@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Omer T, Intes X, Hahn J (2015) Temporal
Data Set Reduction Based on D-Optimality for
Quantitative FLIM-FRET Imaging. PLoS ONE 10(12):
€0144421. doi:10.1371/journal.pone.0144421

Editor: James P Brody, Irvine, UNITED STATES
Received: September 17, 2015
Accepted: November 18, 2015
Published: December 11, 2015

Copyright: © 2015 Omer et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by the National
Science Foundation (http://www.nsf.gov/) under
awards CBET 0941313 (TO, JH) and CBET 1149407
(XI) and National Institute of Health (http://www.nih.
gov/) Grants R01 Al110642 (JH) and R0O1 EB19443
(X1). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Temporal Data Set Reduction Based on D-
Optimality for Quantitative FLIM-FRET
Imaging

Travis Omer', Xavier Intes’, Juergen Hahn'-2*

1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of
America, 2 Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY,
United States of America

* hahnj@ rpi.edu

Abstract

Fluorescence lifetime imaging (FLIM) when paired with Férster resonance energy transfer
(FLIM-FRET) enables the monitoring of nanoscale interactions in living biological samples.
FLIM-FRET model-based estimation methods allow the quantitative retrieval of parameters
such as the quenched (interacting) and unquenched (non-interacting) fractional populations
of the donor fluorophore and/or the distance of the interactions. The quantitative accuracy
of such model-based approaches is dependent on multiple factors such as signal-to-noise
ratio and number of temporal points acquired when sampling the fluorescence decays. For
high-throughput or in vivo applications of FLIM-FRET, it is desirable to acquire a limited
number of temporal points for fast acquisition times. Yet, it is critical to acquire temporal
data sets with sufficient information content to allow for accurate FLIM-FRET parameter
estimation. Herein, an optimal experimental design approach based upon sensitivity analy-
sis is presented in order to identify the time points that provide the best quantitative esti-
mates of the parameters for a determined number of temporal sampling points. More
specifically, the D-optimality criterion is employed to identify, within a sparse temporal data
set, the set of time points leading to optimal estimations of the quenched fractional popula-
tion of the donor fluorophore. Overall, a reduced set of 10 time points (compared to a typical
complete set of 90 time points) was identified to have minimal impact on parameter estima-
tion accuracy (~~5%), with in silico and in vivo experiment validations. This reduction of the
number of needed time points by almost an order of magnitude allows the use of FLIM-
FRET for certain high-throughput applications which would be infeasible if the entire number
of time sampling points were used.

Introduction

Fluorescence techniques have been applied to a broad range of biomedical research problems
for over 100 years [1]. One of the benefits of their nondestructive, highly-sensitive and

PLOS ONE | DOI:10.1371/journal.pone.0144421

December 11,2015 1/16


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0144421&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov/
http://www.nih.gov/
http://www.nih.gov/

@’PLOS ‘ ONE

Reduced FLIM-FRET Data Acquisition

noninvasive nature is that they can be used on living samples [2], reducing the complexity
and cost of many experiments involving biological systems. Fluorescence imaging can be
implemented based on various contrast types, though fluorescence lifetime imaging (FLIM)
has proven especially beneficial in biological systems [3-5]. Fluorescence is typically induced
using high-speed lights or lasers which cause electrons in the fluorescent molecule to attain
higher energy states. They eventually return to their ground state and in the process can emit
a specific wavelength and profile of light. The average time that the molecule remains in the
excited state is deemed the fluorescence lifetime, is usually short-lived—up to nanoseconds
in duration [6]—and independent of the measurement method. The difference in fluores-
cence lifetime between molecules and local environments of a sample provides contrast to
the image.

