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Mechanism and antibacterial 
activity of vine tea extract 
and dihydromyricetin 
against Staphylococcus aureus
Haiyun Liang1,2,3, Keke He1,2,3, Ting Li1,2, Shumei Cui1,2, Meng Tang1,2, Shaoyi Kang1,2, 
Wei Ma1,2 & Liya Song1,2*

Vine tea (Ampelopsis grossedentata) has been approved as a new food ingredient in 2013. Both 
vine tea extract (VTE) and its active ingredient, 2R, 3R-Dihydromyricetin (DMY), showed good 
antibacterial activity. The mechanism of VTE and DMY against Staphylococcus aureus were evaluated 
by morphology observation, cell membrane and wall assay, protein assay, and DNA assay in this 
study. The results of SEM and TEM revealed that the VTE and DMY changed the morphology of 
S. aureus. The leakage of AKPase and β-galactosidase in treated groups demonstrated that the 
membrane integrity of S. aureus was disrupted. Meanwhile, the results of protein assay showed that 
VTE and DMY inhibited the expression of total proteins, and decreased activities of a few energy 
metabolism enzymes, total ATPase. Moreover, spectral and competitive analysis revealed that 
VTE and DMY interacted with DNA by groove and intercalation binding. Finally, the suspension 
experiments of Chinese cabbage and barley showed that inhibitors had strong inhibitory effect on 
bacteria growth. Overall, the results suggested that VTE and DMY may be potential food preservatives 
for inhibiting pathogen.

As reported by the World Health Organization (WHO), about 420,000 people die from food poisoning worldwide 
each year. Staphylococcus aureus is a common foodborne pathogen, which is considered to be the main dangerous 
pathogenic bacteria contributed to food poisoning1. Staphylococcus  aureus can grow in many food and other 
products (such as cosmetic), and cause contamination for its tenacious survival ability in potentially dry and 
stressful environments2,3. Therefore, the food and some other industries have used additives to diminish microbial 
growth or inhibit microorganisms to avoid food contamination4. Recently, researchers toward the development 
of natural, safe and effective antimicrobial agents as increasing inecological and health risks associated with 
synthetic antimicrobials motivates5. In recent years, there have been many studies indicated that plant extracts, 
such as phenols and flavonoids, showed good antibacterial activities on bacterial6. Therefore, development of 
plant-derived compounds with antibacterial activities is one of the ways to solve the current problems.

Plant extracts are still widely used in China for their medical treatment and health function. Chinese vine 
tea (Ampelopsis grossedentata), a plant belonging to Vitaceae family and Ampelopsis Michx, is distributed widely 
among mountainous areas of southern China. Chinese vine tea extracts (VTE) had been widely reported on its 
antibacterial, antioxidant, antihypertensive effect had been widely reported7. And dihydromyricetin (DMY) is 
the most abundant flavonoids of vine tea, which carries a lot of biological activities8. The main structure of DMY 
was shown in Fig. 1. The amount of DMY in Chinese vine tea varied from 20 to 93.1% according to different 
extracting conditions9. Xiao found that the mixture of DMY and traditional preservatives such as potassium 
sorbate and sodium benzoate could prolong the shelf life of the food10. Our study also showed that VTE and 
DMY have antibacterial inhibitory effect in Staphylococcus aureus, and they possess good potential as food addi-
tives. However, the research on the antibacterial mechanism of VTE and DMY is not very clear, which limits 
their application.

In order to provide a theoretical basis of the further application of VYE and DMY in food, the antibacterial 
mechanism of VTE and DMY against Staphylococcus aureus were systematically evaluated in this study, including 
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of the growth curves of S.aureus, electron microscope experiments, energy metabolism enzyme experiments 
and DNA binding experiments, etc.

