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Abstract
Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard
archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for
Candidatus ‘Prometheoarchaeum syntrophicum’. Here, we tracked the activity of Lokiarchaeota in incubations with
Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic
carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class
Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2,
or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic
carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate
degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2
instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite
overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.

Introduction

Lokiarchaeota, previously described as Marine Benthic
Group B or Deep-Sea Archaeal Group [1–3], belong to the
recently proposed archaeal superphylum Asgard, together

with the phyla Thorarchaeota [4], Odinarchaeota, Heim-
dallarchaeota, Helarchaeota [5], and Gerdarchaeota [6]. The
discovery of genes of eukaryotic signature proteins in
Asgard opened new perspectives on the evolution of
eukarya [5, 7]. Specifically, Lokiarchaeota appear to be
widely dispersed and highly abundant and diverse across
many coastal and deep-sea marine sediments [2, 8], indi-
cating a high ecological plasticity.

The presence of a tetrahydromethanopterin-dependent
Wood-Ljungdahl (H4MPT-WL) pathway for inorganic
carbon utilization is a known feature of Lokiarchaeota [9].
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Organic carbon may be utilized as well in various ways as
the presence of genes encoding for the β-oxidation of fatty
acids and various pathways for carbohydrates, peptide and
amino acid degradation suggests [10]. Besides, recent stu-
dies have discovered that some Lokiarchaeota are homo-
acetogens [9] and one Lokiarchaeum has been described to
syntrophically grow with methanogens or sulfate-reducing
bacteria while degrading amino acids [11]. These findings
hint at substantial variation within the physiology of
Lokiarchaeota. Still, there is a dearth of evidence on the
in situ lifestyles and ecological roles of Lokiarchaeota, and
it is unclear whether subgroups classified in this phylum
differ in their physiological properties [8], which compli-
cates the specific assignment of carbon and energy meta-
bolisms to Lokiarchaeota.

The detection of functional genes in metagenome-
assembled genomes (MAGs) of as yet mostly uncultivated
archaea suggests metabolic potentials that still await ver-
ification in many cases. Probing potential physiologies of
uncultivated archaea under close to in situ conditions is fea-
sible by stable isotope probing (SIP), e.g. of nucleic acids
[12]. Using RNA-SIP facilitates ultra-sensitive labelling with
a detection threshold below 0.001% for fully 13C-labelled
nucleic acids [13, 14]. Thus, in order to illuminate the in situ
metabolic capabilities and activities of uncultivated archaea
including Lokiarchaeota in marine sediments, we used both
RNA-SIP and DNA-SIP techniques in combination with
various 13C-labelled substrates. We hypothesized that (1)
Lokiarchaeota can utilize an array of carbon sources, which
are widely available in marine sediments. (2) However, not all
clades within Lokiarchaeota have the same metabolic cap-
abilities. In combination with metagenomic analysis, we
found that distinct Lokiarchaeota subgroups are specialized in
the degradation of different classes of organic compounds.

Methods

Sediment incubation setup for SIP

Sediment for incubations was collected from Helgoland
mud area (54°05.23′N, 007°58.04′E) by gravity coring
during the RV HEINCKE cruise HE443 in 2015. Sediment
cores were kept at 4 °C on board during the cruise; in the
home laboratory, cores were sectioned into 25-cm depth
intervals, and sediment was stored at 4 °C in 2.6-L-glass
jars, overlain with anoxic artificial seawater and headspace
flushed with N2. Geochemical profiles were described pre-
viously [15]. Sediment from the methanic zone (238–263
cm depth) and sulfate free artificial seawater (w:v= 1:4, 50
ml) were homogenized and incubated anaerobically in
sterile 120-ml serum bottles sealed with butyl rubber stop-
pers, and headspace flushed with N2. A 10-day pre-

incubation was performed by exchanging headspace with
N2 to remove CO2. Three different incubation setups were
used to address our hypotheses regarding carbon utilization
modes: (1) Addition of 13C-DIC and organic carbon or
sulfur to account for the capability of Lokiarchaeota to
assimilate inorganic carbon; (2) Addition of 13C-
fermentation products (without 13C-DIC) to detect utiliza-
tion of fermentation products; (3) Addition of a combination
of protein (13C-labelled and unlabelled) and DIC (13C-
labelled and unlabelled) to check for mixotrophic use of
both, protein and DIC as carbon sources. For incubations
fed with organic polymers and sulfur, triplicate setups were
supplemented with unlabelled electron donors (1 g/l sulfur,
30 mg/l lignin, 30 mg/l humic acid, and 30 mg/l cellulose
separately), electron acceptors (30 mM lepidocrocite) and
10 mM sodium bicarbonate (99% 13C-labelled bicarbonate
provided by Cambridge Isotope Laboratories, Tewksbury,
Massachusetts, USA). Sediment slurries were incubated at
10 °C. An additional setup fed with unlabeled bicarbonate
was used as a control for comparison. Because of the very
slow growth rate of Lokiarchaeota [11], samples collected
on day 255 were used for RNA-SIP analysis and those on
day 386 were used for DNA-SIP analysis based on the
development of the stable carbon isotopic composition of
total organic carbon (δ13C-TOC) as a proxy for carbon
assimilation activity in incubations. The δ13C values of
TOC were measured on a Flash 2000 elemental analyzer
coupled with DELTA V Plus IRMS via a ConFlow II
interface (EA-IRMS, Thermo Scientific, Bremen, Ger-
many). Prior to analysis, dried sediment from 0.5 ml slurry
was acidified using 1 ml HCl (37%) overnight to remove
inorganic carbon and followed by evaporation for several
days until HCl acid was fully evaporated.