One particularly useful implementation of FLIM is Forster resonance energy transfer
(FLIM-FRET). In the case of FLIM-FRET, estimation of fluorescence lifetime and FRET donor
populations can be used to provide insight into cellular signaling events [7, 8], cell-cell adhe-
sion [9, 10] or apoptosis [11] to name a few. Techniques for measuring these phenomena are
generally separated into two groups: time domain and frequency domain. In each case, modu-
lated lights or lasers are used to excite the sample. In frequency domain methods, the amplitude
and phase of the resulting fluorescence is measured and used to estimate the parameters of
interest. Alternatively, time domain methods record the resulting fluorescence at different time
delays relative to the excitation pulse and build up histograms used to determine decay param-
eters. Frequency domain methods tend to have better results at high intensities [2] while time
domain methods tend to have better signal-to-noise ratios [12]. Herein, we focus on time
domain methods as improved signal-to-noise ratios are especially useful for in vivo and high-
throughput applications which are photon starved.

In time domain FLIM-FRET, parameters are typically estimated by fitting a biexponential
model to recorded FLIM-FRET data, which can be a challenging procedure if good estimates
need to be obtained. In order to address this problem, dense temporal sampling is commonly
acquired. These comprehensive temporal data sets result in accurate parameter estimates, but
at the cost of increased imaging time, limiting the applicability to relatively few in vivo or high-
throughput applications. Recently, methods such as rapid lifetime determination (RLD) [13,
14] and phasor analysis [15, 16] have gained popularity as they circumvent the need for itera-
tive fitting based on large temporal data sets. These non-fitting methods directly calculate
parameters of interest such as fluorescence lifetime and FRET fractions. In RLD, the recorded
decay curve is sectioned into separate regions. The areas under these regions are then used to
calculate the parameters of interest. A major benefit of RLD is the real-time speed at which
these calculations can be carried out. However, RLD is accurate only when the instrument
response function (IRF) of the system is negligible compared to the lifetime imaged. In the case
of short lifetime such as encountered when using near-infrared fluorophores, the accuracy in
estimations is compromised. This effectively restricts the application of RLD to in vitro applica-
tions and visible fluorophores.

In phasor analysis, the recorded decay curve is transformed into a vector-like representation
within a unit semicircle using sine-cosine transforms [17]. Each pixel in a recorded image is
converted into a phasor whose location in the semicircle is determined by its decay informa-
tion. Because each fluorescent molecule has a phasor associated with it, the relative abundances
of each fluorophore can be identified from the phasor plot. Phasor analysis, however, is less
accurate than fitting at low photon counts [18] which also limits its applicability for in vivo
techniques. Therefore, there is still a need for improved acquisition and analysis methods for in
vivo and high-throughput FLIM-FRET applications.
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Previous work [19] sought to solve this problem by optimizing the data acquired by means
of in silico large, random trials. It was determined that it is possible to significantly reduce the
acquisition time while still taking advantage of the low-light benefits of time domain FLIM--
FRET. However, that work relies upon a computationally expensive method which is chiefly
applicable to well-plate, microscopy imaging applications. Small changes to experimental con-
ditions require repeating extensive random trials that become intractable with increasingly
complex experimental systems. Additionally, cutting-edge implementations of FLIM-FRET
platforms include multispectral/hyperspectral [20-22] information and require a more elegant
solution due to the increased dimensionality. Experimental design, which is widely used in pro-
cess engineering [23], pharmacology [24] and other imaging modalities, especially magnetic
resonance imaging [25], provides a solution to this problem. These methods determine the
optimal experimental conditions needed to obtain the maximum information content from the
data. Herein, the D-optimality criterion, which is a commonly used metric in optimal experi-
mental design [26], is applied to the Fisher Information matrix and used to obtain a smaller,
information-rich set of data that results in decreased imaging time without a significant loss in
estimation accuracy. This approach presents the first of its kind to reduce FLIM-FRET data
acquisition requirements using an experimental design framework. The results are compared
to previous work and validated via in vivo experiments. This decrease in imaging acquisition
time facilitates the analysis of in vivo and high-throughput FLIM-FRET applications.

Methods
FLIM-FRET

One of the main instrumental techniques of measuring FLIM-FRET is via a time-gated imaging
acquisition. Briefly, a femtosecond laser is used to excite the sample. The fluorescence emission
is then collected by a camera which is synchronized with the laser excitation. To capture tem-
poral information, the camera is equipped with a gating system (shutter) that is open at a pre-
cise time delay after the laser burst and only for small period of time (gate width). This
acquisition sequence is repeated for different time delays relative to the laser in order to acquire
a number of sequential time gates that sample the fluorescence decay curve. From these tempo-
ral, lapsed fluorescence images, parameters of interest such as the fluorescence lifetime and the
fraction of fluorophores undergoing FRET can be extracted.