Materials and methods
Materials and reagents.  Staphylococcus aureus ATCC 6538 was obtained from the China Medical Culture 
Collection Center (Beijing, China). The newly germinated spear leaves of Ampelopsis grossedentata were fer-
mented and picked in Zhangjiajie City, Hunan Province at May 2019. The dried and pulverized vine tea (10.0 g) 
was extracted by deionized water (100 mL) at 100 °C for 1 h. The combined filtrates were concentrated on 20 mL 
by Rotary Evaporator, which were stored at 4  °C for further experiments. DMY (purity ≥ 90%) was obtained 
from Beijing Banxia Biology Technology Co, Ltd (Beijing, China). The AKP enzyme Assay Kit was purchased 
from Jiancheng Institute of bioengineering (Nanjing, China). Another chemicals and reagents used were of 
analytical grade, such as Na2CO3, analytical-grade anhydrous ethanol, methanol, nitrobenzene β-d-galactoside 
and etc. Nutrient broth and nutrient agar were purchased from Beijing Aobox Biotechnology (Beijing, China).

The HPLC analysis of VTE and DMY.  An HPLC system (Agilent Technologies, 1260 Infinity, USA) was 
used for the analytical characterization of the final VTE products. A C18 column (4.6 mm × 250 mm, 5 μm 
pore size, Agilent, USA) was eluted with methanol/water (with 0.03% phosphoric acid) (35:65) at a flow rate of 
0.5 mL/min and temperature of 40℃. The injection volume was 5 μm, and the effluent was monitored at 292 nm 
with a Diode-array detector. The DMY (90% of HPLC purity) was obtained from Beijing Enokai Biotechnology 
Co., Ltd. (Beijing, China).

Detection of minimum inhibitory concentration (MIC).  The experiment was carried out according 
to the reported method11. In brief, S. aureus, which was in the logarithmic growth phase of, was inoculated into 
nutrient broth medium (bacteria suspension concentration is 1 × 106 CFU/mL). VTE (or DMY) were added to 
nutrient broth medium, giving final concentrations of 0.16 to 50 mg/mL. The S. aureus culture containing aseptic 
distilled water without VTE (or DMY) was the control. Bacterial suspension (100 μL) was plated onto the nutri-
ent agar plates and incubated for 24 h in a 37 °C incubator. Bacterial growth was observed, and the minimum 
inhibitory concentration (MIC) was determined as the smallest dilution of VTE (or DMY) in which bacteria did 
not grow in nutrient agar plates.

Growth curves.  The measurement of S. aureus growth curve was determined according to a modified 
method12. The activated S. aureus were inoculated in 100 mL nutrient broths which was treated with different 
VTE (or DMY) concentration of 1/4 × MIC, 1/2 × MIC and 3/4 × MIC. The S. aureus culture containing aseptic 
distilled water without VTE (or DMY) was the control. Then, the culture medium was incubated under the con-
dition of 37 °C and 120 r/min. The Growth curves drawn by optical density (OD_540) at 0, 2, 4, 6, 8, 10, 22, 30 h.

Antibacterial activity in food systems.  The antibacterial activity in food systems experiments were 
carried out as previously reported with minor modifications13. Briefly, cabbage suspension consists of squeezing 
cabbage juice and aseptic distilled water (50% vol/vol). Barley soup is made up of pulverized barley powder and 
aseptic distilled water (5% wt/vol). The food model media can be used after high pressure sterilization. 0.1% 
Tween 80 was added into cabbage suspension and barley soup for emulsion stabilization. While S. aureus was 
inoculated into the food model media (bacteria suspension concentration is 1 × 106 CFU/mL), VTE (or DMY) 
were added to the food model media, giving final concentrations of 1/2 × MIC, 1 × MIC at 37  °C for 9 days. 
Moreover, quantification of viable cells was obtained by diluting sample suspensions and spreading on the nutri-
ent agar medium at 37 °C for 24 h.

