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Abstract: Genome-scale metabolic models (GEMs) are powerful tools for understanding metabolism
from a systems-level perspective. However, GEMs in their most basic form fail to account for cel-
lular regulation. A diverse set of mechanisms regulate cellular metabolism, enabling organisms to
respond to a wide range of conditions. This limitation of GEMs has prompted the development
of new methods to integrate regulatory mechanisms, thereby enhancing the predictive capabilities
and broadening the scope of GEMs. Here, we cover integrative models encompassing six types
of regulatory mechanisms: transcriptional regulatory networks (TRNs), post-translational modifi-
cations (PTMs), epigenetics, protein–protein interactions and protein stability (PPIs/PS), allostery,
and signaling networks. We discuss 22 integrative GEM modeling methods and how these have
been used to simulate metabolic regulation during normal and pathological conditions. While these
advances have been remarkable, there remains a need for comprehensive and widespread integra-
tion of regulatory constraints into GEMs. We conclude by discussing challenges in constructing
GEMs with regulation and highlight areas that need to be addressed for the successful modeling
of metabolic regulation. Next-generation integrative GEMs that incorporate multiple regulatory
mechanisms and their crosstalk will be invaluable for discovering cell-type and disease-specific
metabolic control mechanisms.

Keywords: metabolic regulation; metabolic networks; constraint-based modeling; systems biology;
genome-scale network models

1. Introduction

Cellular metabolism is a fundamental biological process used by all living organisms
to generate and expend energy for growth [1]. Although metabolism functions the same
way between different organisms, its regulation is dictated by perturbations and envi-
ronments encountered by each individual organism [2]. Metabolic regulation entails the
coordination between distinct yet interconnected mechanisms that control enzymatic activ-
ity and abundance, thereby modulating fluxes through metabolic reactions [3]. For instance,
transcriptional regulation dictates enzyme abundance via changes in gene expression in
response to nutrient availability. This form of regulation usually operates over a long
timescale (e.g., hours) and defines a general range for fluxes [4]. Then, post-translational
regulation may occur in succession, where enzymatic levels and activity are fine-tuned
over a shorter timescale (e.g., milliseconds) [5]. Post-translational regulation may involve
chemical modifications, ligand binding, or interaction with other proteins that influence
other downstream events (e.g., cell signaling).

Metabolites 2021, 11, 606. https://doi.org/10.3390/metabo11090606 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-2490-1842
https://orcid.org/0000-0002-8405-5708
https://doi.org/10.3390/metabo11090606
https://doi.org/10.3390/metabo11090606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11090606
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11090606?type=check_update&version=3


Metabolites 2021, 11, 606 2 of 20

Most of our understanding of metabolism comes from cumulative data from bio-
chemical experiments carried out over the past century. Although experimental evidence
has been insightful, this type of investigation is often restricted to studying an isolated
metabolic pathway in a limited number of conditions. To overcome this limitation, mod-
ern approaches seek to study metabolism from a systems biology perspective [6–8]. In
recent decades, genome-scale metabolic models (GEMs) have emerged as a powerful tool
for this purpose, enabling the elucidation of complex systems-level metabolism. GEMs
are computational representations of metabolic networks accounting for the entirety of
metabolic activity encoded in the genome for a given organism [9]. Principally, they involve
a set of mass-balanced metabolic reactions and metabolites represented in a stoichiomet-
ric matrix. GEMs also include gene–protein reaction (GPR) associations describing the
relationship between thousands of genes, proteins, and reactions [10]. GEMs facilitate
quantitative, in silico simulations of how environmental and genetic changes influence
cellular metabolism [11]. Since their introduction, over 6000 GEMs have been reconstructed
across bacteria, archaea, and eukarya [12].

While GEMs in their most basic form can model cellular metabolism reasonably
well [13–15], they are limited by the inability to account for the regulatory mechanisms
fundamental to cellular metabolism [15–19]. Since the scope and capabilities of GEMs are
a function of how accurately they emulate metabolism, a frontier of metabolic modeling
is developing ways to integrate regulatory aspects into GEMs. In this review, we cover
six different types: transcriptional regulatory networks (TRNs), post-translational modifi-
cations (PTMs), epigenetics, protein–protein interactions and protein stability (PPIs/PS),
allostery, and signaling (Figure 1).

While this enumeration of regulatory mechanisms is not exhaustive, these six mech-
anisms represent major ways through which cellular regulation affects metabolism. Of
note, various methods have focused on integrating omics data directly into GEMs to
improve model accuracy. Several excellent reviews have already covered this topic in
greater detail [20–23]; thus, such methodologies will not be the focus in this review. In-
stead, we present and discuss 22 methods that have mechanistically integrated regulatory
information relevant to the six mechanisms listed above into GEMs (Table 1).
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Figure 1. Six regulatory mechanisms that influence metabolism (bolded). TRNs: transcriptional regulatory networks,
which describe how gene transcription is regulated (depicted: general TRN); PTMs: post-translational modifications, where
proteins are enzymatically modified following their translation (depicted: phosphorylation (P), glycosylation, ubiquitination
(Ub), S-nitrosylation (SNO), methylation (Me), N-acetylation (Ac), lipidation, proteolysis); epigenetics, which involve
changes in gene expression without alterations the DNA itself (depicted: histone acetylation (Ac) and histone methylation
(Me)); PPIs/PS: protein–protein interactions and protein stability, where functionality depends on direct protein–protein
contact and their structural integrity (depicted: interactions between cytochrome P450 monooxygenase (CYP) and human
serum albumin (HSA)); allostery, or the regulation of protein activity from non-active site ligand binding (depicted: general
allosteric regulatory events); and signaling, which entails how signaling pathways govern the activity of a cell (depicted:
Wnt signaling network).
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Table 1. 22 methods (bolded) integrating regulatory mechanisms into genome-scale metabolic models (GEMs). N/A: not applicable. Abbreviations: rFBA-regulatory flux balance analysis;
SR-FBA-steady-state rFBA; iFBA-integrated FBA; PROM-probabilistic regulation of metabolism; TIGER-toolbox for integrating genome-scale metabolism, expression, and regulation;
IDREAM-Integrated deduced and metabolism; TRFBA-transcriptional regulated FBA; OptRAM-optimization of regulatory and metabolic networks; RuMBA-regulated metabolic
branch analysis; CAROM-comparative analysis of regulators of metabolism; EGEM-epigenome-scale metabolic network model; GEM-PRO-genome-scale models with protein structure;
arFBA-allosteric regulation flux balance analysis; SIMMER-systematic identification of meaningful metabolic enzyme regulation; idFBA-integrated dynamic flux balance analysis.

Method Regulation TRN Type Year Organism Language Summary Ref.

rFBA TRN Boolean 2002 E. coli MATLAB Uses Boolean TRN to predict fluxes [24]

SR-FBA TRN Boolean 2007 E. coli MATLAB Uses Boolean TRN to better characterize
steady-state fluxes [25]

Lee et al. TRN Discrete 2007 E. coli LINGO + LabView Integrates TRN with eight weight parameters to
predict fluxes [26]

iFBA TRN/Signaling Boolean 2008 E. coli MATLAB Uses Boolean TRN with kinetic parameters and
ODEs to better predict fluxes [27]

PROM TRN Continuous 2010 E. coli,
M. tuberculosis MATLAB Uses transcriptomics and TF–target relationships

to integrate a continuous TRN [28]

TIGER TRN Boolean 2011 S. cerevisiae MATLAB Integrates TRN + GEM + transcriptomics [29]

FlexFlux TRN Boolean/
Continuous 2015 E. coli Java Integrates TRN + GEMs in SBML format [30]

PROM 2.0 TRN Continuous 2015 M. tuberculosis MATLAB Uses transcriptomics and TF–target relationships
to integrate an expanded continuous TRN [31]

CoRegFlux TRN Continuous 2017 S. cerevisiae R Predicts fluxes with reverse-engineered TRN [32]

IDREAM TRN Continuous 2017 S. cerevisiae MATLAB Predicts fluxes with continuous
reverse-engineered TRN [33]

TRFBA TRN Continuous 2017 E. coli,
S. cerevisiae MATLAB Uses transcriptomics and TF–target relationships

to more intuitively integrate a continuous TRN [34]

OptRAM TRN Continuous 2019 S. cerevisiae MATLAB Strain design algorithm that uses IDREAM [35]

RuMBA PTMs N/A 2018 E. coli MATLAB Identifies branch-point reactions regulated by
PTMs via flux sampling [36]

CAROM PTMs N/A 2019 E. coli,
S. cerevisiae MATLAB Integrative analysis of multi-omics data to

predict PTM regulation [37]

Chandrasekaran et al. Epigenetics N/A 2017 Stem cell MATLAB Uses time-course metabolomics data to infer
fluxes, such as those involved in methylation [38]

EGEM Epigenetics N/A 2019 Cancer cell MATLAB Simulation of multi-objective model with an
acetylation subnetwork [39]
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Table 1. Cont.

Method Regulation TRN Type Year Organism Language Summary Ref.

Chang et al. PPIs/PS N/A 2013 E. coli MATLAB Integrated protein binding and structure
information into the E. coli GEM [40]

GEM-PRO PPIs/PS N/A 2016 E. coli,
T. maritima Python Describes general process of integrating protein

information into GEMs [41]

Lee et al. PPIs/PS N/A 2016 Liver cells MATLAB Integrated TRNs and PPIs to construct
cell-specific networks to study liver metabolism [42]

arFBA Allostery N/A 2015 E. coli Python Integrates allosteric interactions into GEMs [43]

SIMMER Allostery N/A 2016 S. cerevisiae R Accounted for allosteric regulation but mostly
relied on ODE modeling [44]

idFBA Signaling N/A 2008 S. cerevisiae MATLAB Incorporates ODEs and an incidence matrix to
model dynamics [45]
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2. Modeling of Metabolic Regulation
2.1. Simulating Metabolic Networks Using Constraint-Based Modeling (CBM)

Before discussing how regulatory mechanisms have been integrated into GEMs, we
begin with a brief overview on mathematical methods relevant to the algorithms discussed
throughout this review (Figure 2).

