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Abstract

Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer’s disease (AD) and Atherosclerosis
(CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a
cell cycle defect: chromosome instability and up to 30% aneuploidy–in neurons and other cells in AD and in smooth muscle
cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal
loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar
aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic
spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular
cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces
aneuploidy in mice, satisfying the hypothesis’ first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid
fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans
3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and
aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4)
LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same
end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for
its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation,
providing molecular insights into cholesterol’s aneugenic mechanism, specifically through its rigidifying effect on the cell
membrane, and potentially explaining why ethanol consumption reduces the risk of developing atherosclerosis or AD.
These results suggest a novel, cell cycle mechanism by which aberrant cholesterol homeostasis promotes
neurodegeneration and atherosclerosis by disrupting chromosome segregation and potentially other aspects of
microtubule physiology.
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Introduction

High levels of dietary cholesterol and plasma LDL have been

found to constitute a common risk factor for both atherosclerosis/

cardiovascular disease and for Alzheimer’s disease, but the

mechanism(s) of this effect are incompletely understood [1,2].

Atherosclerosis is characterized by localized accumulations of

lipids, inflammatory cells, smooth muscle cells and calcified cell

debris [3], while Alzheimer’s disease (AD) is characterized by

aberrant oligomerization/polymerization of two misfolded pro-

teins–extracellular amyloid-beta (Aß) assembled into amyloid

deposits, and intracellular hyperphosphorylated tau assembled

into neurofibrillary tangles [4–6]. We sought to determine whether

there is a common pathogenic pathway by which cholesterol/LDL

promotes the development of both atherosclerosis and Alzheimer’s

disease.

Genetic, biochemical, and transgenic mice studies of mutations

that cause familial forms of AD (FAD) have identified the Aß

peptide as central to AD pathogenesis, with Apolipoprotein E

(ApoE), Tau, and microtubules being required for Aß to

oligomerize/polymerize and induce synaptic loss, neurodegener-

ation, and dementia [4–7].

Cell Cycle Defects and Chromosome Mis-segregation in
AD

One mechanism by which Aß evidently causes neurodegener-

ation is by interfering with cell cycle. For example, we proposed

that AD subjects would exhibit chromosome mis-segregation and
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the accumulation of aneuploid, particularly trisomy 21 cells and

then used primary skin fibroblasts to demonstrate such trisomy 21

mosaicism and a trend toward chromosome 18 mosaicism in both

familial and sporadic AD (SAD) patients [8–11]. AD lymphocytes

also showed trisomy 21 mosaicism and premature centromere

division, a mechanistic precursor to chromosome mis-segregation

[9,12–16]. Work from several laboratories confirmed and extend-

ed these results to buccal cells and brain neurons, with trisomy 21

constituting 10% of neurons in late stage AD brain [17–21].

We investigated the mechanism of this cell cycle defect and

found that mutations in the presenilin 1 (PS1) and amyloid

precursor protein (APP) genes that cause FAD directly induce

chromosome mis-segregation and up to 20% aneuploidy in

lymphocytes and neurons of transgenic mice and in transfected

cells. Indeed the Alzheimer Aß peptide, the proteolytic product of

the PS1 based c-secretase enzyme on the APP protein and the key

player in AD pathogenesis, also induces abnormal spindle

structure and chromosome mis-segregation, including human

trisomy 21 and mouse trisomy 16 in transgenic mice, transfected

cells, and cell-free Xenopus egg extracts [22–24,25–28]. We found

that his profound defect in mitosis in AD results from Aß

inhibition of certain mitotic kinesin motor proteins, including

kinesin5/Eg5, that are essential for the structure and function of

the mitotic spindle [24].

That chromosome mis-segregation and the consequent devel-

opment of aneuploidy plays an essential role in AD pathogenesis is

indicated by the finding that following the development of 30%

aneuploid neurons during the early stages of AD, the specific loss

of these aneuploid neurons in the transition from mild cognitive

impairment to late stage AD can account for 90% of the neuronal

cell loss observed at autopsy [21].

The finding of trisomy 21 mosaicism in AD is particularly

interesting because of the universal presence of AD-like pathology

and neurodegeneration in full trisomy 21 Down syndrome (DS)

patients [8,29–31], and the finding that early onset inherited AD

can be caused by a single duplicated APP gene on one

chromosome 21 [32,33]. Evidently a 50% excess of APP and its

product Aß are sufficient for the development of AD. Case studies

of patients with trisomy 21 mosaicism and no intellectual

impairments of the DS type who developed AD by age 40

demonstrates that a small percentage of trisomy 21 cells can, over

a lifetime, lead to and/or contribute to the pathogenesis of AD

[8,25,34–37].

Disruption of Cholesterol Homeostasis in
Neurodegenerative Diseases

Because the generation and loss of aneuploid neurons appears

to underlie the majority of AD neurodegeneration, it is essential to

understand the mechanism by which such aneuploidy arises

during the preclinical stage of the disease. Clearly, the overpro-

duction of the Aß peptide may be partly responsible. However,

defects in cholesterol homeostasis may also play a role in AD

pathogenesis [38–43]. For example AD, and cardiovascular

disease (CVD) share risk factors (e.g., high plasma cholesterol

and a high cholesterol and/or saturated fat diet), and the severity

of atherosclerotic lesions in AD brains correlates with the extent of

AD pathology [38,40]. Likewise, FAD transgenic mice fed a high

cholesterol diet develop accelerated amyloid burden and steeper

cognitive decline compared to animals on regular chow [39,43].

Conversely, inhibition of endogenous cholesterol synthesis with

statins has been associated with a reduced risk of AD and

decreased amyloid deposits in humans and animals [42]. Finally,

ApoE is the major cholesterol transporter in the brain, and

inheritance of the ApoE e4 allele is the strongest genetic risk factor

for sporadic AD [44]. ApoE particularly ApoE4 directly associates

with Aß and catalyzes its polymerization into neurotoxic

assemblies [7].

A dysregulation of cholesterol homeostasis has also been

implicated in other chronic neurodegenerative diseases, including

Niemann-Pick (NPC), Huntington, and Parkinson’s disease

[39,43]. Specifically, a direct association between disrupted

intracellular cholesterol trafficking and consequent neuronal loss,

gliosis, and formation of neurofibrillary tangles (NFT) in individ-

uals carrying a mutation in the NPC1 or NPC2 gene has been

established. Loss-of function mutations in these genes cause

sequestration of unesterified cholesterol in late endosomes/

lysosomes in a number of cells and tissues, but are most deleterious

for brain development and health, triggering progressive neuro-

pathology, ataxia, dementia and premature death in early

adolescence [43]. Recent studies utilizing human samples and

cellular and animal models of NPC revealed interesting parallels

between AD and NPC neuropathogenesis, which include

endosomal/lysosomal dysfunction, glial-mediated inflammation,

NFTs and Aß accumulation especially in ApoE e4 carriers,

cholesterol dyshomeostasis, and cell cycle reactivation

[27,28,39,43]. However, unlike AD [8–21], the presence of

chromosomal abnormalities such as aneuploidy in peripheral

and brain cells has not been reported in NPC.

These pathological correlations and our finding that Aß induces

chromosome mis-segregation prompted us to investigate whether

cholesterol might also induce aneuploidy in AD and possibly NPC

and atherosclerosis. The latter hypothesis was reinforced by

reports that each atherosclerotic plaque harbors a monoclonal

proliferation of aneuploid smooth muscle cells [45–52].

To test these hypotheses, we asked whether cholesterol and

lipoproteins induce chromosomal mis-segregation in vivo and

in vitro and then investigated the mechanism of their observed

novel aneugenic effect.