Separate RNA-SIP incubations amended with 13C-
labelled fermentation intermediates (acetate, propionate,
lactate and butyrate; 99%, all C-atoms 13C-labelled, sodium
salts) were setup in triplicates using Helgoland mud area
sediment from methanic zone (95–120 cm). The corre-
sponding unlabelled fermentation intermediates were used
as control incubations. Low concentrations of fermentation
intermediates (~60 µM carbon) were used, i.e. 30 µM acet-
ate, 20 µM propionate, 20 µM lactate and 15 µM butyrate.
δ13C-CO2 in headspace of SIP incubations was monitored
as previously published (Fig. S1) [16]. Incubations were
stopped after up to 13 days according to the increase of
δ13C-CO2 in headspace (Fig. S1a) and the low starting
concentration of amended fermentation intermediates.

Protein utilization by Lokiarchaeota was tested using
RNA-SIP incubations with upper layer sediment (16–36
cm) and 13C-labelled protein. Labelled 13C-protein was
obtained by growing Escherichia coli DSM 498 strain in
both unlabelled and 13C-labelled E. coli-OD2 C medium
(13C, 98%, Silantes, Germany) [17]. Protein extraction was
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performed as previously described with modifications [18].
Briefly, after harvesting, E. coli cells were disintegrated by
bead beating in phosphate buffer and Tris-NaCl-sodium
dodecyl sulfate solution, and nucleic acids in the upper
aqueous phase were removed after treatment with phenol:
chloroform:isoamylalcohol (25:24:1; v/v/v). The protein
layer at the aqueous-organic interphase was collected,
washed with 1 ml DEPC-treated water to remove residue
nucleic acids, followed by chloroform:isoamylalcohol
(24:1; v/v) washing to remove phenol and lipids from the
protein layer. The protein pellet was dried under the fume
hood and mixed with autoclaved deionized water. Dis-
solved protein was quantified using the protein assay kit
(Invitrogen, Eugene, Oregon, USA). DNA contamination
was checked with the Quant-iT PicoGreen assay (Invitro-
gen, Eugene, Oregon, USA) (<0.6 ng/µl in all cases). Tri-
plicate incubations were conducted by amending ~100 µg
dissolved 13C-labelled protein. Streptomycin (100 mg/l) was
used in incubations to inhibit bacterial activity. To estimate
inorganic carbon utilization by Lokiarchaeota, 10 mM 13C-
labelled bicarbonate (13C-DIC) was supplemented to incu-
bations after 11 days (Fig. S1b) in order to minimize 13C-
DIC based cross-feeding. Incubations amended with unla-
belled protein and DIC were used as control. All incuba-
tions were stopped after 24 days based on the measurement
of δ13C-CO2 in the headspace [16].

For all SIP incubation samples, DNA and RNA extrac-
tion were performed in triplicate as described in detail in the
Supplementary Methods.

Isopycnic centrifugation, gradient fractionation and
16S rRNA gene sequencing

Isopycnic centrifugation and gradient fractionation were
performed to separate 13C-labelled from unlabelled nucleic
acids as previously described [19]. About 0.3–0.7 µg RNA
and 4–6.5 µg DNA were used for RNA- and DNA-SIP,
respectively. Isopycnic centrifugation and gradient fractio-
nation are described in Supplementary Methods. After
ultracentrifugation, 13 fractions (~400 µl) were obtained
from each sample. RNA was reversely transcribed using the
high capacity cDNA reverse transcription kit (Applied
Biosystems, Foster City, California, USA). cDNA from
fractions 4 and 5 (heavy), 6 and 7 (middle), 8 and 9 (light),
as well as 10 and 11 (ultra-light) were combined for
sequencing. DNA samples from several fractions without
pooling were used for high-throughput sequencing. PCR
targeting the V4 region of 16S rRNA gene sequences was
performed with KAPA HiFi HotStart PCR kit (KAPA
Biosystems, Cape Town, South Africa) and barcoded
archaeal primer Arc519F (5′-CAGCMGCCGCGGTAA-3′)
[20] and Arch806R (5′-GGACTACVSGGGTATCTAA
T-3′) [21]. Thermocycling was as follows: 95 °C for 3 min; 35

cycles at 98 °C for 20 s, 61 °C for 15 s, and 72 °C for 15 s;
72 °C for 1 min. PCR products were purified using the
Monarch PCR Cleanup Kit (New England Biolabs, Ipswich,
Massachusetts, USA) according to the manufacturer. Equi-
molar amounts of amplicons per sample were combined
based on PicoGreen quantification. For SIP samples from
incubations amended with DIC, amplicons were sequenced
using Illumina Hiseq 4000 platform with 150-bp paired-end
reads at GATC Biotech (Konstanz, Germany). cDNA of
RNA-SIP samples of incubations amended with fermentation
intermediates and protein were sequenced using Nova-
seq6000 platform with 250-bp paired-end reads at Novogene
(Cambridge, UK). Raw reads were processed using the
QIIME 1.9.0 software package [22]. OTUs were clustered at
97% identity using UPARSE-OTU [23]. Sequencing data of
SIP samples have been submitted to Short Reads Archive
with accession numbers from SRR8607872 to SRR8607991
and SRR11429462 to SRR11429436.