Membrane integrity.  Extracellular alkaline phosphatase (AKPase) assay.  Bacterial cells of S.aureus were 
treated with 1 × MIC VTE (or DMY ) for 12 h and washed three times using 0.1 mol/L PBS (pH 7.2), a group 
with no treatment served as control. After that, bacterial suspensions were centrifuged at 10,000 rpm for 2 min 
at 4 °C in a highspeed centrifuge. Cells were then resuspended in the PBS buffer and adjusted to the same opti-
cal density (OD_420) value at 37 °C water bath. The measurement was performed with commercial kits from 
Nanjing Jiancheng Institute according to the manufacturer’s instructions.
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Figure 1.   The structural of DMY (Version number: ChemOffice Professional 19, URL link: https​://www.chemd​
raw.com.cn/produ​ct.html).
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Extracellular β‑galactosidase assay.  Bacterial cells of S.aureus processing procedure was same as above steps 
(2.5.1), Nitrobenzene β-d-galactoside (30 mmol/L) and bacteria suspension were mixed in the ratio of 2:19 for 
30 s. With water-bath heating reaction to 37 °C, 210 uL Na2CO3 (30 mmol/L) as elimination agent, 2 mL bacteria 
culture was removed from the mixture and was centrifuged at 0, 1, 2, 3, 4 h. Finally, supernatant optical density 
was measured with a microplate reader (Infinite M200PRO, TECAN, Männedorf, Switzerland) at OD_416.

Scanning electron microscopy and transmission electron microscopy.  The scanning electron 
microscope (Quanta 200, FEI, USA) analysis was done to observe the changes which occurred in the cell surface 
of bacterial after treatment of 1MIC DMY or VTE. Bacterial cells after treatment of DMY or VTE for 12, 24 h 
were centrifuged at 8000 rpm for 8 min to pellet down. The total bacterial cells were washed twice a time of 
phosphate buffer saline. Washed bacterial pellets were fixed in 3.0% glutaraldehyde for 48 h and again washed 
with phosphate buffer saline 10 times. The bacterial pellets were immersed in 1% osmic acid for 2 h, then the 
total bacterial cells were washed in 30 min with double distilled water. Following washing, bacterial pellets were 
washed with graded ethanol (30%, 50%, 70%, 80%, 90%, 95%, 100%) and every eluting time was 15 min. Isoamyl 
acetate was used to replace ethanol as intermediate medium in samples. The sample preparation for emission 
scanning electron microscopy was done as per instruction with few modifications.

The transmission electron microscope analysis was done to observe the changes which occurred in the cyto-
plasm, cell membrane of bacterial after treatment of 1 × MIC DMY or VTE. The pretreatment of bacterial was 
same as the process of scanning electron microscopy. After routine steps of desiccation and clearing, anhydrous 
acetone was used to replace ethanol as intermediate medium in samples.

Energy metabolism enzyme and protein expression assay.  Intracellular protein expression in bac‑
teria.  The pretreating methods of bacteria were the same as described in 2.5.1. Microbiologicalintracellular 
proteins in cell suspension were detected by the method described by Ting Li and others14.

Analysis of bacteria proteins by SDS‑PAGE.  The experiment was carried out according to the reported method15. 
Stacking gel (4%) and SDS–polyacrylamide gel (10%) were used for SDS-PAGE analysis. S. aureus in the loga-
rithmic phase was added into the liquid medium containing VTE or DMY (1 × MIC), and the final bacterial 
concentration was 1 × 107 CFU/mL. Samples were cultured for 6 and 24 h at 37 °C. All samples were centrifuged 
at 14,000 rpm for 5 min to pellet down. and washed thrice with sterile phosphate buffer (PBS). The collected bac-
teria were diluted into the same concentration determined by the OD_480 values. The samples were denatured 
for 5 min in 4 × SDS-PAGE loading buffer, and then supernatant was loaded on the gel for SDS-PAGE analysis.

Key enzymes assay in energy metabolism process of bacteria.  The pre-manufacture procedures of bacteria were 
the same as described in 2.6.1. Cell suspension was centrifuged and the supernatant was got. The succinate 
dehydrogenase activity, Malate dehydrogenase activity and total adenosine triphosphate (ATPase) activity were 
assayed according to directions of test kit from Nanjing Jiancheng Institute (Nanjing, China).

DNA binding assay.  UV spectroscopy.  Different concentrations of S. aureus genomic DNA (0–0.6 mg/
mL) were added with 100 μL concentration of VTE or DMY (0.6 mg/mL), respectively. They were then incu-
bated at 37 °C for 1 h with a UV scanning range of 200 to 450 nm.

Fluorescence spectroscopy.  The VTE or DMY and genomic DNA were treated in the same way as described in 
2.8.1. After one hour of incubation, it was scanned by fluorescence spectrophotometer with an excitation wave-
length of 437 nm, and the emission wavelength range is 400 to 650 nm.