Results

To investigate whether lipoproteins and cholesterol affect

chromosome segregation, we approached the project in three

phases. First, metaphase chromosome analysis and fluorescence in

situ DNA hybridization (FISH) were used to determine whether

LDL/cholesterol increases the levels of total and chromosome

specific aneuploidy in vivo: in mice fed a high cholesterol diet and

in human Niemann-Pick patients with a mutation in the NPC1

gene, which is implicated in cholesterol trafficking and athero-

sclerosis but has not previously been associated with a defect in

chromosome segregation, although mitosis-specific epitopes have

been observed in NCP1 brains [53,54] (Figure 1,2). Then, to

establish that lipoproteins/cholesterol were directly responsible for

the aneuploidy we observed in cholesterol-fed mice and NPC1

patients, we analyzed the chromosomes of different cells in culture

after exposure to various lipids, including water solubilized

cholesterol (Figures 3–4). Particular attention was paid to assessing

the aneuploidy of chromosomes 7, 12, 14, 18 and 21, as mis-

segregation of several of these chromosomes has been found in AD

[9,11–23] and in atherosclerotic lesions [46–51]. We then

investigated the mechanism by which lipoproteins/cholesterol

induce chromosome mis-segregation by analyzing their effect in

cells lacking the low density lipoprotein receptor (LDLR) or the

APP gene or exposed to calcium chelators or ethanol to counter

the intracellular signaling and the membrane rigidifying effect of

cholesterol (Figures 5–8). Finally we determined whether choles-

terol treatment induces DNA damage (Figure 9) or disrupts the

mitotic spindle, for example leading to multiple centrosomes

Cholesterol and Chromosome Mis-Segregation
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(MOCs), lagging chromosomes and mis-aligned/displaced DNA

or disarrayed microtubules, all of which are known causes of

chromosome mis-segregation/instability (Figure 10).

Cholesterol Dyshomeostasis Induces Aneuploidy in vivo
Mice fed a high cholesterol diet develop aneuploidy in

splenocytes. The effect of hypercholesterolemia on chromo-

some-segregation in peripheral cells (T-splenocytes) and in brain

cells was assessed in atherosclerosis-susceptible wild-type mice, the

C57BL/6 strain [55]. One-month-old (nontransgenic) mice (4

males and 4 females) were randomly assigned to normal mouse

chow (0% cholesterol) or a high cholesterol (,1.05%) diet (two

mouse pairs per group) for 12 weeks. Mice fed the regular diet

consumed on average 50.6268.34 g/mouse pair/week

(,172 Kcal of Digestible Energy (DE)/mouse pair/week), while

mice on the high cholesterol diet consumed on average

50.83611.14 g/mouse pair/week (,229 Kcal of DE/mouse

pair/week). Because of the difference in caloric value between

the diets, mice on the high cholesterol diet gained on average 2K
times more weight than mice fed regular chow (p,0.05).

Pathological examination at sacrifice confirmed that only mice

on the high cholesterol diet developed hepatic steatosis, a sign of

dyslipidemia, which was confirmed with Oil-Red-O staining of

isolated hepatocytes (Figure 1A).

Primary splenocyte cultures and brain cell suspensions from

mice on the regular and atherogenic diets were analyzed for

aneuploidy. FISH analysis of concanavalin A-stimulated spleen T-

cells from mice fed the high cholesterol diet showed a significant

increase in trisomy 16 compared to T-splenocytes of mice fed the

regular diet (Fig. 1B,C), but there was no induction of aneuploidy

in brain cells (0.76% versus 0.65%, p = 0.3). The fact that diet-

induced hypercholesterolemia has not been reported to affect

brain cholesterol homeostasis in wild-type mice suggests that

serum cholesterol may have induced the spleen cell aneuploidy

while sparing the brain. It is also possible that 12 weeks is sufficient

time to induce the development of aneuploid cells in mitotically

active peripheral (lymphatic) tissues of animals fed cholesterol, but

is insufficient to allow accumulation of significant aneuploidy in

the brain resulting from relatively less active neurogenesis.

Figure 1. Increased cholesterol induces chromosome aneuploidy in vivo. (A) Mouse hepatocytes (hematoxylin blue stain; light gray in
micrograph) were stained with Oil-Red-O stain (red stain, dark gray in micrograph) to detect accumulation of lipid droplets, a sign of liver steatosis
and a consequence of dyslipidemia in mice fed a high cholesterol diet (right panel). (B–C) Quantitative FISH analysis for chromosome 16 showed that
young wild-type mice fed a high (1.05%) cholesterol, atherogenic diet for 12 weeks developed higher levels of trisomy 16 in spleen cells compare to
mice fed regular chow.
doi:10.1371/journal.pone.0060718.g001
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Niemann-Pick (NPC1) mutant neurons, glia, and

fibroblasts accumulate elevated levels of trisomy 21. To

investigate the role of disrupted peripheral and central cholesterol

homeostasis in chromosome segregation in a longer-term human

neurodegenerative disease model, we turned to primary cells

derived from patients diagnosed with Niemann-Pick Type C

(NPC) disease (Table 1). Mutations and deletions in the NPC1 and

NPC2 genes cause impaired trafficking of unesterified cholesterol

(both low density lipoprotein receptor (LDLR)-internalized and

endogenously synthesized) and other lipids (e.g., glycosphingolip-

ids), which accumulate in late endosomes and lysosomes and fail to

travel to the plasma membrane and endoplasmic reticulum (ER),

resulting in severe cognitive deficits [56,57]. Loss/defect in the

NPC1 gene has also been shown to promote atherosclerosis in

animal models [58]. Interestingly, as was first reported in AD,

mitosis-specific proteins and/or phospho-epitopes have been

found to be upregulated in NPC1 brains [27,28,53,54,59–65].

To test whether cholesterol mal-distribution affects chromosome

stability in NPC disease, we assessed the level of aneuploidy in

primary NPC fibroblasts and brain cells hybridized with FISH

probes for chromosomes 12, 21, 14 and/or 18. We observed a 4-

fold increase in trisomy 21 in NPC1 fibroblasts (Figure 2A,B)

compared to normal fibroblasts and an increase of aneuploidy 12

that did not reach statistical significance (2.1% versus 0.4%,

p = 0.12). Quantitative FISH analysis of Neu-N-positive and Neu-

N-negative brain cells showed 4 to 6-fold increases in trisomy 21 in

both neurons and glia with the NPC1 mutation, compared to the

cells from control brains (Fig. 2C,D). However, there was no

increase in aneuploidy of chromosomes 12, 14 or 18 in NPC brain

cells compared to controls (0.55% vs. 0.24%, p = 0.11; 1.61% vs.

1.46%, p = 0.41; and 0.75% vs. 0.78%, p = 0.45, respectively).

These results are the first demonstration of a genomic instability

and trisomy 21 mosaicism in Niemann-Pick disease and indicate

that a cholesterol accumulation/localization defect causes chro-

mosome mis-segregation in humans, as a high cholesterol diet did

in mice.