Figure 2. Mathematical framework of three constraint-based modeling (CBM) methods: flux balance analysis (FBA), flux
variability analysis (FVA), and parsimonious FBA (pFBA). S = stoichiometric matrix, v = vector of reaction fluxes, b = vector
of changes in metabolite concentration, Zobj = objective function, vbiomass = biomass reaction flux, lb = lower flux bounds,
ub = upper flux bounds.

Constraint-based modeling (CBM) is the standard framework for reconstructing and
analyzing GEMs, primarily through the addition of model constraints [11]. The most basic
form of CBM is flux balance analysis (FBA) [46]. FBA begins with the stoichiometric matrix
S, where rows signify metabolites and columns represent reactions. For each reaction
(column), the stoichiometric coefficients of all metabolites involved in the reaction are set to
a non-zero value. Specifically, positive coefficients indicate the production of a metabolite,
while negative coefficients indicate the consumption of a metabolite. A key assumption of
FBA is steady-state metabolism in which each metabolite’s production and consumption is
balanced equally [47]. Mathematically, FBA aims to simulate reaction fluxes at steady state,
which leads to solving the following system of equations (Equation (1)):

S × v = 0 (1)

where S represents the stoichiometric matrix, v is the vector of reaction fluxes, and b, repre-
sentative of changes in metabolite concentrations, is set to a zero vector to mathematically
reflect steady-state metabolism. Since the number of reactions exceeds the number of
metabolites, the system is underdetermined, and a large solution space exists; however,
this can be narrowed by imposing additional constraints and narrowing the flux bounds.
In FBA, linear optimization techniques are applied to solve for a flux distribution that
optimizes an objective function (Zobj). To reflect evolutionary pressure, growth is typically
maximized by defining a biomass objective function that consists of biomass precursors [48].
Other objectives such as the maximization of ATP can also be used in FBA [49]. These
constraints are mathematically represented as follows in Equation (2a) and Equation (2b):

Maximize Zobj = vbiomass (2a)

lb ≤ v ≤ ub (2b)

where Zobj is the objective function, vbiomass is the flux through a user-defined biomass
reaction, v is the vector of all reaction fluxes, lb is a vector of the lower bound flux limit,
and ub is a vector of the upper bound flux limit.

Although FBA can generate flux solutions that match experimental data [13,49], this
method may still generate non-unique solutions. This predicament arises as multiple
combinations of reaction fluxes can satisfy the constraints and lead to the same objective.
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To account for this uncertainty, flux variability analysis (FVA) aims to capture the entire
feasible space of flux solutions. FVA introduced two additional linear programming
(LP) problems (mathematically defined below) [50] to be imposed along with the FBA
constraints listed above:

Minimize vi where i = 1, . . . , n (3a)

s.t. Eqs. 1, 2.1, 2.2 and lbi ≤ vi ≤ ubi

Maximize vi where i = 1, . . . , n (3b)

s.t. Eqs. 1, 2.1, 2.2 and lbi ≤ vi ≤ ubi

where vi represents the flux through reaction i, n is equivalent to the total number of
reactions, lbi is the lower flux bound for reaction i, and ubi is the upper flux bound for
reaction i. In FVA, the objective function (Zobj) serves as a reference to find the possible
lower and upper flux limits for Equation (3a) and Equation (3b), respectively. A different
method, called parsimonious FBA (pFBA), also improves GEM simulation accuracy by
determining the feasible flux ranges based on the assumption that cells maximize efficient
enzyme usage to promote their growth [51]. This assumption is mathematically imposed
by minimizing the overall flux in the system (Equation (4)):

Minimize
n

∑
i

vis.t. vbiomass = vbiomass, lb (4)

s.t. Eqs. 1, 2.1, 2.2 and lbi ≤ vi ≤ ubi

where vi is the flux through reaction i, n is the total number of reactions, vbiomass is the flux
through the biomass reaction, vbiomass,lb is the lower limit of the flux through the biomass
reaction, lbi is the lower flux bound for reaction i, and ubi is the upper flux bound for
reaction i. Of note, the flux solutions achieved using pFBA tend to emphasize a small
number of high-flux reactions due to the underlying assumptions of pFBA.

2.2. Transcriptional Regulatory Networks (TRNs)

Transcriptional regulation describes the diverse ways in which gene transcription
into messenger RNA (mRNA) is regulated by the cell. mRNA transcripts carry gene-
encoded instructions for protein production to the ribosome, where translation occurs.
Since gene transcription is required to express the proteins that participate in metabolic
reactions, the association between genes, proteins, and reactions is strongly dependent
on transcriptional regulation. Transcriptional regulation is often represented through
transcriptional regulatory networks (TRNs), which describe how the transcription of target
genes is influenced by regulatory genes and environmental perturbations [24,52]. In the
past several decades, knowledge of transcriptional regulation has expanded substantially,
and transcriptional dysregulation has been found to be implicated in a wide range of
diseases [53,54]. Methods integrating TRNs into GEMs can be broadly categorized based
on the granularity in transcription factor (TF)–target gene relationships. Following this
trend, the following discussion is partitioned between the integration of discrete versus
continuous TRNs.

2.2.1. Boolean TRNs

The simplest TRN is a Boolean network in which genes assume one of two states:
active or inactive. This status is based on multiple factors including the activity of regulating
genes and environmental conditions [52]. Boolean TRNs were first integrated with GEMs
in regulatory flux balance analysis (rFBA). This algorithm is an expansion of FBA in which
metabolic models with Boolean TRNs are used to predict steady-state flux distributions
over a series of time intervals [24]. To model transcriptional regulation, the activity of genes
in a given time interval is regulated by the metabolic state of the previous interval. Using
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rFBA, the authors improved the accuracy in E. coli growth predictions from GEMs across
numerous metabolic environments.

While rFBA marked an important step forward in modeling the transcriptional regu-
lation of metabolism, it is limited by its selection of only one valid metabolic state for each
interval when multiple could occur. This limitation was addressed by steady-state rFBA
(SR-FBA), which simulates steady-state metabolism more comprehensively by incorpo-
rating both metabolic and regulatory constraints into a single optimization problem [25].
Instead of running a series of flux solutions (as done in rFBA), SR-FBA calculates fluxes for
a single time step using mixed-integer linear programming (MILP). It also quantitatively
determines the influence of regulatory networks versus metabolic constraints in simulating
metabolism by comparing SR-FBA fluxes to those generated by standard FBA. While
SR-FBA succeeds at precluding inconsistent regulatory constraints, it fails to account for
metabolic transitions and feedback loops as a direct result. Another limitation of both rFBA
and SR-FBA is a failure to predict internal metabolite concentrations. This was partially
addressed by integrated FBA (iFBA), which incorporates kinetic models and ordinary differ-
ential equations (ODEs) [27]; however, sparseness in kinetic parameter availability renders
iFBA infeasible to implement at the genome scale.

In order to facilitate the combination of Boolean TRNs and GEMs, a platform called
toolbox for integrating genome-scale metabolism, expression, and regulation (TIGER) was devel-
oped [29]. TIGER automates the combination of GEMs, TRNs, and transcriptomics into
a single regulatory-metabolic model. A key feature of TIGER is that it converts a list of
Boolean rules and GPRs into a set of linear inequalities. FlexFlux is a similar platform
but improves upon TIGER in terms of usability as TRNs and GEMs can be inputted in a
standardized file format [30]. FlexFlux also enables the integration of multi-state regulatory
networks and allows the conversion of discrete regulatory states into continuous intervals.

2.2.2. Continuous TRNs

While Boolean TRNs have been shown to improve flux simulations, there are sev-
eral limitations endemic to this framework. These include an overly simplistic model of
metabolism, a theory-driven approach, and the need for extensive literature searching to
define regulatory rules [24]. This was partially addressed by Lee et al. (2007), wherein
rFBA was expanded from binarily describing regulation to assigning one of eight dis-
crete weights to regulatory interactions, yielding more accurate predictions for certain
gene expression levels [26]. Probabilistic regulation of metabolism (PROM) is a method that
more comprehensively addressed these limitations by shifting the discrete paradigm to
a continuous model of transcriptional regulation [28]. Using TF–target relationships and
transcriptomics data, PROM builds a continuous TRN where target gene expression is
controlled via continuous probabilities based on the expression of regulatory genes, and
fluxes are continuously restricted (Figure 3). A further advantage of PROM is its automated
integration of gene expression data for building TRNs. PROM 2.0 applied the original
method to construct a continuous TRN for Mycobacterium tuberculosis (M. tb), leading to
enhanced simulation accuracy using the M. tb GEM [31].

Advancing the continuous TRN paradigm, several other algorithms have been devel-
oped. Transcriptional regulated FBA (TRFBA) is a method that represents TRNs continuously
and improves upon PROM by reducing the amount of transcriptomics data required to
build continuous TRNs [34]. Of note, TRFBA introduces two continuous constraints: one
that restricts gene-associated reactions based on expression levels of that gene and one that
correlates target gene expression levels with regulatory gene expression levels. TRFBA has
shown improvements to PROM, particularly for growth rate predictions. Benchmarking
PROM and TRFBA against pFBA reveals that while both TRN methods exceed simulation
accuracy for E. coli, only TRFBA is more accurate than pFBA when applied to S. cere-
visiae [34]. However, a major limitation of both PROM and TRFBA is the requirement of
pre-defined TF–target gene relationships. CoRegFlux was developed to address this limita-
tion [32]. Using learning cooperative regulation networks (hLICORN), CoRegFlux determines
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TF–target gene relationships from transcriptomics data in the absence of a pre-existing
TRN before predicting fluxes.