FLIM-FRET leverages the phenomenon of nonradiative energy transfer between two fluoro-
phores to locate and quantify cell signaling processes, protein-protein interactions and other
nanometer range events [27-29]. These two carefully selected fluorophores are characterized as a
“donor” and an “acceptor”. The donor has an emission wavelength within the excitation spec-
trum of the acceptor. When the acceptor fluorophore is within approximately 10nm [30] of the
donor fluorophore, an excited donor can transfer some of its energy to the acceptor resulting in a
measurable reduction (quenching) in fluorescence lifetime of the donor [31]. The resulting fluo-
rescence decay from this phenomenon is most often modeled using a biexponential equation

t —t

I=Aen + Ay, (1)

where the parameters are A}, the quenched donor fraction, A,, the unquenched donor fraction,
7y, the lifetime of the quenched donor fraction and 7, the unquenched lifetime of the donor. In
the case of FRET, A; + A, = 1 which reduces the number of parameters to three. Due to the time
resolution of the measurement system, however, an additional term, the instrument response
function (IRF), is needed in order to fit the data more accurately. Therefore, what is actually
recorded by the system is more accurately modeled by the biexponential equation convolved
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Fig 1. A synthetic TPSF from a biexponential model. A synthetic TPSF showing the possible position of
120 collected time points. Note that approximately 90 time points (red circles) fall within a useful range for
estimating fluorescence lifetime parameters for this case.

doi:10.1371/journal.pone.0144421.g001

with the IRF of the system
—t —t
I=IRF(t) ® <A]en +A2€T‘1)7 (2)

where (®) represents the convolution operator.

In order to guarantee accurate estimates of these parameters many time gates are often col-
lected [32] and constructed into a temporal point spread function (TPSF) as shown in Fig 1.
Early time gates in the rising portion of the TPSF provide means to impart spatial resolution
[33, 34] whereas later time gates in the decay portion of the TPSF are most helpful in estimat-
ing fluorescence lifetime parameters [35]. The remainder of this work uses these 90 equally-
spaced (every 40 psec) time gates corresponding to the decay portion of the TPSF.

Sensitivity Analysis

Local sensitivity can be defined as the partial derivative of the output of a system with respect
to a parameter [36]. Herein the direct differentiation method is used to find the sensitivity
which can be defined as

s(t) = ag_g)’ (3)

where y is the output and 6, is the /™ parameter (from a total of p parameters). The sensitivity
is a function of time (n time points) and can be written in vector format. One sensitivity vector
is constructed for each parameter

- {%g,...,ag—mT, (4)

i
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which is of size n x 1. The sensitivity matrix can then be constructed from each of the p sensi-
tivity vectors creating a sensitivity matrix of size n X p,

S=1[s;,--,8,)- (5)

The Fisher information matrix (FIM)—the inverse of which provides the Cramér—Rao lower
bound—provides a comparison of the quality of experimental designs [37]. Assuming uncorre-
lated measurement noise that is constant with time, the FIM can be defined as the product of
the transpose of the sensitivity matrix with itself

FIM = 'S, (6)

which is a p x p matrix, i.e., for three parameters, the FIM becomes a 3 x 3 matrix. The FIM is
used extensively in experimental design procedures and is frequently used in the study of bio-
logical systems [38].

In Silico Experiment

Synthetic decay curves were generated using the biexponential model shown in Eq (2) and a
variety of parameter values (A; = 0.1 — 0.9, 7; = 250 — 450 psec, T, = 1200 psec). These lifetime
values correspond to the quenched and unquenched lifetimes of the near-infrared (NIR) FRET
pair Alexa Fluor 700 (AF700)—Alexa Fluor 750 (AF750). This pair is well suited for high-
throughput in vitro and in vivo applications due to the minimal auto-fluorescence and attenua-
tion at these wavelengths [39, 40] and significant lifetime reduction of the donor upon FRET
(AF700) [41]. 100 decay curves were generated at each set of parameter values. Poisson noise is
most frequently used to represent the noise present in the imaging process [32, 42] and was
added to each of the curves.