Criteria for identifying SIP fractions containing 13C-
labelled nucleic acids

Label incorporation into distinct OTUs was detected by the
presence of nucleic acid templates in heavy gradient frac-
tions. For OTUs with a high background in 12C-DIC incu-
bations (Loki-3), we have used three criteria to define
isotopic enrichment of nucleic acids following recommen-
dations by Lueders [24]: (1) A more than 5% increase of
relative abundance of OTUs in the heavy fractions of
amended incubations compared to the maximum relative
abundance of the control incubations (inter-gradient com-
parison); (2) A more than 5% increase of relative abundance
of OTUs between light and heavy fractions (intra-gradient
evaluation); (3) Defining SIP fractions containing 13C-
labelled nucleic acids by standardization with RNA and
DNA of fully labelled and unlabeled E. coli standards
(Fig. S2). Based on these standard gradients, densities
starting from 1.797 g/ml (RNA-SIP) and from 1.702 g/ml
(DNA-SIP) mark the incorporation of 13C-labelled nucleic
acids when first two criteria were met, with increasing
densities representing higher degrees of labelling efficiency
(see Supplementary Methods). Since the G+C mol% con-
tent of Loki-2 and Loki-3 DNA was ~30% (based on MAGs,
Table S1), partitioning of unlabeled DNA from these target
archaea into fractions with higher density was ruled out. For
RNA, density effects were unlikely due to a narrow range of
G+C mol% content in rRNA of 50–60% [24].

Phylogenetic analysis of Lokiarchaeotal 16S rRNA
genes

Archaeal 16S rRNA gene sequences were aligned using
SINA Aligner [25]. These archaeal sequences included 16S
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rRNA gene OTUs from Illumina sequencing of RNA-SIP
samples, clone sequences from the heavy fraction of DNA-
SIP samples, 16S rRNA gene extracted from the six
Lokiarchaeotal MAGs and Lokiarchaeota representative
sequences obtained from previously studies [8, 11, 26].
Maximum-likelihood tree was inferred with RAxML (ver-
sion 8.2.11) using the GTRGAMMA model with 1000
times rapid bootstrapping [27]. The tree files were visua-
lized using iTOL software [28] and edited in Adobe Illus-
trator. Calculation of identity of 16S rRNA gene clones was
performed in ARB [29]. Fragments of 16S rRNA gene from
position of E. coli 29 to 796 (~770 bp) were used for cal-
culating the identity (Table S2).

Metagenomic and metatranscriptomic analysis

DNA from the heavy fraction with a density of 1.719 g/ml
(the second heaviest fraction, from which template could be
amplified) from the incubations amended with sulfur/lepi-
docrocite and original DNA extracts from Helgoland sedi-
ment at depth from 238 to 263 cm were used for
metagenomic sequencing at Novogene (Cambridge, UK)
using Illumina HiSeq sequencing with 150-bp paired-end
reads. Coastal sediment samples from South China were
used for both metagenomic and metatranscriptomic analysis
(see Supplementary Methods for more details). Raw meta-
genomic DNA reads were de-replicated and trimmed using
the script “dereplicate.pl” and sickle (version 1.33) [30]
with the option “-q 25”, respectively. Paired-end Illumina
reads for each sample were de novo assembled using IDBA-
UD (version 1.1.1) [31] with the parameters “-mink 65,
-maxk 145, -steps 10”. Scaffolds were binned into genomic
bins with trimmed reads using a combination of MetaBAT2
[32] and Das Tool [33]. Briefly, 12 sets of parameters were
set for MetaBAT2 binning [34], and Das Tool was further
applied to obtain an optimized, non-redundant set of bins.
To improve the quality of the bins (e.g. scaffold length and
bin completeness), each Lokiarchaeotal MAG was remap-
ped with the short-read mapper BWA [35] and re-assembled
using SPAdes (version 3.0.0) [36] or IDBA-UD (version
1.1.1) [31], followed by MetaBAT2 and Das Tool binning.
Lokiarchaeotal MAGs with high contamination were further
refined with Anvi’o software (version 2.2.2) [37]. The
completeness, contamination and strain heterogeneity of the
genomic bins were estimated by CheckM (version 1.0.7)
software [38]. Lokiarchaeota MAGs were described in
Table S1.

Protein-coding regions were predicted using Prodigal
(version 2.6.3) with the “-p meta” option [39]. The KEGG
server (BlastKOALA) [40], eggNOG-mapper [41], Inter-
ProScan tool (V60) [42] and BLASTp vs. NCBI-nr database
searched on December 2017 (E-value cutoff ≤ 1e−5) were
used to annotate the protein-coding regions (Table S3).

The Lokiarchaeotal MAGs and metatranscriptomic data
are available in NCBI database under the project
PRJNA495098, PRJNA360036 and PRJNA505997.

Phylogenetic analyses of Lokiarchaeotal MAGs

The 16S rRNA gene sequences and a concatenated set of
122 archaeal-specific conserved marker genes [43, 44] were
used for phylogenetic analyses of Lokiarchaeota. Ribosomal
RNA genes in the MAGs were extracted by Barrnap (ver-
sion 0.3, http://www.vicbioinformatics.com/software.barrna
p.shtml). Marker genes for phylogenomic tree were identi-
fied using hidden Markov models and were aligned sepa-
rately using hmmalign from HMMER3 [45] with default
parameters. The 122 archaeal marker genes were identified
using hidden Markov models. Each protein was individually
aligned using hmmalign [46]. The concatenated alignment
was trimmed by BMGE with flags “-t AA -m BLOSUM30”
[47]. Then, maximum-likelihood trees were built using IQ-
TREE with the best-fit model of “LG+ I+G4” followed by
extended model selection with FreeRate heterogeneity and
1000 times ultrafast bootstrapping.

Results

Identification and carbon utilization of
metabolically active Lokiarchaeota

We studied the carbon metabolism of active Lokiarchaeota
in incubations with Helgoland mud sediment, in which up
to 10% of archaeal sequences were previously identified as
Lokiarchaeota [48]. We applied both, RNA and DNA based
SIP by using 13C-labelled bicarbonate (DIC) in combination
with different electron donors (sulfur, lignin, humic acids
and cellulose) and/or the iron oxide lepidocrocite (γ-FeO
(OH)) as electron acceptor, all of which are detectable in
marine sediments [15, 49].