Figure 3. Representative algorithms (bolded) integrating regulatory mechanisms into genome-scale metabolic models
(GEMs). PROM: probabilistic regulation of metabolism, uses transcriptomics and TF–gene networks to continuously restrict
gene expression levels and then reaction fluxes [28]; RuMBA: regulated metabolic branch analysis, analyzes how fluxes change
under different culture conditions to identify PTM regulatory sites [36]; EGEM: epigenome-scale metabolic network model,
added a histone acetylation subnetwork to the human GEM and modified the objective function to maximize acetylation as
well as biomass [39]; GEM-PRO: genome-scale models with protein structure, adds protein structural information into GEMs to
capture how protein stability influences metabolic activity [41]; arFBA: allosteric regulation flux balance analysis, introduces a
regulation (R) matrix that models the allosteric regulation of reactions in GEMs [43]; idFBA: integrated dynamic flux balance
analysis, uses ODEs and an incidence matrix to model reaction fluxes dynamically [45].

Integrated deduced and metabolism (IDREAM) is a method that functions similarly
to continuous TRN methods such as PROM but alternatively integrates an environment
and gene regulatory influence network (EGRIN) [33,55]. EGRIN provides information on
environmental- and condition-specific effects on gene regulation to better capture the
regulatory influence of TFs on their target genes. IDREAM has shown improvements to
PROM, especially when simulating metabolism for eukaryotic cells. Across multiple yeast
models and environmental conditions, IDREAM is more accurate than PROM in predicting
growth rates [33]. Building off of IDREAM and regulatory-metabolic models, optimization
of regulatory and metabolic networks (OptRAM) is an in silico strain design algorithm that
optimizes the production of desired metabolites and has successfully been applied to S.
cerevisiae [35].
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While TRN modeling and integration into GEMs has advanced considerably, these
integration methods fail to account for additional regulatory mechanisms such as signaling
or allostery. This limits the extent to which they accurately model cellular metabolism, as
significant numbers of metabolic fluxes are unable to be explained by transcriptional regu-
lation alone [56], necessitating the integration of additional forms of regulation into GEMs.

2.3. Post-Translational Modifications (PTMs)

Post-translational modifications (PTMs) induce chemical changes onto proteins that
alter their function, interaction, and localization [57,58]. Given the dynamics and variety in
PTMs [59,60], traditional methods of investigation make it difficult to study PTMs system-
atically. Fortunately, PTMs are strongly associated with enzymes and metabolic processes
such as phosphorylation and methylation, which transiently regulate the fluxes through
enzymatic reactions [61,62]. This provides an accessible framework for GEM integration to
understand the role that PTMs play in cell networks in response to environmental changes.
One area of focus is their role in bacterial metabolism, where PTMs serve as key metabolic
regulators in response to different nutrition conditions [63].

Regulated metabolic branch analysis (RuMBA) introduced one way to study PTMs in
bacterial cells [36]. This method analyzes how bacteria rewire their metabolic networks
when exposed to different nutrients in their environment. RuMBA samples fluxes in the
solution space to identify any areas in the metabolic network where major rerouting occurs.
If the fluxes significantly change and result in the rerouting of a metabolite’s production,
the associated reaction is identified as a “branch point” (Figure 3). Using RuMBA, the
authors successfully unveiled enzymes that are critically regulated by PTMs, such as
the fluxes tied to acetate switching from isocitrate dehydrogenase to isocitrate lyase due
to phosphorylation. While RuMBA can identify enzymes regulated by PTMs, enzymes
associated with regulations that occur over longer timescales require alternative methods.
Flux space shift (FSS) analysis was developed to address this specific issue by focusing on
differential enzyme regulation for optimal growth in certain nutrient conditions [64].

In contrast to RuMBA and FSS, comparative analysis of regulators of metabolism (CAROM)
is a data-driven method that integrates omics data to decipher how both microbes and
mammalian cells allocate different types of regulation, including PTMs [37]. CAROM
applies FVA to obtain feasible flux ranges and evaluates regulation targets in the metabolic
networks based on topological and flux properties. Specifically, CAROM revealed that en-
zymes with high topological connectivity are regulated by PTMs. CAROM also discovered
that essential enzymes are regulated by acetylation, while those that catalyze reactions with
high fluxes are regulated by phosphorylation. Both RuMBA and CAROM employ GEMs
to examine flux solution spaces to effectively identify features important to PTMs. A key
difference between these two methods is that while RuMBA uses flux information alone to
predict PTM sites, CAROM uses data on enzyme, biochemical, and network topological
properties. Hence, CAROM provides both a top–down systems perspective on regulation
distribution between different PTMs and a bottom–up understanding of PTM regulation of
specific enzymes.

The methods discussed above were specifically designed to study how PTMs influ-
ence metabolic activity by introducing new CBM constraints. In contrast, some other
studies have investigated the role of PTM regulation in metabolism indirectly. For instance,
protein-specific information matrix (PSIM) is a genome-scale model that focuses on the protein
secretory system [65]. Given that PTM activity influences protein secretion and localiza-
tion [66], the model accounts for signal peptides as well as N- and O-linked glycosylation.
Indeed, PSIM was used to analyze the usage of cofactors and metabolic precursors for
secretory PTMs occurring in both yeast and human cells. Another research extended the
PSIM approach to model mammalian secretory systems [67]. This work curated three
network models (human, mouse, and Chinese hamster ovary (CHO) cell) by integrating
omics data and solving metabolic fluxes using FBA. Specifically, the authors modeled
energy consumption for each secretory machinery and applied the curated models to
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optimize the production of monoclonal antibodies. Although these models mostly focused
on secretory PTMs, they also included several other PTMs such as phosphorylation, which
influences protein synthesis and cell growth. In the future, a model with both PTMs and
transportation machinery may expand our understanding of metabolic regulation by PTMs.

2.4. Epigenetics

Epigenetics refer to biochemical changes that are transiently passed down to suc-
cessive generations without modifying the DNA sequence. This enables eukaryotic cells
to have identical genomes yet different phenotypes. While DNA cytosine methylation,
non-coding RNAs, and histone modifications all play crucial roles in the mechanisms of
epigenetics [68–70], histone modifications are the most sensitive to the metabolic state
of the cell [71]. Histone proteins wrap around DNA and control gene transcription.
Covalent modifications of histones, such as methylation and acetylation, can change
gene expression without changing DNA sequences [72]. Since covalent modifications
require small molecules and metabolites, histone modifications are highly influenced by
metabolic states [73]. For example, metabolites including acetyl-coenzyme A (acetyl-CoA),
S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD) are required
to activate epigenetic enzymes [74]. Concentration levels for these three metabolites change
via varying nutrient conditions and metabolic pathways, such as the TCA cycle, methionine
metabolism, and glycolysis [75]. However, modeling covalent modifications on histones is
a challenge because gene regulation and metabolic pathways are tightly connected [76].

GEMs potentially offer a framework for measuring how metabolism interacts with epi-
genetics [77,78]. However, a major limitation of using GEMs is the fact that key reactions
involved in epigenetic regulation, such as those transporting or synthesizing metabo-
lites such as Acetyl-CoA in the nucleus, are often missing. To address this problem, the
epigenome-scale metabolic network model (EGEM) was developed [39]. This model incor-
porates acetylation reactions into the human GEM and emphasizes epigenetic effects by
optimizing both biomass and acetylation production (Figure 3). EGEM accurately predicted
bulk acetylation levels and the impact of disrupting histone acetylation on biomass using
transcriptomics data from the Cancer Cell Line Encyclopedia (CCLE) database [79].

While EGEM mechanistically accounts for epigenetic regulation, recent studies have
tried to model the resulting transcriptional impact of epigenetic regulation on metabolism.
The fast reconstruction of compact context-specific metabolic networks for the integration of
transcriptomics data (FASTCORMICS) method incorporates microarray data to existing
GEMs [80]. Although FASTCORMICS is not designed specifically for epigenetics and does
not simulate epigenetic-specific reactions as EGEM does, the reconstructed networks have
successfully identified epigenetic features specific to each cell stage during the transition
from human monocytes to macrophages. Similarly, Salehzadeh-Yazdi et al. incorporated
transcriptomics data from histone tail mutant yeast strains to study acetylation in yeast [81].

As mentioned above, histone PTMs and metabolic states are naturally intertwined
because of the small molecules required for covalent modifications. However, the process
of epigenetic modification occurs in a highly dynamic fashion. Therefore, the changes
in metabolite concentrations over time are important data that can provide better under-
standing of this interplay. The dynamic flux activity (DFA) approach constrains GEMs with
time-course metabolomics [38,82]. Chandrasekaran et al. used a DFA model of stem cells
and discovered that an increase in SAM synthesis, which supports histone methylation,
occurs when mouse embryonic stem cells differentiate from naïve to primed state [38]. Al-
though all the methods discussed above collectively helped us understand how metabolism
influences epigenetic regulation and vice versa, they all specifically focused on acetylation
and methylation. To further improve our understanding of epigenetic–metabolic interac-
tions, future models should account for other epigenetic changes such as phosphorylation
and the dynamic feedback regulation between these processes.
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2.5. Protein–Protein Interactions and Protein Stability (PPIs/PS)

Enzyme activity is also influenced by the structural stability of the protein and its
interactions with other proteins. Protein–protein interactions (PPIs), which entail physico-
chemical contacts between proteins, govern a wide range of cellular processes including but
not limited to signal transduction [83], molecular transport [84], and cell metabolism [85].
Over the past two decades, millions of PPIs have been elucidated via both experimental
and computational methods with varying degrees of confidence [86]. At the same time,
these interactions have been annotated in multiple public databases that altogether provide
PPI data for representative organisms from the animal, plant, and bacterial kingdoms [87].
Beyond their characterization, there has also been increasing interest in the therapeutic
potential of targeting PPIs to treat cancer [88] and other diseases [89].