Lipoprotein/cholesterol Induces Aneuploidy in vitro
hTERT-HME1 cells treated with lipoproteins develop

aneuploidy. To determine whether the aneuploidy observed in

NPC patients or in mice fed an atherogenic diet reflects a direct

effect of lipids on mitosis, hTERT-HME1 cells were exposed to

Figure 2. Increased trisomy 21 aneuploidy in fibroblasts and in glia and neurons of Niemann-Pick C1 patients. (A,B) FISH analysis with
a DNA probe for chromosome 21 (red) and chromosome 12 (green) of fibroblasts derived from NPC1 patients (NPC1-HF) showed an increase in
trisomy 21 cells compared to age-matched normal human fibroblasts. (C,D) Quantitative FISH analysis with a DNA probe for chromosome 21 (red)
followed by staining with NeuN antibody (green) and DAPI (blue) of resuspended cells from frontal cortices of control and NPC brains revealed
significantly higher levels of trisomy 21 in NPC neurons and glia compared to controls.
doi:10.1371/journal.pone.0060718.g002
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20 mg/ml oxidized LDL (OX-LDL), LDL or high density

lipoprotein (HDL) for 48 hr and assessed for aneuploidy by

metaphase chromosome analysis and FISH, as described. This

lipid concentration was chosen to mimic the cholesterol level in

human blood and to approximate tissue culture conditions. The

results showed an up to 4-fold increase in abnormal chromosome

complements (20% aneuploidy) in OX-LDL and LDL treated cells

compared to controls and to HDL-treated cells (Figure 3A). The

chromosome specific aneuploidy was further analyzed by quan-

titative FISH (Figure 3B–E), which revealed an induction of: 1)

trisomy 21 and 12 by OX-LDL and a borderline significant

induction of trisomy 21 and 12 by LDL (Figure 3B and D), and 2)

induction of tetrasomy 21 and 12 by both OX-LDL and/or LDL

(Figure 3C and E).

A small number of tetraploid neurons has been observed in AD

brains of humans and mice and interpreted to be a consequence of

aberrant cell cycle activation and DNA duplication without cell

cycle completion [25,27,28,59–65]. The OX-LDL and LDL

induced tetrasomy we observed in interphase hTERT-HME1 cells

are most consistent with severe chromosome mis-segregation

because very few tetraploid/polyploid cells were observed in the

metaphase spreads (Figure 3F), which was determined by counting

a total number of metaphase hyperploid/polyploid cells (having at

least $90 chromosomes) and diploid cells (46 chromosomes [2 n])

in the portion of the slide initially analyzed for karyotype. Also,

individual cells with both tetrasomy 21 and 12 occur at similar

levels in treated and untreated cells (Figure 3E). Similarly in AD

brain, many (10X) fewer tetraploid (4 n) neurons are observed

compared to aneuploid (.2 n and ,4 n) neurons [21].

LDL- induced trisomy 7 in HASM cells. To investigate the

potential role of elevated lipoproteins on chromosome segregation

during atherosclerosis, we tested the aneugenic effect of LDL, OX-

LDL, and HDL (20 mg/ml) for 48 hr on primary human aortic

smooth muscle cells (HASMC), which are prone to trisomy 7 in

atherosclerotic plaques. Quantitative FISH revealed a statistically

significant 3-fold increase in trisomy 7 in LDL treated cells

(Figure 4).

Requirement for LDLR and APP in LDL-induced

chromosome mis-segregation. 1. Lipoprotein induced aneu-

ploidy is dependent of LDLR. The LDL receptor belongs to a large

family of structurally and functionally related cell surface receptors

that are involved in diverse cellular functions, some implicated in

AD pathogenesis, including cholesterol uptake and metabolism,

ApoE binding [66], and APP trafficking and processing [67,68].

More than 1000 unique LDLR genetic alterations have been

identified that lead to Familial Hypercholesterolemia (FH), causing

three to four times higher levels of blood LDL cholesterol than

normal and premature CVD events, including severe atheroscle-

rosis [69].

To investigate whether lipoprotein-induced chromosome mis-

segregation requires a functional LDLR, FH primary human

fibroblasts harboring mutations in both LDLR alleles and normal

human fibroblasts were treated with 20 mg/ml of lipoproteins for

48 hr and assessed for aneuploidy. Quantitative FISH analysis

revealed that LDL-treated normal human fibroblasts develop

significantly higher levels of trisomy 7 compared to LDL-treated

FH fibroblasts (Figure 5A).

2. Lipoprotein induced aneuploidy is independent of APP.

Previously we found that Aß-induced aneuploidy is dependent on

Table 1. Characteristics of the Niemann-Pick Type C (NPC) and Control Samples.

Repository # Age yr Gender Clinical Dx Mutation of NPC assay

Control fibroblasts

AG02101 27 female none N/A

AG02603 35 female none N/A

AG09319 24 female none N/A

AG09429 25 female none N/A

NPC1 fibroblasts

GM18422 NK female NPC1 813_815delCAT & ASP874VAL

GM18390 NK female NPC1 ASP242HIS & SER940LEU

GM22871 4 female NPC1 1920delG & IVS9–1009G.A

GM17912 19 female NPC1 PRO1007ALA & THR1036MET

Control brains

UMB754 11.5 female asthma N/A

UMB1864 2.5 female streptococcus infection N/A

UMB4725 32.2 female hypertension N/A

UMB55 19.6 female auto accident injury N/A

UMB4590 20.5 female dilated cardiomyopathy N/A

NPC brains

UMB5372 11.3 female NPC1 filipin & cholesterol esterification

UMB4214 32.3 female NPC confirmed NPC neuropathology

UMB4237 19.8 female NPC confirmed NPC neuropathology

UMBM4992M 20.1 female NPC NPC clinical diagnosis

yr = year; NK = not known. Human fibroblasts were purchased from Coriell and brains from NICHD Brain and Tissue Bank for Developmental Disorders. Independent T-
test revealed no age difference between NPC and control brain donors (20.968.6 vs. 17.3611.1, p = 0.61).
doi:10.1371/journal.pone.0060718.t001
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endogenous APP, possibly as a cell surface receptor to aid APP

endocytosis and generation of intracellular Aß peptide or for the

uptake of extracellular Aß [23,70,71].

To determine whether lipoprotein/cholesterol and Aß-

induced chromosome mis-segregation are mechanistically relat-

ed, we isolated primary splenocytes from APPKO mice and

nontransgenic littermates, exposed them to lipoproteins, and

scored them for chromosome 16 aneuploidy (Figure 5B). OX-

LDL and LDL induced significant increases in trisomy 16 in

both cell types, indicating that the aneugenic effect of

lipoproteins is independent of APP expression and Aß

production.

Lipids and Cholesterol-induced Aneuploidy and Spindle
Defects are Mediated through Membrane Fluidity and
Calcium Homeostasis

Water-Soluble Cholesterol (WsCh) induces aneuploidy

in vitro. 1. WsCh induces aneuploidy in hTERT-HME1 cells.

Cholesterol, the most abundant lipid in eukaryotic cell membranes

[72], is compartmentalized into microdomains (e.g., lipid rafts),

Figure 3. Lipoprotein treatment induces aneuploidy. (A) Actively growing hTERT-HME1 cells were treated with 20 mg/ml of OX-LDL, LDL or
HDL for 48 hr, arrested in metaphase and Giemsa stained for karyotype analysis. All lipids induced significantly higher levels of aneuploidy compared
to untreated cells, with LDL and or OX-LDL exhibiting a much stronger aneugenic effect than HDL. (B–E) FISH analysis of the same lipoprotein-treated
cells showed that OX-LDL-induced trisomy 21 and trisomy 12 (B,D), and that both OX-LDL and LDL-induced tetrasomy 21 and 12 (C,E). (F) Karyotype
analysis of an aliquot of the cells from the same treatment showed very few, but equal numbers of polyploid cells, indicating that the tetrasomies
observed are due to chromosome mis-segregation of chromosomes 21 or 12, and not a result of chromosome duplication before cell division.
doi:10.1371/journal.pone.0060718.g003
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where it is required for essential cellular functions and structure,

including signal transduction and plasma membrane dynamics

[73,74].