In Vivo Experiment

A full description of the imaging protocol can be found in Zhao et al [43]. Briefly, an athymic
nude female mouse was injected with transferrin labeled AF700 and AF750 in RPMI 1,640
media at molar ratios of 2:1 via the tail vein. 24 hours post-injection the mouse was imaged
using a wide-field illumination method with a spectral filter to restrict recorded light to the
wavelengths of AF700 emission. The image was cropped to include only the areas of interest
(172 x 128 pixels), which include the bladder and tumor of the mouse. As 120 time gates were
collected, the complete dataset is a 172 x 128 x 120 matrix. A TPSF (see Fig 1) was constructed
for each pixel of this data and parameter estimation was performed across the image. A bright
field image was also acquired and overlaid to provide context of the results.

All animal protocols were conducted with approval by the Institutional Animal Care and
Use Committee, Rensselaer Polytechnic Institute. Tumor sizes were monitored throughout the
experiment and the maximum allowed tumor volume was 0.5 cm’. The animals were moni-
tored for significant weight loss (over 15% of initial body weight) or significant aversion to
feeding, grooming, drinking or eating. These and other indicators, such as signs of pain, illness,
tumor ulceration or distress were evaluated by an attending veterinarian to determine if they
should undergo euthanasia. The animals were imaged while under vapor anesthesia using iso-
flurane and monitored using a physiological monitoring system (oxygen saturation, heart rate
and breathing rate). Body temperature was maintained by an air warmer during the imaging
session and monitored using a rectal thermometer. Depth of anesthesia was checked at 3-5
minute intervals by observing respiratory rate and response to toe pinch. Animals were
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euthanized by carbon dioxide inhalation for at least 60 seconds. Clinical death was determined
by no sign of respiration and no movement. The death was confirmed by cervical dislocation
or decapitation.

Experimental Design Criteria

Experimental design methods seek to determine the best set of conditions for maximizing
information content of the data in some form. In order to directly compare different experi-
mental designs, a scalar measure of a design matrix is needed. There are many available mea-
sures such as the A-optimality criterion, D-optimality criterion or E-optimality criterion
among others [44, 45]. Though each has its benefits, the D-optimality criterion is especially
useful in parameter estimation problems and will be used herein. It is defined as

¢D = max det(FIM). (7)

The D-optimality criterion seeks to maximize the determinant of the information matrix which
is equivalent to minimizing the volume of the confidence region for the parameter estimates. D-
optimal designs are robust and generally produce satisfactory results even given poor initial
parameter estimates as well as being independent of the scale of the variables of the model [46].

Application to FLIM-FRET

It is the goal of this work to formulate an optimal experimental design procedure that can be
used to determine the number and location of time gates used for FLIM-FRET imaging. The
model shown in Eq (2) is used and it is the goal to estimate its parameters accurately using as
little data that needs to be measured as possible. It should be noted that for the purpose of
this paper, rich data sets were collected to allow for a comparison of the estimation accuracy
of a reduced data set to the full set. However, once the procedure developed in this paper is
established, it is possible to collect a rich data set only for a small imaging region, perform
the experimental design, and then acquire data for a larger region to be imaged using the
reduced number of time gates. The partial differentials of I with respect to each parameter
can be written as

ort) L
8A1 = IRF(t) ® (6 1 e >>
—t
orte) A ten
o, IRF(t) ® o (8)
—t
orte) (1—A))te=
o, = IRF(t) ® a

By combining Eqs (4), (5) and (8), the sensitivity matrix of the system can be constructed

[0I(t,) OI(t) OI(t)]
0A, or, or,

oI(t,) OI(t,) OIt,)
| OA, or, ot, |
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For n available time gates this becomes an 7 x 3 matrix which can be used to define the FIM
according to Eq (6). A helpful property of this formulation of the FIM is that it satisfies the
superposition principle. For example, the sum of the FIM from time gates 1 and 2 (FIM[1]

+ FIM[2]) is equal to the FIM calculated using both time gates simultaneously (FIM[1, 2]), or
more generally:

FIM[a] + ...+ FIM[z] = FIM]a, . . ., 2. (10)

This property proves useful as it allows the optimization problem to be written as a linear
combination of FIMs as shown in the next section.