Inorganic carbon assimilation is an ideal proxy for
monitoring microbial activity since both autotrophs and
heterotrophs incorporate CO2 into biomass [50, 51].
Microbial activity in SIP incubations amended with 13C-
DIC was followed by determining the δ13C-TOC (Fig. 1). In
contrast to control incubations with only 13C-DIC, the
addition of unlabeled cellulose and sulfur substantially
increased δ13C values of TOC above natural abundance to
~30‰ and 428‰, respectively. For aromatic compounds
(lignin and humic acids), δ13C of TOC was close to control
incubations (−20 to −15‰). The amendment of lepido-
crocite led to an increase of δ13C values of TOC in com-
bination with cellulose and especially sulfur (Δδ13C 428‰).

Using nucleic acid-SIP, we identified nine active
Lokiarchaeotal OTUs (97% 16S rRNA sequence identity
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cutoff) in incubations fed with various electron donors and
13C-DIC (Fig. 2). Prominently, OTUs previously classified
as Loki-2b [8] were found in high abundances in the RNA-
SIP fractions containing 13C-RNA for setups with unlabeled
cellulose, with ~20 and 10% of total archaeal sequences at
density of 1.817 and 1.809 g/ml for treatment of cellulose
and cellulose/lepidocrocite, respectively. Loki-2b were also
identified in incubations amended with sulfur/lepidocrocite
(~90% at 1.806 g/ml) (Fig. 2a), for which we saw also
incorporation into isotopically “heavy” DNA (Fig. 2b).
However, Loki-2b remained undetected in both, incubations
of unlabelled DIC control and 13C-DIC control. In com-
parison to the control incubations, Loki-3 were stimulated
in incubations amended with lignin, but here, the RNA was
isotopically separated into partially labelled fractions
(~50–90% of all archaeal sequences in fractions with den-
sity of 1.797 and 1.806 g/ml) (Figs. 2a and S3). In addition,
DNA of Loki-3 OTUs was recovered from 13C-labelled
fractions (>1.706 g/ml) of 13C-DIC/humic acid/lepidocro-
cite incubations after comparison with both unlabelled DIC
and 13C-DIC/lepidocrocite (Figs. 2b and S3).

Since Lokiarchaeota were stimulated by organic poly-
mers, we checked whether Lokiarchaeota used intermediates
of polymer fermentation formed by other microorganisms.
In RNA-SIP incubations with 13C-labelled short-chain fatty
acids (acetate, propionate and butyrate), we detected Loki-3,
but no Loki-2b OTUs in both heavy and light fractions
(Figs. 2c and S2e). In incubations with 13C-lactate, pre-
viously undetected Loki-3 OTUs i.e. OTUs 3 and 4, were
found in heavy gradient fractions (>1.816 g/ml) after 8 days
of incubations (Figs. 2c and S1a).

Loki-2b archaea were identified only in incubations with
high microbial activity and high δ13C values of TOC, which

suggests this group utilizes biomass compounds such as
proteins or amino acids as carbon sources and thus cross-
feeding has occurred representing potentially a web food
interaction in these incubations [11]. Hence, RNA-SIP
incubations supplemented with protein were conducted to
further prove the dependence of Loki-2b on microbial
biomass. In incubations with 13C-protein, Loki-2b OTUs
were enriched in heavy fractions (Fig. 2c and Table S4). We
also found Loki-2b OTUs being labelled when 13C-DIC and
unlabelled protein were amended (Fig. 2c and Table S4).
Furthermore, a new subgroup of Loki-2, i.e. Loki-2a, was
detected at low abundance in heavy fractions of incubations
with 13C-protein, 13C-DIC and streptomycin (Fig. 2c).

The identification accuracy of Lokiarchaeota subgroups
with short Illumina sequences was checked with a
maximum-likelihood tree containing long 16S rRNA gene
fragments (~770 bp), obtained from metagenomic assembly
and a clone library established from the 13C-labelled DNA-
SIP fractions (Fig. 3a). Indeed, Loki-2b, Loki-2a and Loki-3
were phylogenetically different, whereas Loki-3 was found
to be phylogenetically more diverse than the other two
subgroups. Clones and MAGs of Loki-2 and Loki-3 16S
rRNA genes were on average 83% identical, allowing the
assignment of a class level difference between these two
subgroups (Table S2) [52].

Physiological capabilities revealed by metagenome
and metatranscriptome analysis

We used isotopically heavy DNA fractions from SIP-
incubations together with native DNA from coastal sedi-
ments containing Lokiarchaeota for deep metagenomic
sequence analysis (Table S1). Seven Lokiarchaeotal MAGs
with genome completeness above 70% were recovered
(Table S1). These Lokiarchaeotal MAGs were identified as
Loki-3 and Loki-2 members according to phylogenetic and
phylogenomic analyses (Fig. 3), supported by the high
average identity of nucleotides (ANI > 69%) and amino
acids (AAI > 62%) within Loki-3 but lower ANI (<65%)
and AAI (<48%) between the two subgroups (Loki-3 and
2b) (Fig. S4).