As indicated above, LDLR is used by cells to internalize

external lipoproteins and is clearly required for the aneugenic

effect of LDL. Methyl-b-cyclodextrin, MbCD, as cholesterol

acceptor has been used to modify cellular cholesterol content, and

to aid the delivery of hydrophobic cholesterol into the plasma

membrane and intracellular compartments by enclosing it into its

hydrophobic cavity, bypassing the need for an LDL receptor

[75,76]. To directly examine the effect of cholesterol on

chromosome segregation, we exposed hTERT-HME1 cells to a

water-soluble MbCD:cholesterol complex (WsCh) and performed

karyotype and FISH analysis. First, we conducted a set of

preliminary experiments with the concentrations of 2 to 10 mg/ml

of WsCh for 24 and 48 hr of incubation to determine the optimal

concentration at which aneuploidy induction could be measured

over the background, but no visible morphological changes or

cytotoxicity could be detected. 4 mg/ml of cholesterol exposure

(but not 2 mg/ml) for 48 hr induced a 2-fold increase in total

aneuploidy compared to untreated cells (Figure 6A) and a

significant increase in trisomy 21 and trisomy 12 (Figure 6B),

without altering cell proliferation (p = 0.25). Taken together, these

data indicate that adding cholesterol to cell membranes induces

mitotic defects in the form of aneuploidy likely affecting all

chromosomes.

2. WsCh induces trisomy 16 in mouse neuronal precursor cells.

Induction of chromosome mis-segregation by altered membrane

cholesterol in AD or NPC patients is likely to be especially

detrimental during neurogenesis and/or neuro-regeneration.

To investigate the effect of cholesterol on the development of

aneuploidy in neuronal precursor cells, we prepared neurospheres

from prenatal brains of nontransgenic mice, treated them with

WsCh, and performed FISH for chromosome 16 as described.

Parallel cultures were incubated with or without WsCh for 7 days

(equivalent to the two cell divisions used previously for the

hTERT-HME1 cells), with fresh cholesterol-containing media

being replenished every other day to allow for expansion of the

spheres, a sign of neuronal precursor cell proliferation [77]. We

observed .4% trisomy 16 in untreated cells (Figure 6C), as has

been previously reported in developing and adult normal human

and mouse brains [78–80] and a significant 2-fold increase in

trisomy 16 in cholesterol treated cells (Figure 6C).

Changing membrane fluidity by ethanol attenuates

lipoprotein-induced chromosome mis-segregation. The

fact that the addition of cholesterol to cells induces chromosome

mis-segregation is a potentially important indicator of its

underlying mechanism of action. It is well established that

membrane cholesterol content is directly proportional to mem-

brane stiffness/rigidity [81], which can be increased by cholesterol

enrichment or decreased by cholesterol depletion [82]. In contrast,

ethanol (EtOH) increases membrane fluidity, with profound

physiological effects on multiple mammalian cells, including

neurons [83]. Because both lipoprotein- and MbCD-delivered

cholesterol increases membrane cholesterol content and rigidity

in vitro [81,82,84], we hypothesized that the mitotic errors induced

in cells by lipoprotein/cholesterol might be caused by increased

membrane rigidity, which could be counteracted by the

membrane fluidizing action of ethanol.

hTERT-HME1 cells were pre-treated with 25 mM of EtOH for

24 hr and further co-incubated with lipids in EtOH-containing

media. The rationales for using this concentration of EtOH were:

1) 25 mM or 0.115% corresponds to the blood alcohol levels of

moderate drinkers (1–3 drinks a day, 15–45 g) which has been

associated with a decrease in risk for CVD [85,86] and AD [87], 2)

Figure 4. LDL induces trisomy 7 in human aortic smooth
muscle cells. Quantitative FISH analysis of HASM cells showed an
increase in trisomy 7 when incubated with 20 mg/ml of LDL, but not
HDL for 48 hr.
doi:10.1371/journal.pone.0060718.g004

Figure 5. Lipoprotein-induced aneuploidy is dependent on
LDLR and independent of APP. (A) Normal human fibroblasts (NHF)
developed significantly higher levels of trisomy 7 when treated with
20 mg/ml of LDL for 48 hr compared to LDL receptor deficient human
fibroblasts obtained from the patient diagnosed with familial hyper-
cholesterolemia (FHF). (B) Quantitative FISH for chromosome 16
revealed comparable levels of trisomy 16 in primary splenocytes
derived from nontransgenic (NON) and APP knockout (APPKO) mice
upon incubation with 20 mg/ml of OX-LDL or LDL for 48 hr, indicating
that the aneugenic activity of lipoproteins is independent of a
functional APP gene and of its product Ab.
doi:10.1371/journal.pone.0060718.g005
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increased cholesterol efflux and cholesterol transport but un-

changed cholesterol synthesis have been observed in human

astrocytes in vitro at a concentration of 25 mM of EtOH in the

presence and absence of cholesterol acceptors [88], 3) 25 mM

EtOH fluidized the exofacial leaflet of the synaptic membranes

[89], 4) long-term exposure of hepatic cells to 0.5% EtOH had no

effect on LDLR expression or the uptake of LDL [90], and 5) our

pilot experiments showed low cytotoxicity and up to ,95% cell

viability after 48 hr of 25 mM EtOH exposure and only a small,

non-significant induction of aneuploidy for chromosome 21

(HSA21) (Figure S1A–D).

Quantitative FISH analysis of lipoprotein/EtOH-treated cells

showed a significant decrease in OX-LDL and LDL-induced

trisomy 21 (Figure 7A), and trisomy 12 (Figure 7B) compared to

cells exposed only to lipoproteins, indicating that fluidization of the

membranes by EtOH stabilizes chromosome segregation upon

lipid treatment.

Extracellular Ca++ is required for lipoprotein-induced

chromosome mis-segregation. It has been postulated that

perturbed calcium homeostasis plays an important role during

aging and in AD pathogenesis, and calcium is essential for the

function of many enzymes, for example CamKII [91]. In our

recent study of Aß-induced aneuploidy, we showed that chelation

of extracellular Ca++ with BAPTA prevents chromosome mis-

segregation in vitro [23].

To elucidate whether Ca++ plays a role in lipoprotein/

cholesterol-induced aneuploidy, as it does in Aß-induced aneu-

ploidy, we conducted experiments with hTERT-HME1 cells using

two different chelating reagents, EGTA and BAPTA. First, the

cells were pre-treated with 1.5 mM of EGTA for three minutes

before incubation with 20 mg/ml of lipoproteins for 48 hr, then

analyzed by FISH. EGTA reduced by 3-fold the OX-LDL

induced trisomy 21 (Figure 8A), and tetrasomy 21 and 12

(Figure 8B). The change in mitotic index between EGTA-treated

cells with or without lipids (e.g. LDL) was not significant (107629

vs. 81642, p = 0.77, respectively).

hTERT-HME1 cells were also pre-incubated with another

Ca++ chelator, BAPTA for three minutes and then co-treated with

lipids for 48 hr. The results showed a statistically significant

BAPTA-dependent reduction in OX-LDL-induced trisomy 21

and 12 (Figure 8C), and a borderline decrease in trisomy 21 in

Figure 6. Increased membrane cholesterol induces aneuploidy.
(A,B) Karyotype and FISH analysis showed an increase in total
aneuploidy (A) and trisomy 21 and trisomy 12 (B) in hTERT cells treated
for 48 hr with 4 mg/ml cholesterol made water-soluble in a methyl-b-
cyclodextrin (MbCD) complex. (C) Mouse chromosome 16 DNA probe
was used to measure aneuploidy levels in mouse neuronal precursor
cells (mNPC) derived from prenatal brains of wild-type mice (E17–18)
and incubated with and without 4 mg/ml of WsCh for 7 days.
Quantitative FISH analysis showed a 2–fold increase in trisomy 16 in
WsCh-treated cells compared to controls. mNPC harbored up to 4.6%
endogenous aneuploidy, as reported previously in developing mouse
and human brains [73].
doi:10.1371/journal.pone.0060718.g006