Optimization Problem

The optimization problem is constructed by using Eq (9) and leveraging the superposition
property shown in Eq (10). A binary vector y (i.e,, 3; €0, 1,i=1, 2, ..., n) which represents the
set of time gates chosen for analysis, makes it possible to pre-calculate the FIM for each individ-
ual time gate. The optimization problem then determines the optimal combination of time
gates by combining the different sets of FIMs. It should be noted that it is only necessary to
pre-compute one FIM for each time gate that can be measured and that the FIMs resulting
from a set of time gate measurements directly follow from

FIM = 7, FIM[i] = > 1SS (11)
i=1

i=1

The complete optimization problem then becomes

maximize det (Z ;{iSiTSi>
* =1
subject to y, € {0,1}i=1,2,...,n. (12)

n

Zz, =,

i=1

where 7 is the maximum number of time gates to be selected and 7 is the number of total avail-
able time gates. The goal is to retain a combination of time gates that results in as good estima-
tion accuracy as possible for a reduced number of time gates. Fewer time gates results in a less
demanding data acquisition, which reduces the acquisition time. The exact number of time
gates needs to be determined by repeatedly solving this optimization problem for different val-
ues of r and determining further reduction of r will result in significant changes of the optimal-
ity criterion. The simplest, yet most inefficient, way of solving this optimization problem is an
exhaustive search of all possible solutions. This is a combinatorial problem with total combina-
tions (C) described by the binomial coefficient

c n!
= 13
(n—r)lrl’ (13)
where r time gates are chosen from # possibilities. This brute force approach is manageable for
a small number of time gates, e.g., choosing up to 5 time gates from the total of 90 (4 x 10
combinations); however, enumeration for a larger number of time gates becomes intractable.
Suboptimal methods for approximating the solution of this optimization problem exist. For
example, it is possible to solve the optimization problem by selecting the first time gate which
maximizes the optimization problem. Next, time gates are sequentially added by calculating
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which remaining time gates best complement the current set resulting in a larger function
value. The scale of the sequential combinations (SC) is orders of magnitude smaller and is
described by the product

SC:rZ::(n—i), (14)

for a subset of r time gates chosen from # total time gates. This results in only 440 combinations,
for example, for choosing 5 time gates from a total of 90. While such an approach can signifi-
cantly reduce the computational burden of solving this problem, there is no guarantee, and in
fact it is unlikely, that sequentially selecting the best » time gates will result in the same set as
when they are chosen optimally. The best solution is to solve this mixed integer non-linear prob-
lem (MINLP) using a MINLP solver. The solution will be significantly faster than an exhaustive
search of the solution space while ensuring that the results will be optimal. Further, it can be
shown that the optimization problem resulting from maximizing the determinant of a positive
semi-definite matrix (like the FIM) is convex [47, 48] which ensures a global solution to the prob-
lem. Herein, the branch and bound algorithm which is included in the Basic Open-source Non-
linear Mixed Integer (BONMIN) [49] solver was used to solve the optimization problem. The
branch and bound algorithm treats the solution set as a rooted tree. Branches of this tree can
then be pruned by relaxing the integer constraints of the problem and calculating upper and
lower bounds on optimal values for that branch. Any branch with less desirable bounds is pruned
and the solution set is reduced is size. In the worst case scenario the branch and bound algorithm
iterates through the entire solution set. However, in practice, much of the solution set is pruned
and it converges to a solution in seconds or minutes as opposed to hours or days.

A nominal set of experimental values (A; = 0.3, T; = 300 psec, T, = 1200 psec) similar to
those used in the in silico experiment were selected to calculate a set of FIMs. Table 1 shows the
optimal function values and set of optimum time gates after solving the optimization problem
shown in Eq (12) using this set. The minimum number of time gates examined is three as this
is the number of parameters to be estimated. For brevity, the solutions are shown for only up
to ten time gates, however, solutions for larger sets of time gates are easily obtained.