In the context of metabolism, PPIs play a major role in regulating reduction–oxidation
(i.e., redox) reactions [90] and inducing enzymatic activity [91,92]. However, thus far, only
one group has directly integrated PPIs into GEMs. Specifically, Lee et al. integrated TRNs
and PPIs into GEMs for three human cell types: hepatocytes, myocytes, and adipocytes [42].
Using these models, the authors simulated changes in liver metabolism for obese individu-
als undergoing surgery and interestingly found that dysregulation in mannose metabolism
correlated with insulin resistance. This same integrated modeling approach was leveraged
in a successive study to elucidate metabolic dysregulation in other liver diseases [93].

Other than direct PPI integration into GEMs, several groups have integrated pro-
tein stability data to more accurately model metabolism using GEMs. Protein structural
integrity is critical for proper functionality. One of the earliest studies by Chang et al.
investigated E. coli growth and metabolism in extreme temperatures by integrating protein
structure information [40]. This information included data on the amino acid sequence,
native wild-type structure, functional annotation, and structural changes that occur upon
protein–substrate binding. Using an extended E. coli GEM with protein structural informa-
tion, Chang et al. not only simulated growth rate patterns resembling what was observed
experimentally, but they also revealed metabolic mechanisms that may confer thermo-
tolerance for heat-adapted E. coli strains. These findings were supported by follow-up
experiments that showed increased growth for E. coli cultured in conditions supplemented
with metabolites normally impacted by heat stress.

A successive study by the same group formally introduced the computational process
of integrating protein structure information into GEMs [41]. The approach, coined as
“GEM-PRO” (Figure 3), was applied for E. coli and Thermotoga maritima to investigate how
growth is limited by protein instability due to heat stress. The authors further showcased
how GEM-PRO models can be used for applications at the intersection between systems
and structural biology. However, GEM-PRO has not yet been widely applied since its
introduction as it requires an abundance of protein structure information, which is not
readily available nor attainable for most organisms. Although structural information may
be derived from homology modeling, this method can often compromise the overall quality
of the model.

2.6. Allostery

Allosteric regulation describes the modulation of enzyme activity via effectors, which
are ligands or metabolites that bind to an enzyme at a location other than the active site.
Upon binding to an enzyme, effectors can either enhance (i.e., activate) or attenuate (i.e.,
inhibit) activity through the associated reaction. This form of regulation is often depicted
as “feedback” or “feedforward loops” depending on whether the effector metabolite is
produced downstream or upstream of the reaction catalyzed by the regulated enzyme,
respectively. Allosteric regulation enables biochemical adaptation to rapid changes in the
cellular environment, particularly metabolite concentrations. Similar to PPIs/PS, allosteric
regulation plays a key role in cell signaling, biomolecular transport, and metabolism [94,95].

Although allosteric regulation plays a major role in regulating metabolism, this regula-
tory aspect has not been widely considered in genome-scale metabolic modeling studies. In
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fact, Machado et al. was the first group to integrate genome-scale allosteric regulation with
metabolic models [43]. Specifically, the authors developed a new constraint-based model-
ing method, called allosteric regulation FBA (arFBA), which was designed to incorporate
allosteric regulation when solving for flux predictions. This method introduces a regulation
(R) matrix (analogous to the S matrix) that characterizes effector–reaction relationships. A
value of 1 indicates reaction activation via effector binding, while a value of −1 indicates
reaction inhibition (Figure 3). In a tangential study, Hackett et al. directly used proteomic,
metabolomic, and fluxomic data to model yeast metabolism and regulation across diverse
conditions [44]. Their method, coined systematic identification of meaningful metabolic en-
zyme regulation (SIMMER), contextualizes experimental data via Michaelis–Menten rate
law equations. The authors also used an extended S. cerevisiae GEM to infer fluxomics-
constrained genome-scale metabolic fluxes via FVA. Both studies revealed distinct ways
that metabolism is regulated depending on the environmental conditions. However, they
both investigated allosteric regulation of metabolism at a small scale (≈100–300 reactions).

2.7. Signaling

The signaling pathways enable cells to quickly respond to fast-changing environmen-
tal and extracellular signals for a wide range of behaviors, from chemotaxis to developmen-
tal processes. Generally, a cascade of proteins participates in the process. For example, the
Wnt signaling pathway plays an important role in embryonic development by controlling
body axis formation [96]. This pathway is initiated when the Wnt protein binds to the
membrane receptor Frizzled [97]. Then, this protein cluster phosphorylates downstream
proteins to initialize a cascade of reactions regulating gene expression [96–99]. While a
signaling network model can recapitulate the dynamics of a signaling pathway [100], this
is not effective to systematically investigate how signaling networks interact with other
pathways and lead to different phenotypic properties [101]. In this regard, GEMs are ideal
candidates for modeling phenotypic changes and metabolic shifts driven by signaling.
However, steady-state assumptions make it difficult to capture the dynamic nature of signal
transduction, which is dependent on immediate metabolite concentrations (i.e., non-zero
value allocation to the b vector in CBM). More importantly, signaling systems such as phos-
phorylation of the G-protein coupled receptor can respond to environmental perturbations
quickly, but the reset of the system via receptor internalization can be slow [102]. In other
words, reaction timescales are variable and consequently challenging to simulate [103,104].

To address this issue of timescales, metabolic modeling with ODEs enables the com-
putation of metabolite concentrations as a function of time. However, this approach is
limited by high computational costs, difficulty in finding unknown kinetic parameters,
and the inability to connect to phenotypic properties. As with TRN mechanisms, dynamic
kinetic modeling with ODEs can capture signaling mechanisms in ways that traditional
modeling methods fail to achieve. To leverage the advantages of both GEMs and ODEs,
two integrated models, iFBA [27] (discussed in the TRN section) and idFBA [45], were de-
veloped. Both methods applied ODEs to update the right-hand side of the LP problem (i.e.,
S × v = 0) at each time step. Furthermore, idFBA employs the use of an incidence matrix to
specify whether reactions are activated at a given discrete time step. The incidence matrix
records binary values where 1 means the reaction is active at a given moment and 0 means
it is inactive (Figure 3). Both iFBA and idFBA can model the dynamics of intracellular
metabolites and reactions in the short timescale that is critical for signaling, but idFBA can
better capture the changes from both fast and slow reactions. Nonetheless, both methods
are limited by the size of their ODEs; that is, the complexity increases when incorporating
more signaling networks. Moreover, constructing the incidence matrix for idFBA could be
challenging if the timescales between reactions are significantly different or unclear, so a
data-driven approach to define the matrix could improve the use of idFBA. Altogether, by
integrating ODEs into GEMs, iFBA and idFBA partially overcome the limitations of the
steady-state assumption, thereby shedding light on timescales relevant to signaling.
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3. Areas for Improvement

While the methods discussed above represent key advances in the study of metabolic
regulation using GEMs, there remain critical areas for improvement in modeling cellular
regulation across the six highlighted mechanisms. One common area pertains to the
generation and integration of high confidence experimental data. Specifically, the expansion
of knowledge in environment- and condition-specific transcriptional regulation will be
vital to broaden the scope of GEMs [105]. For modeling epigenetic effects, the integration
of epigenetic modifications beyond acetylation, such as phosphorylation, is needed. For
certain mechanisms, namely PPIs/PS and allostery, active databases containing regulatory
annotations exist [87,106] but have yet to be widely integrated with GEMs. Of note, these
databases may still lack the information required for successful GEM integration; however,
such information may be supplemented by artificial intelligence (AI) methods predictive
of molecular structure and regulatory interactions [37,107].

Integrated GEM model development involves an iterative process of incorporating
regulatory information and conducting regular quality checks until a high-quality model is
achieved. Once a draft model is reconstructed, the curation of these models poses additional
challenges [19]. Errors may arise due to false positive interactions in the regulatory network
or the metabolic network. Gene Expression and Metabolism Integrated for Network Inference
(GEMINI) is the first approach for addressing this challenge of curating GEMs integrated
with regulation [108]. GEMINI was able to prioritize false positive regulatory interactions
in the PROM model of S. cerevisiae and greatly improve the model’s accuracy. Nevertheless,
unlike the curation of traditional metabolic network GEMs, for which a comprehensive
suite of tools exists, the curation of integrated GEMs has not been automated yet, and
GEMINI has been applied only to TRNs.

Modeling regulatory mechanisms characterized by dynamic enzymatic activity, such
as allostery and PTMs, will further require the inclusion of kinetic parameters that relate
enzyme concentrations to metabolic flux changes. GECKO, or GEM with enzymatic con-
straints using kinetic and omics, is one method that could be leveraged to integrate enzyme
kinetic information into GEMs [109]. This method integrated proteomics data and kinetic
parameters into the S. cerevisiae GEM, yielding an updated model with kinetic constraints
that generated more accurate simulations compared to previous models. Although GECKO
demonstrated the value of incorporating kinetic constraints into GEMs, these parameters
are not widely available for most enzymes. However, this limitation could be remedied by
methods such as DeepEC (Deep learning of Enzyme Commission numbers) [110], which applies
deep learning to determine enzyme kinetic properties directly from sequence information.