Figure 7. Ethanol attenuates lipoprotein-induced chromosome
mis-segregation. (A,B) Quantitative FISH analysis of hTERT cells pre-
treated with 25 mM of ethanol (EtOH) for 24 hr and co-incubated with
lipoproteins and EtOH for an additional 48 hr revealed a decrease in
OX-LDL and LDL-induced trisomy 21 (A) and trisomy 12 (B).
doi:10.1371/journal.pone.0060718.g007
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LDL-treated samples (p = 0.065; Figure 8C). Quantification and

comparison of mitotic indices in BAPTA-treated hTERT cells

with or without lipids (e.g., LDL) revealed no significant difference

in number of metaphases per slide (67618 vs. 69637, p = 0.92,

respectively), indicating that extracellular calcium chelation does

not affect the progression of the cells through the cell cycle.

Cholesterol treatment does not cause DNA

damage. Aneuploidy is characteristic of transformed cells and

has been hypothesized to play an essential role in carcinogenesis

[92]. Radiation, DNA-damaging chemicals, or genetic mutations,

for example affecting mis-match repair, can lead to double strand

breaks in genomic DNA [93], which has been shown to lead to

chromosome mis-segregation and aneuploidy. However, we found

no increase in double strand breaks as assessed by 53 BP1

immunocytochemistry after 48 hr treatment of hTERT cells with

water-soluble cholesterol (Figure 9).

Cholesterol disrupts the mitotic spindle. There are many

mechanisms by which genes or agents can induce chromosome

mis-segregation [94]. For example, in Aß-treated cells and

Xenopus egg extracts, the mitotic spindles become shortened

and bent and the DNA becomes delocalized [24]. We treated

hTERT-HME1 cells with 4 mg/ml WsCh for 24 hr and analyzed

the mitotic spindles after staining with a-tubulin and c-tubulin

antibodies. As shown in Figure 10, cholesterol induced a multitude

(30%) of aberrant mitotic/microtubule structures with disarrayed

microtubules and displaced DNA being particularly prominent in

mitotic structures.

Discussion

We report a set of findings that reveal a novel cholesterol-

dependent cell cycle defect that may be involved in the

pathogenesis of Nieman-Pick C1 Disease, Alzheimer’s Disease

and cardiovascular disease/atherosclerosis. Specifically: 1) Medi-

um-term exposure to dietary cholesterol induces chromosome mis-

segregation in peripheral tissues of young wild-type mice, 2)

Disturbance in intracellular cholesterol homeostasis and obstruct-

ed cholesterol trafficking to the plasma membrane in NPC-1

patients is associated with an 4 to 6-fold increase in the proportion

of trisomy 21 fibroblasts, neurons and glia, 3) Atherogenic

lipoproteins (i.e., LDL, OX-LDL) and cholesterol, but much less

so the protective HDL, induce chromosome mis-segregation,

including trisomy HSA12, HSA21, and HSA7 and MMU16 in

primary human and mouse cells in vitro, 4) Lipoproteins apparently

require a functional LDL receptor but not the presence of the APP

gene to exert their aneugenic effect, 5) Cholesterol exposure

disrupts the mitotic spindle and induces disarrayed microtubules

and displaced DNA, and 6) Reduction in either plasma membrane

fluidity or Ca++ homeostasis decreases lipoprotein/cholesterol-

induced aneuploidy in vitro.

Aneugenic Effect of Lipoproteins and Cholesterol:
Implications for AD and NPC

The present data complement and extend previous work

showing that up 30% of AD human and mouse neurons and

other cells are aneuploid due to either environmental or

complex genetic influences. Although cholesterol and other

aneugens, such as mutant PS or APP genes or the Aß peptide,

affect all chromosomes in cultured cells, the lack of selection

against trisomy 21 neurons probably accounts for their

preponderance in AD and NPC-1 brain. The finding that

LDL/cholesterol induces chromosome mis-segregation in the

absence of APP indicates that the aneugenic pathways initiated

by Aß and LDL are, at least in their early steps, separate and

independent. While our analyses of actively dividing peripheral

cells and precursor brain cells were limited to a few human and

only one validated mouse chromosome probe, a comprehensive

investigation of other peripheral and brain cells (i.e., neurons

and glia) is warranted to fully understand the rate and type of

chromosome instability in relation to changed cholesterol

homeostasis.

Although there is some indication that aneuploid neurons

develop normally in human brains, possibly increasing neuronal

diversity [17,95], the large number of aneuploid neurons in AD

and NPC must arise from mitosis, either from disease-related

neurogenesis, from reactivation of the cell cycle in normally-

post-mitotic neurons, or both. A number of studies reported

Figure 8. Role for Ca++ in lipoprotein induced chromosome
mis-segregation. (A–C) Quantitative FISH analysis with a dually
labeled DNA probe for chromosomes 21 and 12 showed a significant
reduction in trisomy 21 (A), tetrasomy 21 and tetrasomy 12 (B) in hTERT
cells pre-treated with 1.5 mM of Ca++ chelator EGTA followed by OX-
LDL compared to cells treated only with OX-LDL. Cells pre-treated with
1 mM BAPTA had significantly lower levels of OX-LDL-induced trisomy
21 and trisomy 12 (C) compared to the cells grown without chelator.
doi:10.1371/journal.pone.0060718.g008
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neuronal aneuploidy and tetraploidy of several chromosomes in

the human brains diagnosed with AD [17,18,20,21]. Here we

did not observe a cholesterol-dependent increase in tetraploid

cells (i.e., cells that had duplicated every chromosome, but failed

to divide, or had not yet divided), but mitosis specific epitopes

have been observed in a small number of neurons in AD and

NPC brain or in mouse models of AD, and have been

interpreted as indicative of such reactivation of the cell cycle

and the consequent development of aneuploid neurons

[25,27,28,53–64]. However, the frequency of such tetraploid

(4 n) neurons in AD is certainly less than 10% of the frequency

of aneuploidy cells (with DNA content between 2 n and 4 n)

[21], and some researchers report that the number of tetraploid

cells is actually the same in brains from AD and control

individuals and are exclusively non-neuronal [96]. Nevertheless,

if neurons are induced to re-enter the cell cycle in response to

neurodegenerative disease, the resulting mitosis and cell division

might well be abnormal and result in the observed increase in

aneuploidy, rather than tetraploid neurons.

While we failed to observe a change in ploidy in the brains of

mice fed a high cholesterol diet, possibly due to the 1) length of

dietary exposure, 2) reduced neurogenesis, 3) young age of the

mice, and 4) low or nonexistent exchange of cholesterol and its

metabolites across the intact blood-brain barrier (BBB), a

peripheral induction of trisomy 16 in mitotically active tissues

may be an initiating event that precedes the induction of brain

aneuploidy once the extracerebral damage reaches a critical point

and the BBB is compromised.