The optimal function value and optimal time points were verified via an exhaustive search
of all combinations for sets of three, four and five time gates. Further verification of larger sets
was infeasible due to the computational effort required. There is a clear trend in which optimal
time points are clustered into three groups—one near the beginning, one in the middle and

Table 1. Optimization results for nominal values. Optimization results using sensitivity analysis via BON-
MIN and three fitted parameters. The location of the time gates are reported as the delay (in picoseconds)
after excitation.

# of Time Gates Opt. Func. Value Set of Time Gates
3 0.0097 160, 1320, 3600
4 0.0194 160, 1320, 1360, 3600
5 0.0387 160, 200, 1320, 1360, 3600
6 0.0757 160, 200, 1320, 1360, 3560, 3600
7 0.1135 160, 200, 1320, 1360, 1400, 3560, 3600
8 0.1700 160, 200, 240, 1320, 1360, 1400, 3560, 3600
9 0.2496 160, 200, 240, 1320, 1360, 1400, 3520, 3560, 3600
10 0.3325 160, 200, 240, 1320, 1360, 1400, 1440, 3520, 3560, 3600

doi:10.1371/journal.pone.0144421.t001
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Table 2. Optimization results of additional FRET pairs. A comparison of three different FRET pairs, their nominal and quenched (short) lifetimes, an exam-
ple quenched donor fraction and the calculated optimal time gates using the framework developed herein.

FRET Combo Nominal Lifetime Short Lifetime Donor Fraction Optimal Time Gates
CFP-YFP [50, 51] 2.5ns 1.6 ns 0.3 480, 560, 600, 1800, 1840, 2160, 2400, 3320, 3400, 3520
EGFP-mRFP1 [52] 2.2ns 0.95 ns 0.1 440, 480, 520, 560, 600, 2040, 2080, 2440, 3560, 3600
TagGFP-TagRFP [53] 2.2ns 0.95 ns 0.1 480, 560, 600, 1800, 1840, 2160, 2400, 3320, 3400, 3520

doi:10.1371/journal.pone.0144421.t002

one at the end of the available set of time gates. In each of the cases shown in Table 1, the opti-
mization problem was solved in fewer than 3 minutes using a desktop PC (3.4 GHz Core-i7,
16GB RAM). Obtaining results using the previous method of large, random trials typically
required millions of iterations and between 24-48 hours to complete using the same hardware.
Using the new framework, various experimental conditions can be examined in a fraction of
the time. For example, Table 2 contains a few samples of other useful FRET pairs along with
their nominal and quenched lifetimes and quenched donor fraction. The optimal set of time
gates is obtained in less than 10 seconds for each of the FRET pairs. In each case, the general
trend of groups of early, intermediate and late time gates continues. As expected, however, the
exact position of the time gates varies depending on the experimental conditions.

Results and Discussion

One of the exciting applications of FLIM-FRET is in drug discovery [54, 55]. For example,
FLIM-FRET enables the visualization and quantification of targeted drug delivery of therapeu-
tic agents to neoplastic tissues [56-58]. For instance, Abe et al. [59] demonstrated the potential
of FLIM-FRET in measuring target engagement in vivo in breast tumors using NIR FRET pairs
labeled with transferrin. Because the transferrin receptor is homodimeric (i.e. two transferrin
molecules bind to the receptor within 2-10nm of each other), FRET pairs can be conjugated to
the transferrin and used to determine when it is bound at the plasma membrane and undergo-
ing endocytosis (represented by a FRET positive signal) [60-62]. In drug discovery applica-
tions, this FRET positive signal is of particular interest as it allows the quantification of
internalized [43, 59, 63] transferrin-labeled molecules. When this process is represented by the
biexponential model shown in Eq (2), the parameter of most interest is the quenched donor
fraction, A,;. In silico and in vivo experiments based upon this drug delivery method are used to
validate the optimization results and estimate A;.

