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Wet laboratory mutagenesis to determine enzyme activity changes is expensive and time consuming. This paper expands on
standard one-shot learning by proposing an incremental transductive method (T2bRF) for the prediction of enzyme mutant
activity during mutagenesis using Delaunay tessellation and 4-body statistical potentials for representation. Incremental learning is
in tune with both eScience and actual experimentation, as it accounts for cumulative annotation effects of enzyme mutant activity
over time. The experimental results reported, using cross-validation, show that overall the incremental transductive method
proposed, using random forest as base classifier, yields better results compared to one-shot learning methods. T2bRF is shown
to yield 90% on T4 and LAC (and 86% on HIV-1). This is significantly better than state-of-the-art competing methods, whose
performance yield is at 80% or less using the same datasets.

1. Introduction

A chain of amino acids in a given sequence forms the
primary structure that makes up a protein and determines its
functions. Proteins are necessary for virtually every activity
in the human body [1]. There are twenty distinct amino
acids that make up the polypeptides. They are known as
proteinogenic or standard amino acids [1, 2]. The order
of these amino acids in the chain, known as the primary
sequence, is very important. Changes in even one amino acid
(e.g., substituting one kind of amino acid, at a given location,
with a different one) can affect the way the protein functions,
that is, its activity. Such a substitution is an example of
a mutation in the protein’s amino acid sequence and is
characteristic of a single-site mutation.

The interplay between mutations and their effect on
protein function is the domain of bioinformatics, in general,
and computational mutagenesis, in particular. Mutagenesis
can be described as creating a mutation in the protein (in
the amino acid chain) by substituting an original (or wild-
type) amino acid at a given position in the chain with one
of the other 19 amino acid types, for example, substituting
the amino acid tryptophan at position 10 with cysteine at

that same location in a particular protein [3]. The resulting
mutated protein’s activity may be different from its wild-
type counterpart (remaining active or becoming inactive).
Experiments using mutagenesis enable researchers to collect
data about protein activity with respect to mutations. Since
wet lab experimentation is very expensive, finding a less
expensive method, by being able to predict a protein’s
activity/function, is essential for both learning the range
and scope of computational mutagenesis and drug design
[4]. Automating this prediction task, that is, being able
to perform protein function prediction in silico with the
help of computational methods, is referred to as compu-
tational mutagenesis and is the topic for this article. The
challenges faced in protein function prediction during in
silico mutagenesis experiments and their validation include
(i) annotation of large amounts of unlabeled biological data;
and (ii) dealing with lack of consensus regarding proper
labeling (“classification”) and consequent error propagation
during data streaming and/or distributed annotation. The
last challenge stands in contrast to classical one-shot clas-
sification and k-fold cross-validation where all the data,
both labeled and unlabeled, become available and used at
once for training, tuning, and testing. This paper builds on
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the protein representation proposed by Masso and Vaisman
[5, 6]. Towards that end we propose to couple the expressive
power of computational geometry and 4-body statistical
potential for protein representation, with the robustness of
statistical learning. In particular we use transduction, as the
learning method of choice for protein function prediction,
with enzyme mutant activity as the functionality of interest
here. The datasets used come from the Protein Data Bank
(PDB) [7], and the specific protein datasets used are HIV-1
protease, T4 Lysozyme, and Lac Repressor.

The outline of the paper is as follows Section 2 briefly
surveys proteins, protein structure, and the relevance of
protein mutations (Section 2.1). It also covers representa-
tional aspects including feature extraction, which are driven
by computational geometry and 4-body statistical potential,
and computational mutagenesis (Section 2.2). Section 3 is
about transduction while Section 4 describes a number of
prediction methods and training strategies to be used for
comparative evaluation. Experimental design, discussed in
Section 5, includes descriptions of the datasets, protocols,
and software used. Experimental results including compar-
ative performance evaluation are presented and discussed in
Section 6. The paper concludes in Section 7 with a summary
of the contributions made and venues for future research.

2. Background

The relevance of mutagenesis is straightforward. As an
example, let us consider sickle-cell anemia. It is an autosomal
recessive genetic blood disorder affecting red blood cells,
which is caused by a single error in the gene for hemoglobin.
The incorrect amino acid at one position in the molecule
causes the normally lozenge-shaped red blood cells to
become rigid, and take the form of a sickle. This leads to a
number of complications and shortens life expectancy to 42
in males and 48 in females [8]. We note for completeness that
a mutation, by definition, is not limited to a change in only
a single amino acid. Multiple site mutations, also known as
multiple-point mutations, can occur when more than one
amino acid mutates. This paper considers only single-site
mutations.