Statistical analysis.  All assays were performed intriplicates and the results are the means of three inde-
pendent experiments. The data were analyzed by one-way Analysis of Variance (ANOVA) using SPSS software. 
The data are expressed as the means ± standard deviation (S.D.) of at least three independent experiments. Sig-
nificance was determined at P < 0.05.

Results
The HPLC chromatogram of VTE and DMY.  As shown in Fig.  2, it is a determination of the con-
tent of DMY in VTE by HPLC. The standard curve fitting equation of DMY standard is y = 66478x + 7.3095, 
R2 = 0.9991(The X is the DMY concentration (g/L), and the Y is the peak area). The final result is that the con-
centration of DMY is about 65.29%.

Establishment of the MIC.  The MIC of VTE、DMY were 6.3 mg/ mL and 1.25 mg/mL, respectively.

Effect of VTE and DMY on the growth of S. aureus.  Effects on cell growth curve.  The effect of VTE 
and DMY on the growth curves of S. aureus were shown in Fig. 3. Compared with the control group, the optical 
density of the bacterial solution treated with the VTE and DMY were significantly decreased. From the changes 
of the growth curve, the stagnation period of cell growth was prolonged by VTE and DMY, the logarithmic phase 
of S. aureus was obviously limited, and the number of bacteria decreased obviously. In addition, the inhibitory 
effect was enhanced with the increase in inhibitor concentration of a certain range.
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Effect on morphology of S. aureus.  The effects of VTE and DMY on the morphologies of S. aureus cells were 
visualized by SEM (Fig. 4). In control group, the cell is smooth, full appearance and good refraction (Fig. 4A). 
After VTE treatment for 12 h, there were obvious vesicular and irregular processes on the surface of S. aureus 
(Fig. 4B). There was a large amount of dissolution around S. aureus after treatment of DMY for 12 h (Fig. 4C), 
the contents of the outflow may be intracellular materials. In addition, as shown in the images, the effect of VTE 
on the external morphology of microorganisms is more obvious than that of DMY.

The TEM of S. aureus is shown in Fig. 5. S. aureus cell wall and membrane were seriously damaged by VTE 
for 12 h (Fig. 5B) showing the cell boundary becomes blurred, the extracellular solutes existed and the bacteria 
autolysis. Additional, the cytoplasm became lighter and fragile, and the nuclear area also changed obviously, 
such as the decrease of nuclear quantity. However, compared with VTE group, the phenomenon of DMY treat-
ment group was not very obvious (Fig. 5C). Finally, S. aureus was blurred in cell division after treatment of VTE 
and DMY.

Effects of VTE and DMY on the cell wall and membrane.  Effect on membrane integrity.  Alkaline 
phosphatase (AKPase) is located between the cell wall and membrane. A large amount of intracellular AKP leak-
age can indicate that the integrity of the cell wall has been destroyed. The AKPase released treated with 1 × MIC 
VTE or DMY for 12 h was shown in Fig. 6A, the extracellular AKPase of VTE and DMY treated groups increased 
by 21.8% and 10.3%, respectively. The extracellular AKPase treated with VTE and DMY was significantly higher 
than that of the control group, suggesting the VTE and DMY destroyed the integrity of the cell wall.

Effect on cell membrane permeability.  The changes of extracellular β-galactosidase contents were shown in 
Fig. 6B. The content of extracellular β-galactosidase treated with VTE and DMY were increased by 90.2% and 
57.4%, respectively, which were significantly higher than that in the control group. The results indicated cell 
membrane permeability was destroyed by VTE and DMY.
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Figure 2.   The HPLC of VTE (14.030 min) and DMY (11.958 min).

Figure 3.   The effect of inhibitors on the growth Curve of S. aureus.
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Effects of VTE and DMY on S. aureus protein.  Effect on the total protein expression.  Protein plays a 
key role in bacterial metabolic activity. The changes of intracellular protein content in cells treated with VTE and 
DMY are shown in Fig. 7A. The results showed that the content of soluble protein in the control group was basi-
cally stable and increased slowly with time, while the contents of soluble protein in S. aureus treated with VTE 
and DMY were decreased to varying degrees. The total protein were decreased with the increase of treatment 

Figure 4.   Morphological structure of S. aureus observed by SEM, untreated (A); VTE treatment 12 h (B); DMY 
treatment 12 h (C).