In Silico Results

The noisy decay curves described in the Methods section were fit using MATLAB and either all
of the time gates, five optimum time gates or the ten optimum time gates shown in Table 1.
Each point in Fig 2 indicates the average relative error in estimation of A, at that set of parame-
ter values. The average error across the entire parameter space increases from 5% for all time
gates to 6% when using only the optimum ten time gates to 12% when using only the optimum
five time gates. Intuitively, the highest error occurs at smaller values of A; where the quenched
donor fraction has insignificant impact on the decay curves and smaller values of A; result in
higher relative error values. Interestingly, when using the optimum ten time gates the maxi-
mum error appears closer to A, values of 0.3 rather than zero, though it is not immediately
clear why this occurs. The simulations were repeated several times with varying numbers of
iterations and the results were similar in all cases.
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A) All (90) Time Gates B) 5 Time Gates (Optimum) () 10 Time Gates (Optimum)
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A Value
Fig 2. A comparison of parameter estimates using synthetic data across various experimental conditions. The average relative percent error in
estimation of A, across different parameter values using all (A), the 5 optimum (B) and the 10 optimum (C) time gates shown in Table 1 is shown. Average

error across all parameter values increases from 5% (all) to 6% (10) to 12% (5) with the reduction in time gates. Data from this figure can be found in.csv
format in Supporting Information S1 File (A), S2 File (B) and S3 File (C).

doi:10.1371/journal.pone.0144421.9002

In Vivo Results

An in vivo experiment as described previously was also used to validate the optimization
results. The quenched donor fraction (A,) in the tumor and bladder of the mouse were esti-
mated and are reported in Table 3 as well as shown in Fig 3. A; in this application represents
the amount of transferrin on the endocytic pathway [60, 61]. This type of experiment is espe-
cially useful in drug development as the uptake of therapeutics can be quantified at different
time points without the need to sacrifice the animal. Results using all the available time gates
and only the optimal (or evenly-spaced) ten are very similar in each of the recorded locations
and the donor fraction varies by less than 2% (6.8% relative error) in both the tumor and the
bladder. Standard deviations are also similar at each location comparing the two sets of time
gates. An additional comparison is made using ten evenly-spaced time gates (as performed in
[19]) and results are similar. These results show that using only ten optimal time gates it is still
possible to clearly distinguish between the bladder and the tumor tissue.

Discussion

The in silico results showed similar accuracy using the optimum ten time gates obtained herein,
or using all the available time gates. Average estimation accuracy of A, over all parameters val-
ues was decreased by only 1% from 5% to 6%. Using only five optimal time gates resulted in an

Table 3. In vivo comparison of parameter estimates. A comparison of in vivo estimates of quenched donor
fraction using all the available time gates, the optimal 10 time gates reported in Table 1 and 10 evenly-spaced
time gates. The estimates are similar for all cases and allow a clear distinction between the bladder and the

tumor tissue.

# of Time Gates All 10 (optimum) 10 (even)
Bladder 0.205 + 0.07 0.219 £ 0.08 0.216 + 0.09
Tumor 0.368 + 0.04 0.363 + 0.07 0.372 £ 0.05

doi:10.1371/journal.pone.0144421.t003
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Fig 3. In vivo parameter estimates using all, 10 optimal or 10 evenly-spaced time gates. A comparison of in vivo estimates of quenched donor fraction
(A4) in the bladder and tumor of a mouse. Estimates were calculated using either all (A), the optimal ten (B) time gates and 10 evenly-spaced (C) time gates
overlaid on a bright field image of the mouse. Estimates of A are higher in the tumor in all cases and largely similar between the three sets of time gates.
Data from this figure can be found in.csv format in Supporting Information S4 File (A), S5 File (B) and S6 File (C).

doi:10.1371/journal.pone.0144421.9003

average of 12% error, but estimates at small values of A; were very poor. The chief benefit of
employing the method presented herein is the reduced time and computational burden
required to select time gates. This framework is able to converge to a solution for optimal time
gates in seconds or minutes whereas the method mentioned previously using large, random tri-
als [19] required hours or days.

The results for several different FRET pairs in Table 2, for example, were obtained in fewer
than ten seconds in each case. In the worst case scenario, branch and bound methods will
search the entire solution space to find the optimal values; however, in practice, the solutions
are often obtained much more quickly. The solutions presented in Tables 1 and 2 were
obtained in at most a few thousand iterations, which means only a minor fraction of the entire
solution space was evaluated before obtaining the optimal solution. Further, because of the
convex nature of the optimization problem, we can be assured of a global solution.