2.1. Proteomics and Mutagenesis. Each residue (amino acid)
is considered as a single point in the representation. Within
a protein there are on the order of 10% residues and there are
on the order of 10! residue chains. The largest hierarchical
structure is the protein itself. Amino acids are critical to
life and have many functions in metabolism. One of their
most important functions is to serve as the building blocks
of proteins, which are linear, unbranched, chains of amino
acids. These molecules contain the basic elements of carbon,
hydrogen, oxygen, and nitrogen [9, 10]. There are twenty
distinct amino acids naturally incorporated into proteins
[11]. As building blocks, proteins are chemically defined
by the order of amino acid residues, and their primary
structure. This in turn, determines their secondary, tertiary,
and quaternary structure. Changes in amino acid sequence
or structure may or may not affect the function of the
protein.
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2.2. Protein Representation Using Computational Geometry
and 4-Body Statistical Potential. Given a protein and its
amino acid sequence, one can represent it using methods
drawn from computational geometry. Towards that end
one considers each residue as a single point in 3D space
using numerical coordinates, with the whole protein then
represented by a 3D graph where the nodes are the amino
acids and the edges connect to the nearest amino acids.
The basic stages for protein representation include (i)
protein space derivation (see Section 2.2.1), (ii) wild-type
enrollment (see Section 2.3), and (iii) mutation represen-
tation (see Section 2.3.1). Once a protein is represented
numerically/graphically one extracts features, which later
on serve for classification of unlabeled mutants. Note that
mutations are the result of editing the original amino acid
sequence using substitutions; mutations are guided if the
goal is drug design and synthesis.

2.2.1. Protein Space Derivation. The derivation of suitable
protein representations for the purpose of function pre-
diction starts with drawing a large sample of proteins
from the Protein Data Bank (PDB) [7]. Amino acids are
3D structures and for the purpose of further processing
they are abstracted in terms of their alpha carbon atomic
coordinates. Each protein, that is, an amino acid sequence,
is thus a sequence of corresponding alpha carbons (“C-alpha
trace” or “backbone”). The sequence is subject to Delaunay
tessellation, which yields Delaunay simplices in 3D and
establishes nearest-neighborhood relationships between the
amino acids making up the protein. One gathers “observed”
statistics on all the Delaunay simplices from each amino acid
sequence drawn from the PDB and compares them to the
“expected” statistics gathered from all the Delaunay simplices
corresponding to all possible combinations of amino acid
vertices [5]. The ratio of the “observed” to “expected”
statistics yields a log-likelihood score that is referred to as the
4-body statistical potential. This is described next.

Delaunay Tessellation. Over 1400 examples of different high-
resolution crystallographic protein structures [5] with low
primary sequence identity (different enough such that
regions of the primary sequence do not match) are chosen
from the PDB [5, 7]. The examples are used to obtain
statistics needed for the 4-body statistical potential (see the
following). Using the PDB coordinates for the amino acids,
each protein is represented as a discrete set of points in
3D, corresponding to alpha carbon (C-alpha trace) atomic
coordinates of each of the constituent amino acid [12, 13].
Choosing 3D coordinates based upon a weighted center
of mass is another way to establish a single point to
represent the amino acid in 3D. It is to be noted that
a conscious decision has been made to mimic the same
protein representation (that is using the alpha carbon) in our
methods (see Section 4). The alpha carbon representation
(C-alpha trace) is a good way to represent the protein
structure, due to increased stability with respect to amino
acid type. Another reason for using this representation is to
provide identical conditions for a fair comparison between
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FIGURE 1: Delaunay tessellation (solid) and Voronoi Diagram
(dotted) in 2D [16].

the method described by Masso et al. [12, 13] and the
methods presented in this paper.

Delaunay tessellation of each protein structure yields an
aggregate of nonoverlapping, space-filling, irregular tetrahe-
dra (referred to as Delaunay simplices) whose vertices are the
amino acid point representations [5, 12, 14]. The Quickhull
algorithm performs the Delaunay tessellations [15]. A suite
of Java and Perl programs is used to preprocess the PDB
structure files, which includes checking for the absence of
gaps (missing coordinates), and postprocessing (tabulation
and calculating summary statistics) of the Quickhull output
data (see Figure 1 for 2D Delaunay tessellation and its dual,
the Voronoi diagram).