In conclusion, AD and NPC1 exhibit cell cycle abnormalities, to

which excess lipoproteins, particularly LDL, can contribute and

lead to the chromosome mis-segregation, aneuploidy and neuro-

degeneration observed in these diseases. Furthermore, the fact that

aneuploid neurons also characterize other cognitive brain diseases,

such as Frontotemporal Dementia [97] (also Granic et al.,

unpublished), Down syndrome and Ataxia-Telangiectasia [20],

suggests that chromosome mis-segregation and the development of

aneuploidy neurons may be a general feature of neurodegenera-

tion.

Chromosome Instability in Atherosclerosis: Implications
for AD

Several studies have reported the hyperproliferation of aneu-

ploid smooth muscle cells within atherosclerotic plaques [45–52],

which our data suggest may be induced by elevated LDL-

cholesterol. Specifically, during the initiation of atherosclerosis, a

single smooth muscle cell that, as a consequence of aneuploidy,

suffers altered gene regulation may lose checkpoint control or

become more responsive to autocrine or paracrine growth factors

(for example by becoming trisomy for chromosome 7, which

encodes the PDGF receptor) and then hyper-proliferating to

generate the observed thickening of the vascular wall. The fact

that aneuploid cells are prone to apoptosis fits this model well, for

apoptosis of smooth muscle cells is thought to be an essential

contributor to the formation of atherosclerotic plaques [98].

Cholesterol induced aneuploidy would also be expected to initiate

atherosclerosis in the brain, which can lead to the reduced blood

flow and the development of ‘vascular dementia’ often seen AD

patients [40–43,99,100].

Furthermore, the fact that inheritance of the ApoE e4 allele is the

strongest known risk factor for developing sporadic AD other than

age [101] (i.e., ApoE being the major cholesterol carrier protein in

the brain [102]), also strengthens the potential significance of

lipoprotein/cholesterol-induced aneuploidy for the pathogenesis of

AD. LDL and ApoE4 also promote atherosclerosis [103], which is

characterized by hyperproliferation of aneuploid cells, as discussed

above [45–52], extending the connection between lipid-induced

aneuploidy and both CVD and AD. Finally, the fact that Aß

causes chromosome mis-segregation and aneuploidy [23] and that

atherosclerosis arises in the AD brain and in mouse models of AD

[40,104] suggests that Aß itself may trigger the mis-segregation

event that initiates the atherogenic process in AD.

Figure 9. Cholesterol does not cause DSBs in hTERT-HM1 cells. (A) hTERT-HME1 cells were exposed to 4 mg/ml of cholesterol for 48 hr and
immunostained for a double-strand breaks (DSBs) marker, the p53 binding protein 53 BP1. Immunofluorescent 53 BP1 (green) foci in nuclei (DAPI,
blue) of control and cholesterol-treated cells were counted. (B) There was no statistically significant (p = 0.06) increase in DSBs events ($3 foci per
nucleus) in cholesterol-treated compared to untreated cells. The nuclei containing $4 foci were extremely rare.
doi:10.1371/journal.pone.0060718.g009
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Figure 10. Mitotic spindle structure disrupted by cholesterol. (A) hTERT cells were treated for 24 hr with 4 mg/ml WsCh and the structure of
the mitotic spindles observed and analyzed for abnormal DNA localization, lagging chromosomes, super-numerary centrosomes, and dis-arrayed
microtubules. There was a significant increase in abnormal mitotic spindle structure induce by cholesterol exposure, with dis-arrayed microtubules
and mis-localized DNA being the most prominent defects. (B) Examples of normal spindles in untreated cells and abnormal spindles in cholesterol-
treated cells.
doi:10.1371/journal.pone.0060718.g010
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Mechanisms by which Aneuploidy may Contribute to
Neurodegeneration in AD

There are several ways in which cholesterol (or Aß)-induced

aneuploidy may contribute to cognitive decline in AD and

related disorders. The most straightforward mechanism would

be that aneuploid cells, with their altered genetic complements

and thus altered gene expression are inherently prone to

apoptosis/degeneration, as has been shown in many experi-

mental systems [21,105–107]. Indeed, as discussed above, the

specific loss of (especially of non-trisomy 21) aneuploid neurons

accounts for 90% of neurodegeneration in AD [9–23]. When

the aneuploid neuronal progenitors and neurons harbor trisomy

21 or 16 and accumulate in the brains of AD patients and FAD

transgenic mice respectively, overexpression of APP and other

chromosome 21/16 genes will occur. That such imbalance may

further contribute to disease onset and progression is evident in

individuals harboring trisomy 21 mosaicism [25,34–37] or an

APP gene duplication [32,33]. Similarly, the reduced neurogen-

esis and reduced neuronal number in Down syndrome [108],

may result from the constitutive over expression of APP and

production of Aß and the consequent induction of the cell cycle

defect of chromosome mis-segregation.

Another possibility supported by the data, is that, like Aß,

cholesterol disrupts chromosome segregation through inhibition

of normal MT function. In addition to inducing defective

neurogenesis as we demonstrate above, MT dysfunction could

also affect neuronal plasticity. For example, we have found that

Aß causes chromosome mis-segregation directly by binding to

and inhibiting certain MT-dependent kinesin family motor

proteins that are essential for mitotic spindle function [24].

These enzymes are also present in neurons, where they direct

plasma neurotransmitter and neutrophin receptor localization

and function at the plasma membrane [Ari et al. unpublished

data]. As altered cholesterol homeostasis also disrupts microtu-

bule structure and function, it could similarly affect receptor

localization.

Finally, the counteracting effect of ethanol on lipid-induced

chromosomal instability in vitro supports the hypothesis that the

chromosome mis-segregation induced by lipoproteins is attribut-

able to the increased membrane rigidity induced by cholesterol.

We hypothesize that membrane stiffness upon cholesterol expo-

sure may be restored by the fluidizing action of ethanol, making

the cell less prone to mitotic errors. The fluidizing effect of ethanol

on cell membranes is well established [83,88,89] and was proposed

here as a possible mechanism for the reduction in aneuploidy in

the cells co-incubated with cholesterol and alcohol, although no

measurements of membrane fluidity were employed. Significantly,

Aß peptide also increases membrane rigidity [109]. In the light of

these data and the finding of aneuploid cells in AD brain and

atherosclerotic plaques discussed above, it is interesting that

moderate ethanol consumption has been linked to reduced risk of

both CVD and AD [85–87,110]. Prospective studies of microtu-

bule stabilizers and/or ethanol or other modifiers of membrane

fluidity may open new approaches to the prevention of neurode-

generative and cardiovascular disease.

Conclusion
In this study we have presented in vitro and in vivo evidence that

cholesterol dyshomeostasis, a common risk factor for NPC-1 and

two age-related diseases (i.e., AD and atherosclerosis) may exert its

pathogenic effect in part through disruption of the cell cycle.

Specifically lipoprotein/cholesterol-induced chromosome instabil-

ity/mis-segregation may be an underlying cytogenetic trait and

part of the pathogenic pathway of multiple disorders, which opens

new avenues for research and therapy.

Materials and Methods

Cell Line
hTERT-HME1 cells. The hTERT-HME1 cell line (Clon-

tech) is a primary human mammary epithelial cell line that

permanently expresses the telomerase reverse transcriptase and

can thus divide indefinitely while retaining normal function,

phenotype, and karyotype [111,112]. The cell line was cultured in

supplemented Mammary Epithelium Basal Medium (MEBM,

Lonza) as described elsewhere [23].

Primary Cells
HASMC. Human Primary Aortic Smooth Muscle Cells

(HASMC) were isolated from healthy human aorta and cryopre-

served as secondary culture at the density .56105 cells per vial

(ScienCell Research Laboratories). The cells were maintained in

the Smooth Muscle Cell Medium according to manufacturer’s

specifications (SMCM; ScienCell Research Laboratories). Cells

are subcultured when they were 90% confluent in 2 mg/ml poly-L-

lysine (Sigma)-coated cell culture dishes.