Another major area for improvement involves the ability to computationally model
metabolism at the spatiotemporal level. This is because regulatory events often occur at
different timescales (milliseconds vs. hours), and the degree of regulation can be distributed
unevenly depending on the cellular objective [111]. For example, different rates of oxygen
consumption within a cell colony lead to the spatially uneven distribution of regulatory
events and reaction activity [112]. Spatiotemporal factors are also important to consider to
holistically simulate metabolism, as multiple regulatory events tend to occur in tandem.
Dynamic metabolic modeling could be achieved using methods such as computation of
microbial ecosystems in time and space (COMETS) [113] and 3-dimensional dynamic flux balance
analysis (3DdFBA) [114], which simulate flux changes via partial differential equations
(PDEs) and dynamic FBA (dFBA) [115]. It is important to note that the use of PDEs and
dynamic constraints dramatically increases model complexity and computation time.
However, the rapid advancement of computational capability and power may help to
realize the spatiotemporal modeling of genome-scale metabolism.

4. Conclusions

Over the past three decades, GEMs have become integral for modeling metabolism
at a systems-level perspective. GEMs have enabled the study of metabolic rewiring in
response to environmental factors and paved the way for metabolic engineering in agri-
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cultural, industrial, and medical applications [15,116,117]. At the same time, advances in
biochemical research have led to increased knowledge of the regulatory intricacies involved
in a multitude of cellular processes.

Within this review, we covered six regulatory mechanisms relevant to metabolism:
TRNs, PTMs, epigenetics, PPIs/PS, allostery, and signaling. We discussed how various
methods have integrated these regulatory mechanisms into GEMs, thereby improving the
accuracy in model simulations. We also highlighted areas for improving the integration of
regulatory information into GEMs. These include the continued incorporation of highly
curated experimental data on regulatory mechanisms, iterative curation of integrated
GEMs, addition of dynamic constraints to capture spatiotemporal metabolic changes,
and supplementation with AI methods that can provide missing information on protein
structure [107], biomolecular interactions [37], and enzyme kinetic parameters [110].

Looking to the future of metabolic modeling, the successful construction of next-
generation GEMs and ultimately whole cell models for complex organisms [118] relies on
addressing three key areas. First, GEMs need to be expanded via the continued integration
of known regulatory mechanisms. The methods discussed in this review have initiated
the inclusion of regulatory information into GEMs but lack the continued integration
of new information as it is made publicly available. Continuously updating GEMs to
encompass the entirety of regulatory mechanisms at the genome scale will be a critical step
in building next-generation GEMs. Second, next-generation GEMs will need to involve
the simultaneous incorporation of multiple regulatory mechanisms. Models incorporating
both TRNs and PPIs/PS have already shown tremendous value in personalized medicine
via the construction of cell-specific networks used to design therapies for obesity [42].
Following this example, future GEMs will require the incorporation of multiple regulatory
mechanisms to emulate regulatory mechanisms operating together to drive context-specific
metabolism. Third, next-generation GEMs will need to model the crosstalk between
different forms of regulation. Regulatory mechanisms do not operate independently but
often influence each other in diverse ways. For instance, signaling pathways can activate
TFs [119], allostery can modulate transcriptional regulators [120], and PTMs can affect
protein stability and TF activity [121]. We ultimately believe that next-generation GEMs
incorporating multiple regulatory mechanisms hold the potential for elucidating complex
cellular interactions that drive human health and disease [122–124].

Author Contributions: Conceptualization, S.C.; data curation, C.H.C., D.-W.L., A.E.; writing—original
draft preparation, C.H.C., D.-W.L., A.E.; writing—review and editing, S.C; supervision, project
administration S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by faculty start-up funds from the University of Michigan and
R35 GM13779501 from NIH to S.C.

Acknowledgments: We thank Scott Campit for feedback on the manuscript. All figures were created
with BioRender.com (accessed on 26 August 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Zhu, J.; Thompson, C.B. Metabolic Regulation of Cell Growth and Proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450.

[CrossRef] [PubMed]
2. Metallo, C.M.; Vander Heiden, M.G. Understanding Metabolic Regulation and Its Influence on Cell Physiology. Mol. Cell 2013, 49,

388–398. [CrossRef] [PubMed]
3. Chubukov, V.; Gerosa, L.; Kochanowski, K.; Sauer, U. Coordination of Microbial Metabolism. Nat. Rev. Microbiol. 2014, 12,

327–340. [CrossRef] [PubMed]
4. Gerosa, L.; Sauer, U. Regulation and Control of Metabolic Fluxes in Microbes. Curr. Opin. Biotechnol. 2011, 22, 566–575. [CrossRef]

[PubMed]
5. Kochanowski, K.; Sauer, U.; Noor, E. Posttranslational Regulation of Microbial Metabolism. Curr. Opin. Microbiol. 2015, 27, 10–17.

[CrossRef]

BioRender.com
http://doi.org/10.1038/s41580-019-0123-5
http://www.ncbi.nlm.nih.gov/pubmed/30976106
http://doi.org/10.1016/j.molcel.2013.01.018
http://www.ncbi.nlm.nih.gov/pubmed/23395269
http://doi.org/10.1038/nrmicro3238
http://www.ncbi.nlm.nih.gov/pubmed/24658329
http://doi.org/10.1016/j.copbio.2011.04.016
http://www.ncbi.nlm.nih.gov/pubmed/21600757
http://doi.org/10.1016/j.mib.2015.05.007


Metabolites 2021, 11, 606 16 of 20

6. Nielsen, J. Systems Biology of Metabolism. Annu. Rev. Biochem. 2017, 86, 245–275. [CrossRef] [PubMed]
7. Heinemann, M.; Sauer, U. Systems Biology of Microbial Metabolism. Curr. Opin. Microbiol. 2010, 13, 337–343. [CrossRef]
8. Mardinoglu, A.; Gatto, F.; Nielsen, J. Genome-Scale Modeling of Human Metabolism—A Systems Biology Approach. Biotechnol. J.

2013, 8, 985–996. [CrossRef]
9. Price, N.D.; Reed, J.L.; Palsson, B. Genome-Scale Models of Microbial Cells: Evaluating the Consequences of Constraints. Nat.

Rev. Microbiol. 2004, 2, 886–897. [CrossRef] [PubMed]
10. Thiele, I.; Palsson, B. A Protocol for Generating a High-Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 2010, 5,

93–121. [CrossRef] [PubMed]
11. Lewis, N.E.; Nagarajan, H.; Palsson, B.O. Constraining the Metabolic Genotype-Phenotype Relationship Using a Phylogeny of In

Silico Methods. Nat. Rev. Microbiol. 2012, 10, 291–305. [CrossRef] [PubMed]
12. Fang, X.; Lloyd, C.J.; Palsson, B.O. Reconstructing Organisms in Silico: Genome-Scale Models and Their Emerging Applications.

Nat. Rev. Microbiol. 2020, 18, 731–743. [CrossRef] [PubMed]
13. Edwards, J.S.; Ibarra, R.U.; Palsson, B.O. In Silico Predictions of Escherichia coli Metabolic Capabilities Are Consistent with

Experimental Data. Nat. Biotechnol. 2001, 19, 125–130. [CrossRef]
14. Fong, N.L.; Lerman, J.A.; Lam, I.; Palsson, B.O.; Charusanti, P. Reconciling a Salmonella enterica Metabolic Model with

Experimental Data Confirms That Overexpression of the Glyoxylate Shunt Can Rescue a Lethal PPC Deletion Mutant. FEMS
Microbiol. Lett. 2013, 342, 62–69. [CrossRef] [PubMed]

15. Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome
Biol. 2019, 20, 121. [CrossRef] [PubMed]

16. Covert, M.W.; Schilling, C.H.; Palsson, B. Regulation of Gene Expression in Flux Balance Models of Metabolism. J. Theor. Biol.
2001, 213, 73–88. [CrossRef]

17. Liu, G.; Marras, A.; Nielsen, J. The Future of Genome-Scale Modeling of Yeast through Integration of a Transcriptional Regulatory
Network. Quant. Biol. 2014, 2, 30–46. [CrossRef]

18. Monk, J.; Nogales, J.; Palsson, B.O. Optimizing Genome-Scale Network Reconstructions. Nat. Biotechnol. 2014, 32, 447–452.
[CrossRef]

19. Chandrasekaran, S. A Protocol for the Construction and Curation of Genome-Scale Integrated Metabolic and Regulatory Network
Models. Methods Mol. Biol. 2019, 1927, 203–214. [CrossRef]

20. Kim, M.; Tagkopoulos, I. Data Integration and Predictive Modeling Methods for Multi-Omics Datasets. Mol. Omi. 2018, 14, 8–25.
[CrossRef]

21. Noor, E.; Cherkaoui, S.; Sauer, U. Biological Insights through Omics Data Integration. Curr. Opin. Syst. Biol. 2019, 15, 39–47.
[CrossRef]

22. Cho, J.S.; Gu, C.; Han, T.H.; Ryu, J.Y.; Lee, S.Y. Reconstruction of Context-Specific Genome-Scale Metabolic Models Using
Multiomics Data to Study Metabolic Rewiring. Curr. Opin. Syst. Biol. 2019, 15, 1–11. [CrossRef]

23. Dahal, S.; Yurkovich, J.T.; Xu, H.; Palsson, B.O.; Yang, L. Synthesizing Systems Biology Knowledge from Omics Using Genome-
Scale Models. Proteomics 2020, 20, 1900282. [CrossRef]

24. Covert, M.W.; Palsson, B. Transcriptional Regulation in Constraints-Based Metabolic Models of Escherichia coli. J. Biol. Chem. 2002,
277, 28058–28064. [CrossRef]

25. Shlomi, T.; Eisenberg, Y.; Sharan, R.; Ruppin, E. A Genome-Scale Computational Study of the Interplay between Transcriptional
Regulation and Metabolism. Mol. Syst. Biol. 2007, 3, 101. [CrossRef]