We analyzed nine Loki-3 MAGs and four Loki-2 MAGs,
including MAGs from SIP incubations, Helgoland Mud
sediments, South China sediments, in combination with
MAGs from previous studies [11, 26] (Tables S3, S5).
According to metagenomic inference, all Loki-3 MAGs
harboured similar pathways and capabilities, including
complete pathways for β-oxidation of long-chain fatty acids,
amino acid degradation and glycolysis via the
Embden–Meyerhof–Parnas (EMP) pathway (Fig. 4 and
Table S5). Loki-3 have an almost complete H4MPT-WL, as
all six MAGs obtained in our study lacked genes encoding
the typical 5,10-methylenetetrahydromethanopterin reductase
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(mer); however, a mer gene candidate within the same pro-
tein family of COG2141 was found (Fig. S5 and
Tables S3, S5). Both gene sets for the conversion of lactate to
pyruvate, i.e. lactate dehydrogenase and lactate utilization

proteins, were identified in Lokiarchaeota MAGs. The 2-keto
acid oxidoreductases, which potentially catalyse 2-keto acid
activation to acyl-CoA [53], coenzyme M methyltransferase
for methyl compounds utilization, as well as multiple

0

25

50

75

100

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

0

25

50

75

100

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

0

25

50

75

100

Density (g/ml)

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

C-DIC13DIC Lignin Lignin+Lep
C-DIC +13C-DIC +13

Cellulose + LepCellulose
C-DIC +13 C-DIC +13

Sulfur Sulfur+Lep
C-DIC +13 C-DIC +13

Humic acid Humic acid+Lep
C-DIC +13C-DIC +13

C-DIC+Lep13 Sulfur+Lep
C-DIC +13

Humic acid+Lep
C-DIC +13

Lactate C-Lactate13

1.
81

9

1.
80

9

1.
79

7

1.
78

6

1.
81

4

1.
80

3

1.
79

2

1.
78

0

1.
81

7

1.
80

6

1.
79

7

1.
78

6

1.
81

5

1.
80

6

1.
79

4

1.
78

6

1.
78

4

1.
81

7

1.
80

6

1.
79

4

1.
81

9

1.
80

9

1.
79

7

1.
78

7

1.
81

7

1.
80

6

1.
79

7

1.
78

6

1.
81

6

1.
80

6

1.
79

4

1.
78

3

1.
81

9

1.
80

9

1.
79

7

1.
78

7

1.
81

7

1.
80

6

1.
79

4

1.
78

6

1.
69

7
1.

70
1

1.
70

4
1.

70
7

1.
71

0

1.
69

7
1.

70
1

1.
70

4
1.

70
7

1.
69

5
1.

69
9

1.
70

6
1.

71
4

1.
72

0

1.
69

8
1.

70
8

1.
71

5
1.

71
9

1.
72

2

1.
81

7

1.
80

7

1.
79

4

1.
81

6

1.
80

6

1.
79

4

1.
78

3

a Long-term RNA-SIP

b Long-term DNA-SIP

c Short-term RNA-SIP

Others

Loki-3_OTU4

Loki-3_OTU3

Loki-3_OTU2

Loki-3_OTU1

Loki-2b_OTU2

Loki-2b_OTU1

DIC

Protein + DIC C-DIC13 Protein + C-DIC13 C-protein + DIC13
C-(protein + DIC)
+ streptomycin

13

Loki-2b_OTU4

Loki-2b_OTU3

Loki-2a_OTU1

1.
78

6

1.
81

5

1.
80

3

1.
79

2

1.
78

1

1.
81

2

1.
80

0

1.
78

9

1.
77

4

1.
81

5

1.
80

3

1.
79

2

1.
78

3

1.
81

3

1.
80

3

1.
79

4

1.
77

6

1.
81

2

1.
80

0

1.
78

9

1.
77

9

X

�

� �

�

� �

Fig. 2 Total sum scaling charts of Lokiarchaeota abundances of
archaeal 16S rRNA gene sequences from selected “light” and
“heavy” gradient fractions. a Long-term RNA-SIP samples amended
with 13C-DIC, b Long-term DNA-SIP incubations amended with 13C-
DIC, c Short-term RNA-SIP samples from lactate and protein incu-
bations. Differences in x-axis scales between RNA and DNA-SIP are
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and 9, 10 and 11) were combined for Illumina sequencing, whereas
individual fractions were used for DNA-SIP. Density was indicated as
the average density of combined fractions for RNA-SIP samples. Due

to density differences between RNA and DNA, the threshold density
fractions to delineate 13C-labelled nucleic acids differ between RNA
(>1.797 g/ml) and DNA (>1.702 g/ml). “X” indicates that cDNA
synthesis failed because of insufficient amount of RNA in these
fractions. For the Loki-2 OTUs which were not detectable in controls,
label incorporation activity was detected by their presence in heavy
fractions. An asterisk indicates inter-gradient increase of Loki-3 OTUs
(see Fig. S3 for intra-gradient assessment; both approaches were in
agreement). DNA with densities >1.71 g/ml was not obtained from
DIC incubations. Lep lepidocrocite. DIC dissolved inorganic carbon,
i.e. bicarbonate.
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coenzyme A ligases including long-chain-fatty-acid-CoA
(ACSBG), 4-coumarate-CoA and phenylacetate-CoA ligases
were also found (Figs. 4a and S6).

In order to compare the two subgroups of Lokiarchaeota,
Loki-3 and -2, we analysed the number of homologues of

key genes of β-oxidation, H4MPT-WL, EMP and amino
acid degradation. Homologues of genes for β-oxidation and
EMP pathway and coenzyme M methyltransferase were
highly diverse in Loki-3 MAGs compared to Loki-2b (MK-
D1) (Fig. 4a and Table S5). In contrast to Loki-3, Loki-2b
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(MK-D1) had more homologues of genes encoding acyl-
CoA synthetase (up to 7) and indolepyruvate ferredoxin
oxidoreductase (up to 6) (Fig. 4a and Table S5), which are
associated with amino acid degradation. Loki-3 exclusively
harbour diverse unique genes involved in sugar and lactate
metabolism, methyl utilization as well as β-oxidation
(Table S6), while Loki-2,especially for Loki-2b mainly
comprise genes related to amino acid degradation such as 2-
keto ferredoxin oxidoreductase acyl-CoA synthetase and
propionate-CoA ligase (Fig. 4 and Table S5). However,
most genes belonging to H4MPT-WL and many genes from
the EMP pathway were absent in the Loki-2 MAG. Meta-
transcriptomic analysis showed that the transcripts for most
genes involved in the WL pathway and acetyl-CoA

carboxylation in Lokiarchaeota were detected in mangrove
sediments of South China (Fig. S7).