Human fibroblasts. LDL receptor-negative human skin

fibroblasts harboring two mutations, C240-F and Y160-ter, which

cause a severe form of familial hypercholesterolemia (FH),

fibroblasts with functional LDL receptor, four different human

fibroblasts harboring NPC1 mutations and four age-matched

controls were obtained from Coriell Cell Repositories and cultured

according to their recommended protocol.

Generation and maintenance of mNPCs. Mouse neuro-

sphere cultures and derived neuronal precursor cells were

established from non-transgenic prenatal brains (E17–E18)

following a modified protocol by [77] and maintained according

to [113].

Mouse splenocytes and brain cells. Mouse spleens and

brains were harvested and processed to yield a cell suspension and

prepared for karyotype and FISH analysis according to procedures

previously described [22,23].

Human brain cells. Frozen samples of frontal cortices from

patients with the Niemann-Pick type C1 disease (age 20.8868.64)

and age, gender and race matched control brain tissues (age

17.26611.07) were obtained from the NICHD Brain and Tissue

Bank for Developmental Disorders at the University of Maryland

(Baltimore, MD). Cell suspensions were prepared as previously

described for mouse brains [23] and processed for FISH. Filipin

and NeuN co-immunolabeling revealed significantly more choles-

terol staining in the intracellular compartment in NPC neurons

compared to controls.

Mice, Feeding and Diets
Housing of and procedures involving all animals, including the

time-pregnant C57BL/6 mice were approved by the USF

Institutional Animal Care and Use Committee.

Wild-type mice. Eight one-month-old nontransgenic

C57BL/6 mice (4 males and 4 females) (Jackson Lab) were caged

in standard housing in pairs, and were fed ad libitum for 12 weeks

with either regular chow, or high cholesterol diet (Harlan

Laboratories) with free excess to fresh water. Food intake and

weight gain were monitored and recorded weekly. The mice were

anesthetized with i.p. injection of sodium pentobarbital (50 mg/kg

weight), and the tissues harvested and inspected for pathological

changes. Mice from dietary intervention were transcardially
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perfused with 0.9% saline before internal organs of interest were

removed.

Diets. Regular mouse chow (2018 Tekland Global 18%

Protein Rodent Diet, Harlan Laboratories) contains 5% crude

plant-based oil (fat), 0% cholesterol, and supplies 3.3 Kcal/g of

Digestible Energy (DE). Custom-made high cholesterol diet

(TD.95286, Harlan) consists of 21% milk fat (fat and 0.05%

cholesterol), 1% of cholesterol, and provides 4.5 Kcal/g of DE.

APPKO mice. Mice lacking an APP gene and their non-

transgenic littermates were 3–4 months of age (Jackson Labs) and

had C57BL/6 background strain. The spleens were used for

primary cell cultures and lipoprotein/cholesterol treatments.

Reagents and Kits
Lipoproteins. Human oxidized LDL (protein concentration

2 mg/ml), human LDL (protein concentration 5 mg/ml) and

human HDL (protein concentration 10 mg/ml) were purchased

from Biomedical Technologies Inc. Water-Soluble Cholesterol

(WsCh) (Sigma; 31.8 mg of pure cholesterol in 0.6 g total weight

of solid, balanced in methyl-beta-cyclodextrin) was resuspended in

sterile water.

Other reagents, kits and DNA probes. EGTA (Sigma) and

BAPTA (Calbiochem) were used as Ca++ buffering reagent at

1.5 mM and 1 mM, respectively. hTERT-HM1 cells are cultured

in medium that has 2.65 mM calcium. Absolute (without benzene)

ethyl alcohol (Sigma-Aldrich) was prepared as a sterile aqueous

1 M solution and aliquoted. Filipin complex (Sigma) was dissolved

in DMSO (Sigma) and stored at 220uC in small aliquots and

protected from light. Giemsa stain (Gibco/Invitrogen) was diluted

freshly in 1X GURR buffer (GibcoBRL Life Technologies) to stain

metaphase chromosomes. Mouse anti-neuronal nuclei (NeuN)

AlexaFluorH antibody (Millipore) and VectaShield with DAPI

(Vector Laboratories) was used to label neurons and nuclei,

respectively. Anti-53BP1 rabbit polyclonal (Abcam) and Alexa-

Fluor 488 goat-anti-rabbit antibody (Invitrogen, Molecular

Probes) were used to detect DNA double-strand breaks (DSBs)

foci, anti-a-tubulin (clone B-5-1-2, Sigma) and AlexaFluor

488 goat-anti-mouse antibodies (Invitrogen) were used to stain

mitotic spindles, and anti-c-tubulin (Sigma) and AlexaFluor

594 goat-anti-rabbit antibodies (Invitrogen) were utilized to detect

centrosomes. Nick Translation Kit (Roche) and Spectrum Green

or Spectrum Orange dUTPs (Vysis) were used to generate the

chromosome 16 BAC probe as previously described [22]. Ethanol

Assay Kits (BioVision) and BioTek Synergy HT micro-plate

reader (BioTek Instruments) for colorimetric assay (O.D. 570 nm),

and Gen5TM (BioTek Instruments) data analysis software were

used to measure ethanol concentration in the media at baseline,

after 24 and 48 hr of exposure following manufacturer’s instruc-

tions. Oil-Red-O staining kit (American MasterTech) was used to

stain for neutral lipids accumulation in mouse hepatocytes.

Fluorescently labeled DNA probes detecting human chromosome

21, 12, and, 18, 14 and 7 (LSIH TEL/AML1 ES Dual Color

Translocation Probe, LSIH IGH (14q32)/MALT1(18q21) Dual

Color Dual Fusion Probe and LSIH D7S522 (7q31) SpectrumOr-

ange TM/CEPH 7 SpectrumGreenTM, respectively) were pur-

chased from Abbott, Vysis.

In Vitro Incubation with Lipoproteins/Cholesterol
Two days prior to treatment/incubation, freshly passaged

hTERT cells (1–36105 cells/2 ml) were plated in 100 mm tissue

culture dishes in MEBM to assure 60%–70% confluency on the

day of the treatment. The cells were then incubated for 48 hr at

the concentration of 20 mg/ml of lipoproteins or 2 and 4 mg/ml of

WsCh.

Seven parallel experiments were used to assess the effect of

lipoproteins on chromosome segregation (i.e., karyotype analysis

and chromosome specific aneuploidy) and six separate experi-

ments to test the aneugenic effect of cholesterol. The same cell

passages were used for the set of parallel experiments involving

Ca++ chelating reagents, BAPTA or EGTA performed as in [23].

Similarly, two days before lipid treatment, freshly passaged

HASMC, human fibroblasts with and without a functional LDL

receptor or hTERT-HME1 cells were seeded onto pre-coated

(2 mg/ml of poly-L-lysine, Sigma) single glass chamber slides

(8.6 cm2 growth surface/well) (BD Bioscience) at the density of

100,000 and 200,000 cells per slide respectively. After 24 or 48 hr

of lipid/cholesterol incubation, the cells were rinsed twice with 1X

PBS without Ca and Mg (Cellgro), immediately fixed with either

cold 3:1 anhydrous methanol and acetic acid fixative or methanol,

and incubated at 220uC for 30 min.

Mouse non-transgenic and APPKO spleen cells were similarly

incubated with lipoproteins for 48 hr, harvested and fixed for

FISH analysis as described [22,23].