26. Lee, S.G.; Park, J.H.; Hou, B.K.; Kim, Y.H.; Kim, C.M.; Hwang, K.S. Effect of Weight-Added Regulatory Networks on Constraint-
Based Metabolic Models of Escherichia coli. BioSystems 2007, 90, 843–855. [CrossRef]

27. Covert, M.W.; Xiao, N.; Chen, T.J.; Karr, J.R. Integrating Metabolic, Transcriptional Regulatory and Signal Transduction Models in
Escherichia coli. Bioinformatics 2008, 24, 2044–2050. [CrossRef] [PubMed]

28. Chandrasekaran, S.; Price, N.D. Probabilistic Integrative Modeling of Genome-Scale Metabolic and Regulatory Networks in
Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 17845–17850. [CrossRef] [PubMed]

29. Jensen, P.A.; Lutz, K.A.; Papin, J.A. TIGER: Toolbox for Integrating Genome-Scale Metabolic Models, Expression Data, and
Transcriptional Regulatory Networks. BMC Syst. Biol. 2011, 5, 147. [CrossRef] [PubMed]

30. Marmiesse, L.; Peyraud, R.; Cottret, L. FlexFlux: Combining Metabolic Flux and Regulatory Network Analyses. BMC Syst. Biol.
2015, 9, 93. [CrossRef] [PubMed]

31. Ma, S.; Minch, K.J.; Rustad, T.R.; Hobbs, S.; Zhou, S.-L.; Sherman, D.R.; Price, N.D. Integrated Modeling of Gene Regulatory and
Metabolic Networks in Mycobacterium tuberculosis. PLoS Comput. Biol. 2015, 11, e1004543. [CrossRef]

32. Banos, D.T.; Trébulle, P.; Elati, M. Integrating Transcriptional Activity in Genome-Scale Models of Metabolism. BMC Syst. Biol.
2017, 11, 134. [CrossRef]

33. Wang, Z.; Danziger, S.A.; Heavner, B.D.; Ma, S.; Smith, J.J.; Li, S.; Herricks, T.; Simeonidis, E.; Baliga, N.S.; Aitchison, J.D.; et al.
Combining Inferred Regulatory and Reconstructed Metabolic Networks Enhances Phenotype Prediction in Yeast. PLoS Comput.
Biol. 2017, 13, e1005489. [CrossRef]

34. Motamedian, E.; Mohammadi, M.; Shojaosadati, S.A.; Heydari, M. TRFBA: An Algorithm to Integrate Genome-Scale Metabolic
and Transcriptional Regulatory Networks with Incorporation of Expression Data. Bioinformatics 2017, 33, 1057–1063. [CrossRef]

http://doi.org/10.1146/annurev-biochem-061516-044757
http://www.ncbi.nlm.nih.gov/pubmed/28301739
http://doi.org/10.1016/j.mib.2010.02.005
http://doi.org/10.1002/biot.201200275
http://doi.org/10.1038/nrmicro1023
http://www.ncbi.nlm.nih.gov/pubmed/15494745
http://doi.org/10.1038/nprot.2009.203
http://www.ncbi.nlm.nih.gov/pubmed/20057383
http://doi.org/10.1038/nrmicro2737
http://www.ncbi.nlm.nih.gov/pubmed/22367118
http://doi.org/10.1038/s41579-020-00440-4
http://www.ncbi.nlm.nih.gov/pubmed/32958892
http://doi.org/10.1038/84379
http://doi.org/10.1111/1574-6968.12109
http://www.ncbi.nlm.nih.gov/pubmed/23432746
http://doi.org/10.1186/s13059-019-1730-3
http://www.ncbi.nlm.nih.gov/pubmed/31196170
http://doi.org/10.1006/jtbi.2001.2405
http://doi.org/10.1007/s40484-014-0027-5
http://doi.org/10.1038/nbt.2870
http://doi.org/10.1007/978-1-4939-9142-6_14
http://doi.org/10.1039/C7MO00051K
http://doi.org/10.1016/j.coisb.2019.03.007
http://doi.org/10.1016/j.coisb.2019.02.009
http://doi.org/10.1002/pmic.201900282
http://doi.org/10.1074/jbc.M201691200
http://doi.org/10.1038/msb4100141
http://doi.org/10.1016/j.biosystems.2007.05.003
http://doi.org/10.1093/bioinformatics/btn352
http://www.ncbi.nlm.nih.gov/pubmed/18621757
http://doi.org/10.1073/pnas.1005139107
http://www.ncbi.nlm.nih.gov/pubmed/20876091
http://doi.org/10.1186/1752-0509-5-147
http://www.ncbi.nlm.nih.gov/pubmed/21943338
http://doi.org/10.1186/s12918-015-0238-z
http://www.ncbi.nlm.nih.gov/pubmed/26666757
http://doi.org/10.1371/journal.pcbi.1004543
http://doi.org/10.1186/s12918-017-0507-0
http://doi.org/10.1371/journal.pcbi.1005489
http://doi.org/10.1093/bioinformatics/btw772


Metabolites 2021, 11, 606 17 of 20

35. Shen, F.; Sun, R.; Yao, J.; Li, J.; Liu, Q.; Price, N.D.; Liu, C.; Wang, Z. OptRAM: In-Silico Strain Design via Integrative Regulatory-
Metabolic Network Modeling. PLoS Comput. Biol. 2019, 15, e1006835. [CrossRef] [PubMed]

36. Brunk, E.; Chang, R.L.; Xia, J.; Hefzi, H.; Yurkovich, J.T.; Kim, D.; Buckmiller, E.; Wang, H.H.; Cho, B.K.; Yang, C.; et al.
Characterizing Posttranslational Modifications in Prokaryotic Metabolism Using a Multiscale Workflow. Proc. Natl. Acad. Sci.
USA 2018, 115, 11096–11101. [CrossRef] [PubMed]

37. Smith, K.; Shen, F.; Lee, H.J.; Chandrasekaran, S. Metabolic Signatures of Regulation by Phosphorylation and Acetylation. bioRxiv
2021, 838243. [CrossRef]

38. Chandrasekaran, S.; Zhang, J.; Sun, Z.; Zhang, L.; Ross, C.A.; Huang, Y.C.; Asara, J.M.; Li, H.; Daley, G.Q.; Collins, J.J.
Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Rep. 2017,
21, 2965–2977. [CrossRef] [PubMed]

39. Shen, F.; Boccuto, L.; Pauly, R.; Srikanth, S.; Chandrasekaran, S. Genome-Scale Network Model of Metabolism and Histone
Acetylation Reveals Metabolic Dependencies of Histone Deacetylase Inhibitors. Genome Biol. 2019, 20, 49. [CrossRef] [PubMed]

40. Chang, R.L.; Andrews, K.; Kim, D.; Li, Z.; Godzik, A.; Palsson, B.O. Structural Systems Biology Evaluation of Metabolic
Thermotolerance in Escherichia coli. Science 2013, 340, 1220–1223. [CrossRef]

41. Brunk, E.; Mih, N.; Monk, J.; Zhang, Z.; O’Brien, E.J.; Bliven, S.E.; Chen, K.; Chang, R.L.; Bourne, P.E.; Palsson, B.O. Systems
Biology of the Structural Proteome. BMC Syst. Biol. 2016, 10, 1–16. [CrossRef]

42. Lee, S.; Zhang, C.; Kilicarslan, M.; Piening, B.D.; Bjornson, E.; Hallström, B.M.; Groen, A.K.; Ferrannini, E.; Laakso, M.; Snyder,
M.; et al. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell
Metab. 2016, 24, 172–184. [CrossRef]

43. Machado, D.; Herrgård, M.J.; Rocha, I. Modeling the Contribution of Allosteric Regulation for Flux Control in the Central Carbon
Metabolism of E. coli. Front. Bioeng. Biotechnol. 2015, 3, 154. [CrossRef]

44. Hackett, S.R.; Zanotelli, V.R.T.; Xu, W.; Goya, J.; Park, J.O.; Perlman, D.H.; Gibney, P.A.; Botstein, D.; Storey, J.D.; Rabinowitz, J.D.
Systems-Level Analysis of Mechanisms Regulating Yeast Metabolic Flux. Science 2016, 354. [CrossRef] [PubMed]

45. Min Lee, J.; Gianchandani, E.P.; Eddy, J.A.; Papin, J.A. Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory
Networks. PLoS Comput. Biol. 2008, 4, e1000086. [CrossRef] [PubMed]

46. Orth, J.D.; Thiele, I.; Palsson, B.Ø. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef] [PubMed]
47. Reimers, A.M.; Reimers, A.C. The Steady-State Assumption in Oscillating and Growing Systems. J. Theor. Biol. 2016, 406, 176–186.

[CrossRef] [PubMed]
48. Feist, A.M.; Palsson, B.O. The Biomass Objective Function. Curr. Opin. Microbiol. 2010, 13, 344–349. [CrossRef]
49. Schuetz, R.; Kuepfer, L.; Sauer, U. Systematic Evaluation of Objective Functions for Predicting Intracellular Fluxes in Escherichia

coli. Mol. Syst. Biol. 2007, 3, 119. [CrossRef]
50. Mahadevan, R.; Schilling, C.H. The Effects of Alternate Optimal Solutions in Constraint-Based Genome-Scale Metabolic Models.