Each Delaunay simplex in a protein structure Delaunay
tessellation objectively defines the nearest-neighbor amino
acids for each given amino acid. The Delaunay simplex con-
sists of four amino acids, which define its vertices. A signifi-
cant property of this tessellation method is that the number
of nearest neighbors in 3D is always four, which represents
a fundamental topological property of 3D space. This is why
Delaunay simplices are also known as quadruplets. While a
given point (amino acid) can be a member of many quadru-
plets, all amino acid members in a given (one) quadruplet
are called “nearest neighbors.” Assuming order independence
within each quadruplet, the theoretical maximum number of
all possible combinations of quadruplets that can be formed
from the 20 amino acids naturally occurring in proteins is
8855 (disregarding the length of the sequence) [5, 12, 14].

The 4-Body Statistical Potential. After individually tessellat-
ing each of the sampled protein structures from the PDB,
the observed frequency (fijx1) of quadruples representing
each quadruplet type across tessellations is calculated. A rate
expected by chance (piji; “expected frequency”) for each
quadruplet based on a multinomial reference distribution is
also calculated. Using the inverse Boltzmann law, the 4-body
statistical potential function is an “empirical potential of
quadruplet interaction (log-likelihood score) calculated as
the logarithm of the ratio of observed normalized frequency
to the expected chance of occurrence for every quadruplet”

[5, 6, 12, 14]. Specifically, the log-likelihood score for a
quadruplet (i, j, k, [) of amino acids is gijx1 = log( fijxi/ pijki)-
Here, fijx is the observed normalized frequency of
occurrence of quadruplets with vertices representing
amino acids i, j, k, / among all the quadruplets formed by
the tessellations of the training set of proteins, and pijx =
caajara; is the expected rate of occurrence of the same
quadruplet calculated from the multinomial distribution
[5]. In the formula for pijx, a, (where r = {i,j,k,1})
represents the normalized frequency of occurrence of the
amino acid r among all of the training set proteins. If there
are fewer than four distinct types of amino acids in the
quadruplet, the formula will contain fewer than four a,
factors. Similarly, the number of factors in the denominator
of the permutation factor ¢ = 4!/[[(#!) depends on the
number of distinct residue types that form the quadruplet,
where t, represents the number of residues in the quadruplet
that are of type r [5]. Note that the statistical analysis of
the residue composition of Delaunay induced quadruplets
exhibits nonrandom preferences for certain quadruplets of
amino acids to be clustered together [14]. This nonrandom
preference motivates the benefit of developing the 4-body
statistical potential that can be used in evaluating sequence-
structure compatibility for the purpose of functional
prediction [14]. The Auto-Mute website [5], run by Masso
and Vaisman, provides further information on the data.

2.3. Wild-Type Enrollment. A protein structure that does not
have any mutations is known as wild type (or wt). The 4-
body statistical potentials are used to assign to individual
amino acids a numerical value called the residue environ-
ment score. It is calculated by summing the log-likelihood
scores of only those quadruplets in the Delaunay tessellation
for which the point representing the amino acid position
participates as a vertex [5, 17]. Collectively, the vector of
residue environment scores for all of the amino acids in a
protein is referred to as the potential profile of the protein.

2.3.1. Mutation Representation. Similar to wild-type enroll-
ment one now derives in a similar fashion the potential
profile for each mutation. A mutation is defined [5] by
“utilizing the tessellation of the wild-type structure while
substituting only the amino acid label at the CM (center of
mass) point (vertex) representing the amino acid position
of interest.” This only alters the residue environment scores
of the mutated residue position as well as those residue
positions whose respective points participate as vertices in
quadruplets with the point representing the mutated residue
position [5, 17] (The only log-likelihood scores that changed
are of those quadruplets that have the mutated point as
a vertex; all other scores remain unchanged). The residual
profile vector of a protein mutant is defined as the difference
between the mutant and wt protein potential profile vectors,
and the value of each component is referred to as an
environmental change (EC) score (see Figure2). Hence,
components with nonzero EC scores in the residual profile
of a mutant identify the mutated position and all of its
structural nearest neighbors.
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FIGURE 2: (a) An example of a C-alpha trace of a protein with the
(right, top) and wild-type protein (right, middle) and the residual

(b)

mutated position indicated (left); the potential profile for the mutated
profile (right, bottom, figure adapted from Masso [18]). (b) Graphical

representation of an input vector (residual profile) resulting from the mutation of the T4 lysozyme protein at position 107. Note the sparse
nature of the vector; there are lots of positions with zero values and very few non-zero values.