Discussion

This study has demonstrated that phylogenetically diverse
Lokiarchaeotal subgroups were active in incubations of
Helgoland mud sediments when probed with combinations
of 13C-DIC, organic polymers, sulfur, 13C-lactate as well
as 13C-protein by RNA- and DNA-SIP. This is corroborated
by the divergent metagenomic blue prints of the two
Lokiarchaeotal subgroups (i.e. Loki-3 and Loki-2) found,
which underpin their preferences for distinct carbon sources.

Fig. 4 Key genes and metabolic pathways in Lokiarchaeota.
a Number of gene homologues in Lokiarchaeota MAGs. Lokiarch-
aeota MAGs marked with green indicate Loki-3 obtained from Hel-
goland sediment and sediment incubations. MAGs marked with blue
and cyan indicate Loki-2b and Loki-2a, respectively (see Table S1 for
detail MAG information). MK-D1: Candidatus ‘Prometheoarchaeum
syntrophicum’ strain MK-D1 [11]. Symbol “-“ indicates absence of

gene in MAGs. b Proposed active pathway in Lokiarchaeota (Loki-3).
Pathways were constructed based on Lokiarchaeotal MAGs obtained
from this study (Table S3). EMP Embden–Meyerhof–Parnas pathway,
WL tetrahydromethanopterin-dependent Wood-Ljungdahl pathway.
Incomplete pathways were indicated by dashed line. Pathway names
associated with the colours: yellow: β-oxidation; pink: WL; light blue:
EMP; purple: amino acid degradation.
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Identification of active Lokiarchaeota by SIP

Nucleic acid-SIP is a technique used for identifying the
active microbial players in incubation studies. However, a
valid concern with SIP is the potential for cross-feeding,
especially for long-term incubations [54]. To evaluate the
possibility of cross-feeding, we followed the change in the
stable carbon isotopic composition of TOC in 13C-DIC
incubations to track biomass formation in incubations since
increases in 13C-TOC reflect microbial activity [50, 51].

We proved that 13C-DIC based cross-feeding i.e. cross-
feeding on highly 13C-labelled biomass from incubations
with 13C-DIC, did not occur in incubations amended with
13C-DIC/organic polymers for the following reasons: (i) for
incubations amended with 13C-DIC/lignin and 13C-DIC/
humic acid/lepidocrocite, δ13C of TOC was close to that of
control incubations (Fig. 1), indicating a very low activity in
these incubations. (ii) Bacteria communities in the heavy
fractions specifically in incubations of 13C-DIC/lignin and
13C-DIC/humic acid/lepidocrocite were not enriched most
likely due to the difficulties in aromatic compounds utili-
zation and low growth under anaerobic conditions at low
temperature (10 °C) [55, 56] (Fig. S2a). (iii) For incubations
amended with 13C-DIC/cellulose/lepidocrocite, the organic
carbon was unlabelled, rendering heterotrophic cellulose-
degrading Spirochaetaceae [57] enriched in the light RNA-
SIP fractions (Fig. S2), so highly 13C-labelled biomass was
not produced by bacteria from 13C-DIC. Hence, 13C-DIC
based cross-feeding between bacteria and archaea is unli-
kely for inorganic carbon assimilation in incubations
amended with unlabeled lignin, humic acid and cellulose.

Flexibility of Loki-3 in carbon utilization

Generally, the evolution of archaea has been hypothesized
to be linked to an autotrophic lifestyle [58], and the
assimilation of inorganic carbon appears to be important for
some archaea because of the pathways involved in biomass
formation. Examples include methylotrophic methanogens
and Bathyarchaeota when thriving on organic substrates
[16, 59]; Bathyarchaeota incorporate substantial amounts of
13C-bicarbonate into their tetraether lipids while thriving on
lignin as energy source [59]. Likewise, we observed a sti-
mulation of Lokiarchaeota activity and inorganic carbon
uptake in the incubations amended with lignin/13C-DIC and
humic acid/lepidocrocite/13C-DIC in RNA- and DNA-SIP
incubations (Fig. 2). We ruled out the possibility of Loki-3
utilizing biomass from other cells because no Loki-3
activity was detected when protein was amended. In con-
trast, Loki-2b, which had an extremely low abundance in
DIC controls, was stimulated in the same incubations
(Fig. 2c). For those incubations with lignin/13C-DIC, high
abundances of Loki-3 RNA were found in intermediate,

partially labelled RNA-fractions (Fig. S2b). Similarly, Loki-
3 were also identified in the fractions containing 13C-
labelled DNA (Fig. 2b). “Partial labelling” can be the result
of mixotrophic metabolism. Certainly, partial labelling can
also arise from label dilution and insufficient time for label
incorporation. However, the unique activity of Loki-3 in
13C-DIC/lignin incubations strongly points to a participation
of Loki-3 in lignin degradation. Since the amended organic
polymers were unlabelled, the detection of 13C-labelled
Loki-3 suggests that their biomass was inevitably formed by
13C-DIC fixation. Hence, Loki-3 were highly abundant in
intermediate, partially labelled fractions of both RNA- and
DNA-SIP incubations (e.g. lignin/13C-DIC), suggesting
mixotrophy by utilizing both, inorganic and organic carbon
sources.