Metab. Eng. 2003, 5, 264–276. [CrossRef]
51. Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.;

Lopez-Ferrer, D.; et al. Omic Data from Evolved E. coli Are Consistent with Computed Optimal Growth from Genome-Scale
Models. Mol. Syst. Biol. 2010, 6, 390. [CrossRef]

52. Vivek-Ananth, R.P.; Samal, A. Advances in the Integration of Transcriptional Regulatory Information into Genome-Scale Metabolic
Models. BioSystems 2016, 147, 1–10. [CrossRef] [PubMed]

53. Chen, X.-F.; Zhang, Y.; Xu, H.; Bu, G. Transcriptional Regulation and Its Misregulation in Alzheimer’s Disease. Mol. Brain 2013, 6,
44. [CrossRef]

54. Lee, T.I.; Young, R.A. Transcriptional Regulation and Its Misregulation in Disease. Cell 2013, 152, 1237–1251. [CrossRef] [PubMed]
55. Bonneau, R.; Facciotti, M.T.; Reiss, D.J.; Schmid, A.K.; Pan, M.; Kaur, A.; Thorsson, V.; Shannon, P.; Johnson, M.H.; Bare, J.C.;

et al. A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell. Cell 2007, 131, 1354–1365. [CrossRef]
[PubMed]

56. Chubukov, V.; Uhr, M.; Le Chat, L.; Kleijn, R.J.; Jules, M.; Link, H.; Aymerich, S.; Stelling, J.; Sauer, U. Transcriptional Regulation
Is Insufficient to Explain Substrate-Induced Flux Changes in Bacillus subtilis. Mol. Syst. Biol. 2013, 9, 709. [CrossRef]

57. Rocks, O.; Peyker, A.; Kahms, M.; Verveer, P.J.; Koerner, C.; Lumbierres, M.; Kuhlmann, J.; Waldmann, H.; Wittinghofer, A.;
Bastiaens, P.I.H. An Acylation Cycle Regulates Localization and Activity of Palmitoylated Ras Isoforms. Science 2005, 307,
1746–1752. [CrossRef] [PubMed]

58. Maeda, A.; Okano, K.; Park, P.S.-H.; Lem, J.; Crouch, R.K.; Maeda, T.; Palczewski, K. Palmitoylation Stabilizes Unliganded Rod
Opsin. Proc. Natl. Acad. Sci. USA 2010, 107, 8428–8433. [CrossRef]

59. Mann, M.; Jensen, O.N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21, 255–261. [CrossRef]
60. Deribe, Y.L.; Pawson, T.; Dikic, I. Post-Translational Modifications in Signal Integration. Nat. Struct. Mol. Biol. 2010, 17, 666–672.

[CrossRef]
61. Zhao, S.; Xu, W.; Jiang, W.; Yu, W.; Lin, Y.; Zhang, T.; Yao, J.; Zhou, L.; Zeng, Y.; Li, H.; et al. Regulation of Cellular Metabolism by

Protein Lysine Acetylation. Science 2010, 327, 1000–1004. [CrossRef]
62. Oliveira, A.P.; Sauer, U. The Importance of Post-Translational Modifications in Regulating Saccharomyces cerevisiae Metabolism.

FEMS Yeast Res. 2012, 12, 104–117. [CrossRef]

http://doi.org/10.1371/journal.pcbi.1006835
http://www.ncbi.nlm.nih.gov/pubmed/30849073
http://doi.org/10.1073/pnas.1811971115
http://www.ncbi.nlm.nih.gov/pubmed/30301795
http://doi.org/10.1101/838243
http://doi.org/10.1016/j.celrep.2017.07.048
http://www.ncbi.nlm.nih.gov/pubmed/29212039
http://doi.org/10.1186/s13059-019-1661-z
http://www.ncbi.nlm.nih.gov/pubmed/30823893
http://doi.org/10.1126/science.1234012
http://doi.org/10.1186/s12918-016-0271-6
http://doi.org/10.1016/j.cmet.2016.05.026
http://doi.org/10.3389/fbioe.2015.00154
http://doi.org/10.1126/science.aaf2786
http://www.ncbi.nlm.nih.gov/pubmed/27789812
http://doi.org/10.1371/journal.pcbi.1000086
http://www.ncbi.nlm.nih.gov/pubmed/18483615
http://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
http://doi.org/10.1016/j.jtbi.2016.06.031
http://www.ncbi.nlm.nih.gov/pubmed/27363728
http://doi.org/10.1016/j.mib.2010.03.003
http://doi.org/10.1038/msb4100162
http://doi.org/10.1016/j.ymben.2003.09.002
http://doi.org/10.1038/msb.2010.47
http://doi.org/10.1016/j.biosystems.2016.06.001
http://www.ncbi.nlm.nih.gov/pubmed/27287878
http://doi.org/10.1186/1756-6606-6-44
http://doi.org/10.1016/j.cell.2013.02.014
http://www.ncbi.nlm.nih.gov/pubmed/23498934
http://doi.org/10.1016/j.cell.2007.10.053
http://www.ncbi.nlm.nih.gov/pubmed/18160043
http://doi.org/10.1038/msb.2013.66
http://doi.org/10.1126/science.1105654
http://www.ncbi.nlm.nih.gov/pubmed/15705808
http://doi.org/10.1073/pnas.1000640107
http://doi.org/10.1038/nbt0303-255
http://doi.org/10.1038/nsmb.1842
http://doi.org/10.1126/science.1179689
http://doi.org/10.1111/j.1567-1364.2011.00765.x


Metabolites 2021, 11, 606 18 of 20

63. Pisithkul, T.; Patel, N.M.; Amador-Noguez, D. Post-Translational Modifications as Key Regulators of Bacterial Metabolic Fluxes.
Curr. Opin. Microbiol. 2015, 24, 29–37. [CrossRef]

64. Nam, H.; Lewis, N.E.; Lerman, J.A.; Lee, D.-H.; Chang, R.L.; Kim, D.; Palsson, B.O. Network Context and Selection in the
Evolution to Enzyme Specificity. Science 2012, 337, 1101–1104. [CrossRef] [PubMed]

65. Feizi, A.; Österlund, T.; Petranovic, D.; Bordel, S.; Nielsen, J. Genome-Scale Modeling of the Protein Secretory Machinery in Yeast.
PLoS ONE 2013, 8, e63284. [CrossRef] [PubMed]

66. Carnino, J.M.; Ni, K.; Jin, Y. Post-Translational Modification Regulates Formation and Cargo-Loading of Extracellular Vesicles.
Front. Immunol. 2020, 11, 948. [CrossRef] [PubMed]

67. Gutierrez, J.M.; Feizi, A.; Li, S.; Kallehauge, T.B.; Hefzi, H.; Grav, L.M.; Ley, D.; Hizal, D.B.; Betenbaugh, M.J.; Voldborg, B.;
et al. Genome-Scale Reconstructions of the Mammalian Secretory Pathway Predict Metabolic Costs and Limitations of Protein
Secretion. Nat. Commun. 2020, 11, 68. [CrossRef]

68. Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2012, 38, 23–38. [CrossRef]
[PubMed]

69. Chuang, J.C.; Jones, P.A. Epigenetics and MicroRNAs. Pediatr. Res. 2007, 61, 24–29. [CrossRef] [PubMed]
70. Bannister, A.J.; Kouzarides, T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011, 21, 381–395. [CrossRef]
71. Reid, M.A.; Dai, Z.; Locasale, J.W. The Impact of Cellular Metabolism on Chromatin Dynamics and Epigenetics. Nat. Cell Biol.

2017, 19, 1298–1306. [CrossRef] [PubMed]
72. Su, X.; Wellen, K.E.; Rabinowitz, J.D. Metabolic Control of Methylation and Acetylation. Curr. Opin. Chem. Biol. 2016, 30, 52–60.

[CrossRef]
73. Kaelin, W.G.; McKnight, S.L. Influence of Metabolism on Epigenetics and Disease. Cell 2013, 153, 56–69. [CrossRef] [PubMed]
74. Etchegaray, J.P.; Mostoslavsky, R. Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental

Changes. Mol. Cell 2016, 62, 695–711. [CrossRef] [PubMed]
75. Lu, C.; Thompson, C.B. Metabolic Regulation of Epigenetics. Cell Metab. 2012, 16, 9–17. [CrossRef]
76. Chandrasekaran, S. Tying Metabolic Branches with Histone Tails Using Systems Biology. Epigenet. Insights 2019, 12. [CrossRef]

[PubMed]
77. Campit, S.; Chandrasekaran, S. Inferring Metabolic Flux from Time-Course Metabolomics. In Methods in Molecular Biology;

Humana Press Inc.: Totowa, NJ, USA, 2020; Volume 2088, pp. 299–313.
78. Campit, S.E.; Meliki, A.; Youngson, N.A.; Chandrasekaran, S. Nutrient Sensing by Histone Marks: Reading the Metabolic Histone

Code Using Tracing, Omics, and Modeling. BioEssays 2020, 42, 2000083. [CrossRef]
79. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.;

et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature 2012, 483, 603–607.
[CrossRef]

80. Pacheco, M.P.; John, E.; Kaoma, T.; Heinäniemi, M.; Nicot, N.; Vallar, L.; Bueb, J.L.; Sinkkonen, L.; Sauter, T. Integrated Metabolic
Modelling Reveals Cell-Type Specific Epigenetic Control Points of the Macrophage Metabolic Network. BMC Genom. 2015, 16,
809. [CrossRef]

81. Salehzadeh-Yazdi, A.; Asgari, Y.; Saboury, A.A.; Masoudi-Nejad, A. Computational Analysis of Reciprocal Association of
Metabolism and Epigenetics in the Budding Yeast: A Genome-Scale Metabolic Model (GSMM) Approach. PLoS ONE 2014, 9,
e111686. [CrossRef]

82. Shen, F.; Cheek, C.; Chandrasekaran, S. Dynamic Network Modeling of Stem Cell Metabolism. Methods Mol. Biol. 2019, 1975,
305–320. [CrossRef] [PubMed]

83. Friedman, A.; Perrimon, N. Genetic Screening for Signal Transduction in the Era of Network Biology. Cell 2007, 128, 225–231.
[CrossRef] [PubMed]

84. Nyfeler, B.; Michnick, S.W.; Hauri, H.-P. Capturing Protein Interactions in the Secretory Pathway of Living Cells. Proc. Natl. Acad.
Sci. USA 2005, 102, 6350–6355. [CrossRef]

85. Pandey, A.V.; Henderson, C.J.; Ishii, Y.; Kranendonk, M.; Backes, W.L.; Zanger, U.M. Editorial: Role of Protein-Protein Interactions
in Metabolism: Genetics, Structure, Function. Front. Pharmacol. 2017, 8, 881. [CrossRef] [PubMed]

86. De Las Rivas, J.; Fontanillo, C. Protein-Protein Interactions Essentials: Key Concepts to Building and Analyzing Interactome
Networks. PLoS Comput. Biol. 2010, 6, 1–8. [CrossRef]

87. Kangueane, P.; Nilofer, C. Databases for Protein-Protein Interaction. In Protein-Protein and Domain-Domain Interactions; Springer:
Singapore, 2018; pp. 113–124.