3. Transduction

Transduction is different from inductive inference. It is local
inference (“estimation”) that moves from particular(s) to
particular(s) [19, 20]. In contrast to inductive inference,
where one uses empirical data to approximate a functional
dependency (the inductive step (that moves from particular
to general)) and then uses the dependency learned to
evaluate the values of the function at points of interest (the
deductive step (that moves from general to particular)), one
now directly infers (using transduction) the values of the
function only at the points of interest from the training
data [21, 22]. Inference takes place using both labeled and
unlabeled data, which are complementary to each other.
Transduction incorporates unlabeled data, characteristic of
test (“query”) samples, in the classification process respon-
sible to label them for the purpose of prediction. It further
seeks for a consistent and stable labeling across both (near-
by) training (“labeled”) and test data. Transduction seeks

here to authenticate mutations whose function, for example,
activity, is unknown, in a fashion that is most consistent with
the given activities of known but similar protein and/or their
mutations from the PDB. The search for putative labels (for
unlabeled samples) seeks to make the labels for both training
and test data compatible or equivalently to make the training
and test error consistent.

Transduction “works because the test set provides a non-
trivial factorization of the (discrimination) function class”
[22]. One key concept behind transduction (and consis-
tency) is the symmetrization lemma [23], which replaces
the true (inference) risk by an estimate computed on an
independent set of data, for example, unlabeled or test data,
referred to as “virtual” or “ghost samples” The simplest
realization for transductive inference is the method of k-nea-
rest neighbors. The Cover-Hart theorem [24] proves that
asymptotically, the one nearest neighbor classification
algorithm is bounded above by twice the Bayes’ mini-
mum probability of error. Similar and complementary to
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transduction is semisupervised learning (SSL) [23]. El-
Yaniv and Gerzon [25] make useful analogies between
“transduction and a “take-home exam” (where the student
gets to see the questions and prepare accordingly), and
between semi-supervised learning and a standard “classroom
exam” where the student gets to see only exam questions
from previous years before studying for the exam.”

4. Learning Methods

Much of the research on learning, in general, and modeling
and prediction for the purpose of protein function predic-
tion, in particular, has been done using one-shot learning
where all the data is available at once for both training (for
the purpose of one-shot learning) and cross-validation (for
the purpose of performance evaluation) using randomized
partitions [5, 16, 26]. This section provides details first on the
best learning methods used for training and validation for
one-shot learning, and then introduces alternative methods
for incremental learning. All but one of the methods
considered (decision trees [27, 28]) are characteristic of
voting or ensemble methods. The random forest classifier
[28], characteristic of voting methods, consists of a collection
of decision trees. It combines the predictions made by
multiple decision trees (e.g., taking the mode of the results
of the individual trees) to obtain the final label (“class”).

AdaBoost (adaptive boosting) works by adaptively and
iteratively resampling data to focus learning on those
samples that the previous weak classifier (learner) has
failed on and/or encountered hard labels [29]. AdaBoost
will iteratively choose T effective features to serve as weak
(“better than chance”) classifiers, whose group behavior is
characteristic of a strong (“robust”) classifier. The mixture of
experts or the final strong classifier H for our binary cases of
interest (“active” versus “inactive” function) is

T
H(x) = sign(Zcxtht(X)) (1)

t=1

where a; are the weights (“confidence”) for each classifier and
h; are the weak classifiers.

LogitBoost, similar to AdaBoost, fits an additive logistic
regression model to the training data (a regression algorithm
to train the weak learner) [30]. An additive model is an
approximation to a function F(x) of the form

M
F(x) = > cmfm(x), 2)
m=1

where M is the number of boosting iterations, ¢, are the
weights, and f,, corresponds to weak classifiers. The algo-
rithm minimizes the logistic loss:

Zlog(l-ﬁ-e*ﬂ:(")), (3)

with y the true class label.

Another method used for comparison is support vector
machines (SVM). It is characteristic of statistical learning
[22,31] and is known to be similar in scope and functionality
to AdaBoost.

4.1. One-Shot and Incremental Transduction. We advance
and describe here an alternative approach for protein
function prediction, in general, and enzyme mutant activity,
in particular. Towards that end, we take advantage of the
statistical learning framework [22], and use transduction
for prediction purposes. Several transductive strategies, both
one shot (T1 [32]) and incremental (T2a, and T2b), are
described below:

Data=L U Q,
“L” = training (known labeled “function” mutants)
set,

“Q” = test (unknown “function” mutants) set,

Inductive binary (-1, +1) classifiers (C) = {Multi —
Layer Network (MLN) trained using Back Propaga-
tion (BP) or Random Forest (RF)}.