The in vivo experiment serves to validate the in silico results that similar accuracy is
obtained when using all the available time gates or the optimal ten from Table 1. In this case
evenly-spaced time gates performed comparably to the optimal set of time gates, though this is
unlikely to be the case in each experiment; future work will investigate this question. The two
organs selected in each case are clearly differentiated and have comparable average estimates
and standard deviations. These data were acquired in simple wide-field illumination and detec-
tion transmission. In such configuration, full spatial and temporal data sets can be acquired in
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~40s (120-160 gates). Implementation of temporal data reduction as proposed herein could
lead to acquisition times of ~2-5s. Such fast acquisition times would enable fast, whole body
imaging as well as high-throughput multi-well imaging [8, 64]. However, the most significant
benefits of reduced data sets are expected to be achieved in tomographic applications [63]. Typ-
ically, in vivo tomographic acquisitions can take upwards of 30-45 minutes even in the case of
simple cross-sectional imaging [65]. When combined with wide-field compressive implemen-
tations leveraging structured light illumination and detection [66, 67], the whole mouse exam-
ple shown in Fig 3 can be acquired in less than 5 minutes. This is a significant reduction in
time that would allow kinetics studies, the imaging of multiple biomarkers via spectral encod-
ing and/or the imaging of multiple animals in relatively short acquisition times. The extension
of our approach to tomographic data sets and model-based inverse problems [35, 68] will be
conducted in the future.

Opverall, the results from these experiments show that it is possible to reduce the total num-
ber of time gates acquired from 90 to 10 without significantly decreasing parameter estimation
accuracy. This reduction in time gates in turn reduces the acquisition time of FLIM-FRET plat-
forms by approximately an order of magnitude. This greatly strengthens the appeal of FLIM--
FRET imaging applied to high-throughput and/or in vivo applications that are suffering from
lengthy imaging times.

Conclusions

As FLIM-FRET continues to be used in more complex imaging applications it is critical to
develop experimental strategies that enable fast acquisition times. Previous methods used to
determine optimal information content of FLIM-FRET data employed exhaustive search algo-
rithms that took hours or days to complete. These methods were too computationally demand-
ing to be applied to more complex applications such as multi/hyperspectral or tomographic
acquisitions. In contrast to this, the experimental design method implemented in this paper
has been applied effectively to the FLIM-FRET platform. Optimization results show the opti-
mal time gates are clustered into three groups near the beginning, middle and end of the TPSF.
These optimal points were validated using both in silico and in vivo experiments. These experi-
ments suggested that it is possible to decrease the total number of time points acquired by
nearly an order of magnitude with minimal loss in parameter estimation accuracy across vari-
ous experimental conditions often encountered in NIR FLIM-FRET. This reduction in acquisi-
tion time allows more complex implementations such as high-content analysis, high-
throughput screening or tomographic in vivo imaging to be completed within a few minutes.
Additionally, the sensitivity analysis framework described herein is highly suited to complex
problems and is easily augmented for future applications to other dimensions such as spectra.

Supporting Information

S1 File. Results for parameter estimation using 90 time gates. This is a.csv file containing the
data used to create Fig 2A and calculate the average error reported.
(CSV)

S2 File. Results for parameter estimation using 5 optimum time gates. This is a.csv file con-
taining the data used to create Fig 2B and calculate the average error reported.
(CSV)

S$3 File. Results for parameter estimation using 10 optimum time gates. This is a.csv file
containing the data used to create Fig 2C and calculate the average error reported.
(CSV)
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S4 File. In vivo results for parameter estimation using 90 time gates. This is a.csv file con-
taining the data used to create Fig 3A and calculate the average error reported.
(CSV)

S5 File. In vivo results for parameter estimation using 10 optimum time gates. This is a.csv
file containing the data used to create Fig 3B and calculate the average error reported.
(CSV)

S6 File. In vivo results for parameter estimation using 10 evenly-spaced time gates. This is
a.csv file containing the data used to create Fig 3C and calculate the average error reported.
(CSV)
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