In our incubations, the activity of Loki-3 archaea was
triggered by 13C-DIC, unlabelled lignin and 13C-lactate
(indicated by RNA-SIP) as well as by humic acids and
lepidocrocite (DNA-SIP), showing a wide range of actively
expressed carbon utilization modes. In order to show the
effect of labelled carbon on nucleic acids labelling patterns
during SIP, nucleic acid synthesis pathways are shown in
Fig. 5 according to previous studies [15, 60, 61]. Although
the WL pathways found in Lokiarchaeota MAGs might not
be complete (or might feature a distant mer alternative;
Fig. S5), sufficient amounts of inorganic carbon were
assimilated into nucleic acids (Fig. 5), suggesting that CO2

incorporation is operative in these Lokiarchaeota. When
feeding on unlabelled organic carbon such as long-chain
fatty acids, aromatic polymers or methyl substrates, gener-
ated acetyl-CoA will be used for pyruvate formation after
incorporating one CO2, elevating the 13C-labelling level in
pyruvate to 33% (Fig. 5). After cleavage of formaldehyde
from arabino-3-hexulose-6-phosphate, this labelling level
increases to 40% in ribose during nucleic acid synthesis.
This amount of 13C in ribose is sufficient for separating
labelled from unlabelled RNA [62], consistent with the high
abundances of Lokiarchaeota in partially labelled fractions
rather than heavy fractions (Fig. 2). Coincidentally, genes
involved in WL pathway and acetyl-CoA carboxylation to
pyruvate were expressed in the mangrove sediment from
South China (Fig. S7). The observation of mixotrophic
inorganic carbon assimilation by Lokiarchaeota is con-
sistent with a previous study using Namibian sediments [9].
Hence, CO2 incorporation will occur when acetyl-CoA is
used for biomass synthesis since formation of pyruvate from
acetyl-CoA requires CO2 incorporation.

Inorganic carbon assimilation by Loki-3 concomitantly
occurred with the input of organic polymers (Fig. 2), indi-
cating the utilization of organic carbon. Considering the low
microbial activity indicated by δ13C-TOC (Fig. 1) and lim-
ited bacterial community shifts in RNA-SIP fractions
(Fig. S2a), Loki-3 were likely involved in the degradation of
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aromatic compounds in SIP incubations. We speculate that
organic acids generated from degradation of lignin and
humic acids could be used by Loki-3, which is supported by
the presence of the complete β-oxidation pathway. The
ability to utilize complex organic acids is underpinned by the
higher number of homologues of these CoA ligases in Loki-
3 than Loki-2b (Figs. 4, S6 and Table S5). In fact, unlike
genes for other pathways, genes encoding all enzymes
involved in β-oxidation in Loki-3 were highly expressed,
signifying that these pathways are active in situ (Fig. S7 and
Table S6). A previous study on the carbon distribution in
Helgoland sediments showed that aromatic compound
accumulated in deep sediments, suggesting slow degradation
of polymeric compounds such as lignin and humics at a
depth; moreover, the abundance of Lokiarchaeota increased
with depth in these sediments [48]. In addition, the high
number of coenzyme M methyltransferase genes in Loki-3
MAGs (Fig. 4a) suggests the possibility of methyl group
utilization originating from aromatic polymers.

Fermentation intermediates such as acetate, propionate,
butyrate and lactate have been found at concentrations of
up to 60 µM in marine sediments [63–65], representing
potential carbon sources for Lokiarchaeota. As indicated
by RNA-SIP, Loki-3 members were able to use lactate as
carbon source at low concentration provided (Fig. 2). For
incubations amended with 13C-labelled lactate, the
strongly labelled RNA of Loki-3 indicated by the specific
presence of Loki-3 OTU4 in heavy fractions suggests that
lactate was most likely used as sole carbon source while
inorganic carbon was not involved in carbon assimilation.
Indeed, the nucleic acid synthesis pathway shows that
pyruvate formed from lactate under the catalysis of lactate
dehydrogenases and lactate utilization proteins can be
directly used for ribose formation in the nucleic acid
synthesis pathway without inorganic carbon incorporation
(Fig. 5). According to phylogenetic analysis, the lactate
dehydrogenases of Lokiarchaeota form clusters with
homologues of potential lactate utilizers or fermenters in
anaerobic sediments such as Clostridia, Atribacteria and
Desulfobacteraceae (Fig. S8) [66–68]. Genes encoding
lactate utilization protein A and B in Lokiarchaeota
formed a relatively distant cluster from the other taxo-
nomic groups (Figs. S9 and S10), indicating the specifi-
city of these genes for Lokiarchaeota. The lactate
utilization proteins might be expressed preferentially
under high availability of iron [69], which is in line with
high dissolved iron concentrations (~330 µM) in the
Helgoland mud sediment [15]. These lactate utilization
proteins were uniquely detected in Loki-3 (Fig. 4 and
Table S5), suggesting the specialization of Loki-3 in
lactate degradation. The presence of two different lactate
utilization systems in Lokiarchaeota underpins that lactate
is an important substrate for Lokiarchaeota in Helgoland
Mud sediments, in line with a previous study using
Namibian sediments [9]. Furthermore, lactate dissimila-
tion to acetate is feasible, since genes encoding acet-
ogenesis from pyruvate were highly expressed (Fig. S7)
and lactate in marine sediments can reach concentrations
of up to 200 µg/l [64].

We did not observe the utilization of short-chain fatty
acids (acetate, propionate and butyrate) and protein by
Loki-3 (Fig. S2e). Although we cannot rule out that Loki-3
might use these substrates as carbon and energy source, but
because of the short term incubation (8–24 days, Fig. S1)
and the generally low activity of Lokiarchaeota, it was not
detected by RNA-SIP. Since Loki-3 have been shown to
form short-chain fatty acids such as propionate and acetate
[9, 11], it is feasible that Loki-3 in Helgoland Mud and
mangrove sediment produce volatile fatty acids. At least for
lactate fermentation, acetate is a likely product of energy
metabolism in Loki-3 (Fig. 4).