Figure 5.   Morphological structure of S. aureus observed by TEM, untreated (A); VTE treatment 12 h (B); 
DMY treatment 12 h (C).
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Figure 6.   Changes of extracellular AKPase content of S. aureus after 12 h of treatment with VTE and DMY (A); 
Changes of extracellular β-galactosidase content in S. aureus treated with VTE and DMY for 12 h (B).

Figure 7.   Changes of intracellular protein content in S. aureus treated with inhibitor (A). SDS-PAGE 
electrophoresis diagram of S. aureus under the action of inhibitor: 1. Negative control; 2. DMY-6 h; 3. DMY-
24 h; 4. VTE-6 h; 5. VTE-24 h (B). Activity of key enzymes in Energy Metabolism of S. aureus treated with 
Inhibitors for 12 h (C).
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time, the total protein content in VTE group and DMY group decreased by 15.5% and 9.9% (P < 0.05), respec-
tively, indicating the VTE and DMY inhibited the protein synthesis.

SDS‑PAGE analysis.  The results of SDS-PAGE analysis of S.aureus under the action of DMY and VTE were 
shown in Fig. 7B. At 85.0 KDa and 55.0–33.0 KDa, the color of the protein strip became lighter with the increase 
of treated time. In addition, there were protein bands disappeared or appeared. Compared with DMY, the change 
of band color after VTE treatment was more obvious, and the change of protein band was the biggest after 24 h 
treatment. Therefore, it is speculated that DMY and VTE have effects and differences on the expressions of bacte-
rial proteins, so a few metabolic enzymes were picked for the next step.

Effect on energy metabolism enzyme.  Activities of key enzymes in energy metabolism of S. aureus treated with 
inhibitors for 12 h were shown in Fig. 7C. Compared with the control group, the activities of MDH, SDH and 
total ATPase of S. aureus treated with VTE for 12 h were decreased by 12.7%, 65.8% and 31.5%, and the activities 
of the three enzymes treated with DMY decreased by 4.7%, 16.7% and 15.9%, respectively. Thus, the VTE had 
stronger effect on the three key enzymes in energy metabolism, especially on SDH.

Effects of VTE and DMY on the nuclear DNA.  UV spectroscopy studies.  The UV–vis absorption spec-
tra of VTE and DMY varying with the concentration of bacterial genomic DNA are shown in Fig. 8A,B. Obvious 
redshift occurred (290–325 nm) when 0.1 mg/mL bacterial genomic DNA was added. and the absorbance was 
increased with the increasing of VTE and DMY, indicating that the VTE and DMY can interact with DNA16. 
In addition, when the concentration of bacterial genomic DNA was more than 0.2 mg/mL, the absorbance of 
VTE and DMY did not increase with the increase of DNA concentration, indicating there may be more than one 
type of binding between VTE/DMY and DNA. So the specific binding between inhibitors and DNA need to be 
further studied.

Fluorescence studies.  The fluorescence spectra of different concentrations of bacterial genomic DNA with VTE 
or DMY were obtained by fluorescence scanning, as shown in Fig. 8C,D. In the presence of S. aureus genomic 
DNA, the maximum emission wavelengths of VTE and DMY were also red-shifted, and the fluorescence intensi-

Figure 8.   Effect of S. aureus Genomic DNA on Ultraviolet Spectra of VTE and DMY (A,B). Effect of S. aureus 
Genomic DNA on fluorescence Spectra of VTE and DMY (C,D).
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ties of VTE and DMY were significantly enhanced, resulting in an obvious hyperchromic effect. Therefore, it is 
inferred that VTE and DMY may have the effect of embedding DNA base pairs16.

