines the urgent need to
identify more promising probiotic strains which could be able to interfere with the TNF-o pathway
even in IBD patients.

In contrast to the negative effect observed in AIEC-infected macrophages, B. breve Bbr§ strain leads
to a strong reduction in AIEC intracellular persistence and proinflammatory response in IBD-derived
MoDC, thus underlining the complexity of probiotics” immunomodulatory activity in immune cells
from IBD patients.

Interaction of probiotic bacteria with DCs does not only lead to a downregulation of
proinflammatory polarizing cytokines, promoting the tolerogenic activity of DCs by increasing
production of anti-inflammatory cytokine IL-10 [68,69], but it is also crucial in preventing the onset
of chronic inflammation. Indeed, in addition to their fundamental roles in maintaining tolerance
and immune homeostasis in the gut, DCs accumulate at sites of intestinal inflammation inducing
the activation of bacteria-specific T cell subsets present in the lamina propria, finally contributing to
the IBD pathology [70,71]. Furthermore, with growing data supporting the pathogenic role of the
IL-23/Th17 axis in IBD [31,72] and with DCs being the main source of IL-23, it is becoming evident
that the suppression of the microbial determinants triggering this deleterious inflammatory process in
DCs, while restoring the eubiotic composition of the gut microbiota, may be an attractive therapeutic
strategy in IBD [73].

Even if LF82 does not replicate within DCs and the intracellular number of LF82 is significantly
lower in MoDC derived from CD patients compared to HD, CD-derived MoDC secrete a much higher
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amount of both proinflammatory and anti-inflammatory cytokines. This suggests a dysregulated
cytokine production in CD-derived MoDC in response to bacterial antigens, in what is likely a crucial
step in establishing chronic inflammation typical of this disease.

Notably, our data demonstrate for the first time that LF82 can induce a different release of polarizing
cytokines, which lead to distinct effector Th-cell subsets polarization, on the basis of DCs origin: under
the same intracellular amount of LF82 cells after 24 h of infection, CD-derived MoDC secrete higher
amount IL-23 compared to UC-derived MoDC promoting expansion of pathogenic Th17 cells, while,
on the contrary, UC-derived MoDC secrete significantly higher amount of IL-12 driving instead the
differentiation into Th1 cells. The molecular mechanisms by which AIEC-infected DCs induce secretion
of distinct patterns of polarizing cytokines, in turn leading to opposite differentiation of effector T
cells associated with the different immunophenotypes in UC or CD patients, is probably due to many
genetic variants/polymorphisms that could directly affect the function of professional phagocytic cells,
as suggested by several independent studies [45,62,74].

Altogether, our data demonstrate that in HD and UC patients the Lactobacillus and Bifidobacterium
strains studied in this work interfere with the uptake and persistence of LF82 within dendritic cells,
and are all able to interfere with the IL-23/Th17 axis, to a similar extent as the anti-inflammatory
drug 6MP, while also stimulating production of the anti-inflammatory cytokine IL-10. In contrast,
in CD-derived dendritic cells, probiotic strains, except for B. breve Bbr8 strain, are much less effective in
affecting LF82-induced inflammatory response and in hampering release of the polarizing IL-13 and
IL-23 cytokines that regulate differentiation of pathogenic Th17 cells [75,76]. Moreover, the protective
effect of probiotic strains on DCs, in addition to downregulating proinflammatory cytokines, should
promote tolerance-inducing DCs through the upregulation of IL-10, which plays an important regulatory
role on effector T-cells [77]. In this respect, the different effects displayed by both Lactobacillus and
Bifidobacterium strains in MoDC derived from HD vs. IBD patients further highlight the importance to
test the immunoregulatory activities of probiotics on activated immune cells derived from IBD patients,
in order to fully evaluate their therapeutic potential.

Importantly, the differential impact of probiotic strains on AIEC virulence and inflammatory
response in IBD-derived immune cells may also have important clinical implication. Indeed, in contrast
to UC patients, results of clinical trials in the treatment of active CD with probiotics are disappointing
and do not support their use in this disease [78-80]. However, the observation that only some probiotic
bacteria, such as the B. breve Bbr§ strain, displayed the ability to affect some inflammation pathways
also in CD patients, such as the secretion of polarizing cytokines involved in the IL-23/Th17 axis,
underline the importance of testing probiotic strains in IBD-derived immune cells in order to select the
most suitable strains that may find some therapeutic use also in CD.

Finally, a deeper molecular analysis aimed at characterizing the interactions of probiotics with
immune cell signaling cascades will be crucial in identifying probiotic strains able to inhibit the
activation of IL-23/Th17 axis, without increasing of TNF-« or inhibition of IL-10 as potential side effects,
likely to be a more effective therapeutic strategy for UC and CD.
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Crohn’s disease (CD), ulcerative colitis (UC) patients and healthy subjects (HD) included in the study. Table S2:
Phagocytosis and survival of AIEC-LF82 within MDM obtained from HD, UC and CD patients. Table S3:
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