88. Ivanov, A.A.; Khuri, F.R.; Fu, H. Targeting Protein-Protein Interactions as an Anticancer Strategy. Trends Pharmacol. Sci. 2013, 34,
393–400. [CrossRef] [PubMed]

89. Zinzalla, G.; Thurston, D.E. Targeting Protein-Protein Interactions for Therapeutic Intervention: A Challenge for the Future.
Future Med. Chem. 2009, 1, 65–93. [CrossRef]

90. Gómez-Moreno, C.; Martínez-Júlvez, M.; Medina, M.; Hurley, J.K.; Tollin, G. Protein-Protein Interaction in Electron Transfer
Reactions: The Ferrodoxin/Flavodoxin/ferredoxin:NADP+ Reductase System from Anabaena. Biochimie 1998, 80, 837–846.
[CrossRef]

91. Frieden, C. Protein-Protein Interaction and Enzymatic Activity. Annu. Rev. Biochem. 1971, 40, 653–696. [CrossRef]

http://doi.org/10.1016/j.mib.2014.12.006
http://doi.org/10.1126/science.1216861
http://www.ncbi.nlm.nih.gov/pubmed/22936779
http://doi.org/10.1371/journal.pone.0063284
http://www.ncbi.nlm.nih.gov/pubmed/23667601
http://doi.org/10.3389/fimmu.2020.00948
http://www.ncbi.nlm.nih.gov/pubmed/32528471
http://doi.org/10.1038/s41467-019-13867-y
http://doi.org/10.1038/npp.2012.112
http://www.ncbi.nlm.nih.gov/pubmed/22781841
http://doi.org/10.1203/pdr.0b013e3180457684
http://www.ncbi.nlm.nih.gov/pubmed/17413852
http://doi.org/10.1038/cr.2011.22
http://doi.org/10.1038/ncb3629
http://www.ncbi.nlm.nih.gov/pubmed/29058720
http://doi.org/10.1016/j.cbpa.2015.10.030
http://doi.org/10.1016/j.cell.2013.03.004
http://www.ncbi.nlm.nih.gov/pubmed/23540690
http://doi.org/10.1016/j.molcel.2016.05.029
http://www.ncbi.nlm.nih.gov/pubmed/27259202
http://doi.org/10.1016/j.cmet.2012.06.001
http://doi.org/10.1177/2516865719869683
http://www.ncbi.nlm.nih.gov/pubmed/31448363
http://doi.org/10.1002/bies.202000083
http://doi.org/10.1038/nature11003
http://doi.org/10.1186/s12864-015-1984-4
http://doi.org/10.1371/JOURNAL.PONE.0111686
http://doi.org/10.1007/978-1-4939-9224-9_14
http://www.ncbi.nlm.nih.gov/pubmed/31062316
http://doi.org/10.1016/j.cell.2007.01.007
http://www.ncbi.nlm.nih.gov/pubmed/17254958
http://doi.org/10.1073/pnas.0501976102
http://doi.org/10.3389/fphar.2017.00881
http://www.ncbi.nlm.nih.gov/pubmed/29230176
http://doi.org/10.1371/journal.pcbi.1000807
http://doi.org/10.1016/j.tips.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/23725674
http://doi.org/10.4155/fmc.09.12
http://doi.org/10.1016/S0300-9084(00)88878-1
http://doi.org/10.1146/annurev.bi.40.070171.003253


Metabolites 2021, 11, 606 19 of 20

92. Vinayagam, A.; Zirin, J.; Roesel, C.; Hu, Y.; Yilmazel, B.; Samsonova, A.A.; Neumüller, R.A.; Mohr, S.E.; Perrimon, N. Integrating
Protein-Protein Interaction Networks with Phenotypes Reveals Signs of Interactions. Nat. Methods 2014, 11, 94–99. [CrossRef]

93. Lee, S.; Zhang, C.; Liu, Z.; Klevstig, M.; Mukhopadhyay, B.; Bergentall, M.; Cinar, R.; Ståhlman, M.; Sikanic, N.; Park, J.K.; et al.
Network Analyses Identify Liver-Specific Targets for Treating Liver Diseases. Mol. Syst. Biol. 2017, 13, 938. [CrossRef]

94. Goodey, N.M.; Benkovic, S.J. Allosteric Regulation and Catalysis Emerge via a Common Route. Nat. Chem. Biol. 2008, 4, 474–482.
[CrossRef]

95. Macpherson, J.A.; Anastasiou, D. Allosteric Regulation of Metabolism in Cancer: Endogenous Mechanisms and Considerations
for Drug Design. Curr. Opin. Biotechnol. 2017, 48, 102–110. [CrossRef]

96. Komiya, Y.; Habas, R. Wnt Signal Transduction Pathways. Organogenesis 2008, 4, 68–75. [CrossRef]
97. MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26.

[CrossRef] [PubMed]
98. Logan, C.Y.; Nusse, R. The Wnt Signaling Pathway in Development and Disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810.

[CrossRef] [PubMed]
99. Habas, R.; Dawid, I.B. Dishevelled and Wnt Signaling: Is the Nucleus the Final Frontier? J. Biol. 2005, 4, 2. [CrossRef] [PubMed]
100. Swameye, I.; Müller, T.G.; Timmer, J.; Sandra, O.; Klingmüller, U. Identification of Nucleocytoplasmic Cycling as a Remote Sensor

in Cellular Signaling by Databased Modeling. Proc. Natl. Acad. Sci. USA 2003, 100, 1028–1033. [CrossRef] [PubMed]
101. Samaga, R.; Klamt, S. Modeling Approaches for Qualitative and Semi-Quantitative Analysis of Cellular Signaling Networks. Cell

Commun. Signal. 2013, 11, 43. [CrossRef]
102. Rajagopal, S.; Shenoy, S.K. GPCR Desensitization: Acute and Prolonged Phases. Cell. Signal. 2018, 41, 9–16. [CrossRef] [PubMed]
103. Kumar, A.; Christofides, P.D.; Daoutidis, P. Singular Perturbation Modeling of Nonlinear Processes with Nonexplicit Time-Scale

Multiplicity. Chem. Eng. Sci. 1998, 53, 1491–1504. [CrossRef]
104. Gerdtzen, Z.P.; Daoutidis, P.; Hu, W.S. Non-Linear Reduction for Kinetic Models of Metabolic Reaction Networks. Metab. Eng.

2004, 6, 140–154. [CrossRef]
105. Wilkins, O.; Hafemeister, C.; Plessis, A.; Holloway-Phillips, M.-M.; Pham, G.M.; Nicotra, A.B.; Gregorio, G.B.; Jagadish, S.V.K.;

Septiningsih, E.M.; Bonneau, R.; et al. EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in
the Response to Water Deficit, High Temperature, and Agricultural Environments. Plant Cell 2016, 28, 2365–2384. [CrossRef]
[PubMed]

106. Huang, Z.; Zhu, L.; Cao, Y.; Wu, G.; Liu, X.; Chen, Y.; Wang, Q.; Shi, T.; Zhao, Y.; Wang, Y.; et al. ASD: A Comprehensive Database
of Allosteric Proteins and Modulators. Nucleic Acids Res. 2011, 39, 663–669. [CrossRef] [PubMed]

107. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.
Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [CrossRef]

108. Chandrasekaran, S.; Price, N.D. Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks. PLoS Comput.
Biol. 2013, 9, e1003370. [CrossRef] [PubMed]

109. Sánchez, B.J.; Zhang, C.; Nilsson, A.; Lahtvee, P.; Kerkhoven, E.J.; Nielsen, J. Improving the Phenotype Predictions of a Yeast
Genome-Scale Metabolic Model by Incorporating Enzymatic Constraints. Mol. Syst. Biol. 2017, 13, 935. [CrossRef]

110. Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep Learning Enables High-Quality and High-Throughput Prediction of Enzyme Commission
Numbers. Proc. Natl. Acad. Sci. USA 2019, 116, 13996–14001. [CrossRef] [PubMed]

111. Chandrasekaran, S.; Danos, N.; George, U.Z.; Han, J.-P.; Quon, G.; Müller, R.; Tsang, Y.; Wolgemuth, C. The Axes of Life: A
Roadmap for Understanding Dynamic Multiscale Systems. Integr. Comp. Biol. 2021. [CrossRef]

112. Harcombe, W.R.; Riehl, W.J.; Dukovski, I.; Granger, B.R.; Betts, A.; Lang, A.H.; Bonilla, G.; Kar, A.; Leiby, N.; Mehta, P.; et al.
Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Rep. 2014,
7, 1104–1115. [CrossRef]
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