Competitive analysis.  The effect of inhibitors on the fluorescence intensity of EB-bacterial genomic DNA sys-
tem was shown in Fig. 9A,B. After adding different concentrations of VTE and DMY, the maximum emission 
wavelength of EB-bacterial genomic DNA complex system did not change, and the fluorescence intensity of 
EB-bacterial genomic DNA system decreased. The fluorescence intensitis of EB- DNA system decreased to less 
than 60% of the initial fluorescence intensity when the concentrations of VTE and DMY were 0.2 mg/mL and 
0.1 mg/mL, respectively. The results show that both VTE and DMY have an insertion binding mode similar to 
EB. VTE, DMY and EB competed with each other, which replaced most of the EB substances in the DNA system 
of EB-bacteria17.

The effect of inhibitors on the fluorescence intensity of DAPI- bacterial genomic DNA system were shown in 
Fig. 9C,D. With the addition of VTE and DMY to DAPI-S.aureus genomic DNA system, the fluorescence inten-
sity decreased significantly. And the fluorescence intensity of DAPI-S.aureus genomic in DNA system decreased 
by 38.5% and 64.4% when the concentration of VTE and DMY was 0.1 mg/mL, respectively. The results showed 
that VTE and DMY could replace DAPI and compete for the binding sites of DAPI to bacterial genomic DNA, 
that is, VTE and DMY combine with the small grooves of the double strands of genomic DNA18.

Antibacterial activity of VTE and DMY in food systems.  As shown in Fig. 10, in the food systems 
experiment of cabbage juice and wheat juice, 1 × MIC DMY and 1 × MIC VTE could reduce S.aureus to 0 in 
9 days. On the 6th day, the two inhibitors reduced the colony number to 0 at the same time, and 1/2 × MIC DMY 
and 1/2 × MIC VTE reduced the colony number from 106 on the 0th day to 103 on the 6th day. The higher con-

Figure 9.   Effect of fluorescence intensity of VTE, DMY versus EB-S. Aureus genomic DNA system (A,B). Effect 
of fluorescence intensity of VTE, DMY versus DAPI-S. Aureus genomic DNA system (C,D).
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centration of DMY and VTE, the faster number of colonies decreased. The effects of DMY and VTE in different 
anticorrosive systems were similar, and the colony number was well controlled on the 6th day.

Discussion
Due to the negative effects of synthetic food additives and the in-depth study of the plant bacteriostatic agents, 
the research of antibacterial plant extracts as potential food additives is an important direction. The antibacterial 
activity of flavonoids from plants is being increasingly documented, for example, the MIC of apigenin against S. 
aureus is from 3.9 to 15.6 g/mL19. Dihydromyricetin is one of the most abundant flavonoids in VTE with posi-
tive antibacterial effect10. The results of this study showed that VTE and DMY had antibacterial activity against 
S.aureus, and their MIC were 6.3 mg/mL and 1.25 mg/mL, respectively. Therefore, their antibacterial mechanism 
was further studied.

Electron microscope experiments can reflect the changes of bacteria caused by VTE and DMY on the whole. 
So firstly, the whole changes of S. aureus treated with VTE and DMY were observed by SEM and TEM. The results 
of SCE showed that VTE and DMY had effects on the external morphology and structure of the bacteria, and 
occurred deformation and high bacteriolysis on the surface of the bacteria, especially for VTE. TEM showed 
that VTE blurred and damaged the cell boundary, and some areas of the nuclear region were whitened. These 

Figure 10.   Statistical figure of bacterial colonies in the Challenge of anticorrosion of Chinese Cabbage Juice 
(A). Statistical figure of bacterial colonies in the Challenge of anticorrosion of wort Food (B).
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all showed that VTE and DMY affect the cell wall and nuclear area of S. aureus. Moreover, the S. aureus treated 
by VTE and DMY became blurred in cell division, indicating that both VTE and DMY may prevent bacterial 
division and proliferation by interfering with the formation of cell wall and membrane at the end of cell division. 
Based on this observation, the mechanism of action of VTE and DMY on the membrane, protein and DNA of 
S. aureus was studied.

Cell wall membrane separates the cell interior from the outside environment and maintains a relatively stable 
internal environment in which biochemical reactions occur. In this study, classical methods such as AKPase and 
β-galactosidase were used to detect the integrity and permeability of cell wall and membrane. With the treatment 
of VTE and DMY, the contents of extracellular AKP and β-galactosidase in the environment were increased, 
which confirmed the experimental results of membrane destruction. And the effect of VTE on membrane 
integrity and permeability was stronger than that of DMY (AKPase increased by 21.8% and 10.3%, respectively; 
The content of extracellular β-galactosidase increased by 90.2% and 57.4%, respectively). Liu20 found that DMY 
could wrinkle the bacteria of Vibrio parahaemolyticus, rough the surface and finally break the cells of Vibrio 
parahaemolyticus.