In Vitro Ethanol and Lipoprotein/Cholesterol Incubation
To assure an exact and consistent ethanol (EtOH) concentration

in treated cells, we used a modified closed chamber system

protocol by Adickes et al. [114]. Prior to ethanol and lipoproteins

co-treatments, several pilot experiments were conducted to

examine the viability of hTERT-HME1 cells in the closed

chamber, and to establish cytotoxicity of 25 mM and 50 mM of

EtOH for 6, 12 and 24 hr on cell morphology, proliferation and

survival (Trypan Blue dye exclusion). Based on these results,

triplicate experiments were conducted with 25 mM EtOH for

24 hr followed the next day by lipoproteins (20 mg/ml) and WsCh

(4 mg/ml) and EtOH co-incubation for 48 hr. A small aliquot of

EtOH containing media from two samples was collected at the

baseline, 24 and 48 hr to measure alcohol concentration using

colorimetric assay (Ethanol Assay Kit, BioVision). Lastly, the cells

were harvested and fixed for FISH analysis.

Metaphase Chromosome Analysis
After colcemid treatment, hTERT-HME1 cells were harvested

and the metaphase chromosomes counted as described [22,23].

Genus 2.81H software was used for chromosome analysis (Applied

Imaging). At least 40–45 metaphases were analyzed per each

sample.

Fluorescence in situ Hybridization (FISH)
Prior to hybridization, all slides were aged at room temperature

followed by hybridization procedures recommended by Abbott,

Vysis and by protocols and mouse and human probes described

above and previously [22,23]. Hybridizations were done according

to manufacturer’s instructions (Abbott, Vysis) for the selected

probes in a HyBrite hybridization chamber (Vysis) followed by

DAPI II (Abbott, Vysis) or Vectashield with DAPI (Vector

Laboratories) counterstain.

FISH Followed by Immunocytochemistry of NPC1 Brain
Cells

To assess neuronal versus glial cell aneuploidy in NPC1 and

control brains, we used a combination of FISH and immunocy-

tochemistry [23]. Briefly, immediately after FISH, brain cells were

incubated in 1XPBS for 10 min, blocked in 10% goat serum/

0.1% Triton X-100 PBS solution for 1 hr followed by overnight

incubation in conjugated Ms X Neuronal Nuclei AlexaFluor 488

(Millipore) 1:100 antibody prepared in 1% BSA/0.1% Triton X-
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100 1XPBS. After final washes in 1XPBS, the cells were stained

with DAPI II counterstain.

Immunocytochemical Quantification of Double Strand
Breaks

Double strand breaks, an indication of DNA damage were

identified in cholesterol-treated hTERT-HME1 cells by immuno-

staining for 53 BP1-containing foci. First, cell pellets were fixed in

70% cold ethanol, dropped onto Frosted slides (Fisher Scientific)

and air-dried. Second, immediately after fixation in 4% parafor-

maldehyde for 10 min, and three 1XPBS washes, the cells were

permeabilized in 0.2% Triton X-100 1XPBS solution for 10 min,

blocked in 5% BSA 1XPBS/0.1% Tween-20 for 30 min, and

incubated in 1% BSA 1XPBS/0.1% Tween-20 solution contain-

ing anti-53 BP1 rabbit polyclonal antibody (Abcam), 1:400 for

1 hr followed by AlexaFluor 488 goat-anti-rabbit antibody (In-

vitrogen), 1:300 incubation for the same time period. After several

1XPBS washes, the cells were stained with DAPI II (Vector).

Immunocytochemistry for Spindle Analysis
Upon fixation in methanol, cholesterol treated hTERT-HME1

cells were co-immunostained for mitotic spindles and centrosomes

with anti-a-tubulin (Sigma) and anti-c-tubulin antibodies (Sigma)

1:1000, followed by AlexaFluor 488 goat-anti-mouse and Alexa-

Fluor 594 goat-anti-rabbit secondary antibodies (Invitrogen,

Molecular Probes), 1:2000 incubation, respectively and Vecta-

shield mounting medium with DAPI staining (Vector) as described

[23].

Oil-Red-O Staining
Cell suspension of snap-frozen livers (2 from mice fed a regular

and 2 from mice fed a high cholesterol diet) were made in 1XPBS,

dropped onto pre-wetted slides, and stained with the Oil-Red-O

staining kit following manufacturer’s procedures for frozen tissues

with slight modifications (American MasterTech). Hematoxylin

stained single cells and cell aggregates (blue) were evaluated under

phase microscopy (Zeiss Imager M1) for the presence of lipid

droplets (red).

Image Acquisition and Analysis
FISH hybridization signals were analyzed according to Abbott/

Vysis guidelines as described in [22,23] using a Nikon Eclipse

E1000 fluorescence microscope with a 4912 CCIR high perfor-

mance COHU CCD Camera and Genus 2.81H software (Applied

Imaging) or a Zeiss Imager M1 microscope with a CV-M4+CL

high resolution camera and Axiovision4.6 software (Zeiss) or a

Zeiss Axiovert 135 with AxioCam HRc (Zeiss). The frequencies of

nuclei containing 0, 1, 2 or 3 53 BP1 signals were recorded in

treated and control cells, and mitotic spindle phenotypes were

analyzed as described [22]. On average, between 700 and 1,000

interphases per each sample/treatment were scored for aneuploi-

dy, and 400 NeuN positive and NeuN negative NPC1 brain cells

were analyzed for DNA hybridization signals. More than 450–600

cells for each of three samples of both WsCh-treated and control

were assessed for 53 BP1 foci, and more than 45–80 spindles from

each of four samples of both treated and control cells were

analyzed for spindle abnormalities.

Hematoxylin and Oil-Red-O stained mouse hepatocytes and

cell aggregates from mice fed a regular and high cholesterol diet

were compared and contrasted for amount of red staining under

phase microscopy (Zeiss).

Statistical Analysis
Paired Student’s T-test was used to compare the aneuploidy

induced by various lipoproteins with or without Ca++ chelating

reagents and ethanol in different cell lines across multiple

experiments and in spleen and brain cells of mice fed different

diets, and to compare the percentages of nuclei containing 1 to

3 DSBs foci and the levels of abnormal spindle events between

treated and untreated cells. Independent T-test was used to

compare the aneuploidy between NPC1 fibroblasts and NPC1

brain cells and appropriate controls. Three to 7 treatments with

lipids/cholesterol for each cell line, and triplicate experiments with

chelators and ethanol were conducted and scored for aneuploidy.

Four to 5 primary NPC1 cells sources and controls and at least 6–

12 mice were analyzed for each graph.

Ethics statement. All experiments were carried out in

accord with the University of South Florida guidelines for

examination of human tissue and the ethical treatment of animals.

Because the only human tissues were cell lines and autopsy brain

tissue obtained from biorepositories, and we were not provided

any identifying information, the experiments are exempt. The

animal work was carried out under the USF IACUC oversight and

approval (M3785; Promoters and Inhibitors of Alzheimer’s

Disease Pathology, Colony and R3138 and R3786 (different

times); Promoters and Inhibitors of Alzheimer’s Disease Pathology,

Research).

Supporting Information

Figure S1 25 mM of Ethanol (EtOH) does not induce
aneuploidy within 48 hr. hTERT-HME1 cells were treated

with 25 mM EtOH for 24 and 48 hr in a closed chamber system.

(A) No induction of trisomy 21 (or trisomy 12) was observed, but

there was an increase in tetrasomy 21 (presumably cells in G2),

within 24 hr (B). After further incubation in EtOH-containing

media, levels of such tetrasomy 21 cells returned to background

(C–D).

(TIF)
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