Fig. 5 Carbon assimilation patterns into nuleic acid by
Lokiarchaeota. a Inorganic carbon assimilation into nucleic acids;
b lactate utilization for nucleic acid synthesis in Loki-3. All genes
involved in the biosynthetic pathways of nucleic acids were present
in Loki-3 MAGs (Table S3). Labelling levels for each intermediate in
(a) were based on previous studies [16, 74, 75].
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Carbon utilization by Loki-2

Loki-2b archaea were active specifically in incubations
amended with sulfur/lepidocrocite and cellulose when
bacterial activity and abundances were high (Fig. 2,
Fig. S2). Importantly, Loki-2 including Loki-2a and Loki-
2b were stimulated from 13C-protein and 13C-DIC incuba-
tions, providing a link to understand the labelling pattern
observed in sulfur/lepidocrocite or cellulose/lepidocrocite
incubations. Although amino acid degradation genes were
also found in Loki-3 (Fig. 4), RNA-SIP showed that the
new Lokiarchaeota subgroup Loki-2 was active rather than
Loki-3 when protein was provided (Fig. 2c). Thus, Loki-2
likely used protein, typically representing 50% of the cells
dry matter [70], formed by abundantly enriched populations
such as members of the families Desulfobulbaceae and
Spirochaetaceae. Desulfobulbaceae are known as auto-
trophic sulfur disproportionating microorganisms [71], and
therefore, sulfur disproportionation is the likely dominating
energy and carbon metabolism in incubations with sulfur/
lepidocrocite/13C-DIC. Sulfur disproportionation becomes
an exergonic process when sulfide formed from dis-
proportionation is scavenged by reacting with iron oxides
(or Fe2+) [72]. This is supported by the strong increase in
δ13C-TOC in these 13C-DIC supplemented incubations,
notably in the presence of lepidocrocite, but not sulfur and
DIC amended incubations, and a strong increase in RNA-
SIP was observed for Loki-2b OTUs (Figs. 2 and S3). In the
absence of any genes in MAGs of Loki-2b encoding for
known sulfur cycling enzymes (e.g. DSR [73], sox pathway
[60], sulfide:quinone reductase [61]), it is most parsimo-
nious to assume that Loki-2b assimilated 13C from the
primarily labelled bacteria. Spirochaetaceae are known
degraders of cellulose [57], and thus likely represent the
main source of biomass formed in incubations with cellu-
lose and lepidocrocite [57, 60, 61, 71–73]. The indolepyr-
uvate ferredoxin oxidoreductase subunit alpha gene (iorA)
which had more homologues in Loki-2b than Loki-3 (Fig. 4
and Table S5) was specifically clustered to IOR of MK-D1
in unbinned contigs from 13C-labelled DNA (Fig. S11).
This result supports the activity of protein degradation by
Loki-2b in SIP incubations. According to metagenomic
analysis, Loki-2 archaea are equipped to produce H2 and
short-chain fatty acids during protein fermentation; thus,
these substrates are candidate substrates for methanogenesis
and sulfate reduction [11] and potentially iron reduction.
Beside protein utilization, Loki-2 archaea incorporated 13C-
labelled inorganic carbon because their RNA had become
labelled both, in the presence of unlabelled protein
(Fig. 2c); and of unlabelled cellulose (Figs. 2 and 6).

In this study, we have shown that Loki-2 and Loki-3 are
mixotrophs but with different patterns of relative abundance
across RNA-SIP fractions (for details on mixotrophy

criteria, see Supplementary Materials). Loki-2 mixo-
trophically incorporated organic carbon i.e. protein and
inorganic carbon, which is in line with the presence of Loki-
2 rRNA in the heavy fractions of incubations amended with
13C-protein/DIC and 13C-DIC/protein (Fig. 2c). For Loki-3,
we did not see an increase of relative abundance in the
heaviest fractions but strong increase in the partial labelling
fractions in incubations amended with 13C-DIC/lignin
(Fig. 2a). Overall, we showed how clades of Lokiarchaeota,
namely Loki-3 and Loki-2b, differ in their in situ activities
by using a systematic series of SIP incubations amended
with various carbon substrates including inorganic carbon,
aromatic compounds, fermentation products and protein. As
revealed by metagenomics, Loki-3 archaea harbour a wide
array of metabolic capabilities including inorganic carbon
assimilation, lactate utilization and involving in aromatic
compound degradation (Fig. 6). On the other hand, Loki-2
appear to thrive uniquely on biomass or protein derived
from other microorganisms (Fig. 6). Although both lineages
have amino acid degradation in common, SIP revealed that
Loki-2b rely more on protein degradation while Loki-3 can
alternatively use lactate and participate in aromatic carbon
degradation. Equipped with diverse carbon utilization
modes, Loki-3 are more widely distributed among marine
sediments than Loki-2 (Fig. S12). Thus, this functional
divergence in Lokiarchaeotal subgroups may regulate their
environmental adaption and global distribution. Our results
are the first comprehensive study of the divergent activity
and capability of Lokiarchaeotal subgroups, which most
likely determine the environmental adaption and distribu-
tion of these archaea in marine sediments.

Fig. 6 Carbon utilization pattern by Lokiarchaeota in marine
sediments. a Organic polymer (lignin and humic acids) degradation
and potential ecological roles of Loki-3. b Carbon utilization of Loki-2
indicated from SIP incubations.
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Data availability

Lokiarchaeotal MAGs and metatranscriptomic data are
available at the NCBI database under the project identifiers
PRJNA495098, PRJNA360036 and PRJNA505997.
Sequencing data of SIP samples have been submitted to
Short Reads Archive with accession numbers from
SRR8607872 to SRR8607991 and SRR11429462 to
SRR11429436. Clone sequences have been deposited at
GenBank with accession numbers of MK551261-
MK551285.
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