Protein synthesis plays an important role in cellular metabolic activity, so the changes of total protein and 
energy metabolic enzymes were studied. The results showed that the total protein content of S. aureus was 
decreased and shallower of SDS-PAGE bands further confirmed the decrease of total protein synthesis. Next, the 
activities of some energy metabolic enzymes were also studied. The results showed that the activities of metabolic 
enzymes (MDH, SDH and total ATPase) were also seriously affected by VTE and DMY, which slowed down the 
metabolism of bacteria.

DNA regulates macromolecular synthesis and metabolic processes. They play dominant roles in major physi-
ological phenomena including growth, development, and reproduction. Spectral and competitive analysis were 
used to explore the binding mode of bacterial DNA with VTE and DMY. The results of UV spectra showed that 
there was more than one interaction between VTE/DMY and DNA. In order to determine the specific binding 
mode, the fluorescence scanning showed that VTE/DMY interact with DNA by embedding; Competitive analysis 
further showed that VTE, DMY can compete with EB form intercalation with DNA, then also can compete with 
DAPI to form groove binding with DNA. In the study of Wu et al. (2017), it was found that DMY could bind to 
DNA grooves in S. aureus, which was verified by the experimental results. However, we found that VTE and DMY 
still can be embedded with DNA in addition to groove bonding. Compared with the effects of wall, membranes 
and proteins, the interaction between DMY and DNA was stronger than that of VTE.

In summary, VTE and DMY both had good antibacterial effect on S. aureus, and their modes of mechanism 
were similar. HPLC results showed the DMY was the main component in VTE. However, DMY cannot com-
pletely replace VTE in antibacterial. As shown in Table 1, compared with DMY, VTE had a greater effect on 
bacterial membrane integrity, permeability, protein synthesis and energy metabolic enzyme activity than DMY, 
while DMY tended to act on internal genetic material DNA. The reason may be that DMY is only the main com-
ponent of VTE, however there are also myricetin, sinomenine, rutin, quercetin and flavonoid glycosides in VTE.

The main structure of DMY is 2-phenylbenzo [α] pyran or flavane nucleus: it is composed of two benzene 
rings (A and B), which are connected by heterocyclic pyran ring (C). Previous studies have shown that the fourth 
carbonyl oxygen of the C ring, the three-dimensional structure of C–3–OH and C2=C3 on the C ring do not 
affect the antibacterial activity of flavonoids18. It is further reported that the hydroxyl groups on the B ring of 
flavonoids form hydrogen bonds with DNA bases, or directly inserted into the base to achieve the inhibitory 
effect on the synthesis of DNA and RNA19, our results well supported this inference.

Conclusion
In this study, it was found that VTE and DMY could inhibit the growth of S. aureus. They had similar antibacte-
rial mechanisms. They could destroy the integrity of cell wall and improve the permeability of cell membrane. 
They also decreased the total protein synthesis and the activities of some energy metabolic enzymes. They could 
interact with DNA by embedding and grooving bindings. However, the inhibition mode of VTE on S. aureus 
were not exactly the same as DMY. VTE had a greater effect on bacterial membrane integrity, permeability, 
protein synthesis and energy metabolic enzyme activity. Finally, VTE and DMY also could inhibit the growth 
of bacteria in barley and cabbage model food system. Additional, they might be used in food or other products 
for the efficacy of inhibiting bacteria21,22. The above results showed that VTE and DMY have great potential as 
food additives in food industry and so on23.

Table 1.   The mechanism of VTE and DMY.

Mechanism VTE (%) DMY (%)

The extracellular AKPase  + 21.8  + 10.3

The extracellular β-galactosidase  + 90.2  + 57.4

MDH − 12.7 − 4.7

SDH − 65.8 − 16.7

Totle ATPase − 31.5 − 15.9

The total protein expression  + 15.5  + 9.9
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