4.1.1. Strategy T1 [32]—Omne Shot Transduction. Data=LUQ.

Loop:
(i) Train C on L.

(ii) Make predictions on all Q using C such that for each
unlabeled q (of Q) label (q) = h (C (q)) using the tan-
sigmoid function h whose range is (-1, 1).

(iii) L = L U labeled (Q).
(iv) Iterate until convergence or some other “stopping
criteria”

Stopping criteria, for example, maximum number of
iterations reached, or no changes in predicted labels have
been made, from one iteration to the next one.

4.1.2. Strategy T2a—Incremental Transduction Using Annota-
tion with Shrinking Test Set. Data=L U Q

Loop:
(i) Train C on L.

(ii) Make predictions on all Q using C such that for each
unlabeled q (of Q) label (q) = h (C (q)) using the tan-
sigmoid function h whose range is (-1, 1).

(iii) Extract reliable labeled examples from Q as Q1. Q1
are examples whose continuous labels are greater in
absolute value than 0.8.

(iv) L = L U QI. The training set is augmented by Q1.
(v) Q=Q — QL. The test set shrinks.

(vi) Iterate until no “reliable” labels are found or test set
(Q) becomes empty.

4.1.3. Strategy T2b—Incremental Transduction Using Annota-
tion with Size of Test Set Fixed.

Data=LUQUP,
Size of test set Q is empirically set to 80 examples,

“P” = test pool—a secondary and larger test set
separate from “Q”.



Loop:

(i) Train C on L.

(ii) Make predictions on all Q using C such that for each
unlabeled q (of Q) label (q) =h (C (q)) using the tan-
sigmoid function h whose range is (-1, 1).

(iii) Extract reliable labeled examples from Q as Q1. Q1
are examples whose continuous labels are greater in
absolute value than 0.8.

(iv) L = L U Q1. The training set is augmented by Q1.
(v) Q=Q — Ql. The test set shrinks.

(vi) Q = Q U P1. The test set is replenished by extracting
some unlabeled examples from P as P1, such that
|Q| = 80 stays constant.

(vii) Iterate until no “reliable” labels are found or test set
(Q) and/or test pool (P) become empty.

5. Experimental Design

The mutations under consideration for the purpose of
enzyme mutant activity predictions are those of HIV-1
protease, bacteriophage T4 lysozyme, and Lac repressor.
Data comes from the RCSB Protein Data Bank (PDB)
(http://www.pdb.org), which is an international repository
for processing and distribution of 3D macromolecular
structure data, and is primarily determined experimentally.
The Delaunay tessellations of HIV-1 protease, bacteriophage
T4 lysozyme, and Lac repressor are based on the structural
coordinates obtained from PDB accession files 3pHV, 312M,
and 1EFA, respectively. The data is fed into the learning
algorithms (see Section 4) in the form of residue profile
vectors (see Section 2.3) courtesy of Masso and Vaisman
[5, 26]. Prediction concerns activity, which is related to some
particular function, and is characterized using binary labels.
If a protein (wt or mutant) is carrying out some particular
function at an acceptable level, compared to some predefined
threshold, then the protein’s activity is considered “active”
(+1). If a protein, due to a mutation or otherwise, does
not perform the same particular function at an acceptable
level (with respect to the wt protein or otherwise) or ceases
to function at all, then the protein activity is considered
“Inactive” (—1) [4]. Using the protein hemoglobin again as
an example, its activity will be considered “active” if it is
able to successfully transport oxygen from the lungs to the
rest of the body (tissues) where it releases the oxygen for cell
use, and collects carbon dioxide to return to the lungs. The
hemoglobin’s activity would be considered “inactive” if it was
not able to perform this function or was not able to perform
its function at the expected level of efficiency, for example,
due to sickle-cell disease. For all the mutation examples in
our datasets, the “ground truth” protein activity in each case
has been experimentally determined in the lab and provides
the binary class labels used for training and validation. The
characteristics of the datasets are briefly described next.

HIV-1 Protease. It contains a single chain of 99 amino acid
residues. There are 1881 possible single point mutations
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(mutants) that can be engineered (19 (alternative mutations)
X 99 (sites) = 1881). There is experimental activity data
available for 536 mutants that are distributed among all 99
positions. For these 536 mutant HIV-1 protease enzymes,
the label for each one has been experimentally determined to
be either “active” (224 samples) or “inactive” (312 samples)
[5,17].

Bacteriophage T4 Lysozyme. It contains a single chain of 164
amino acid residues. There are 3116 possible single-point
mutations (mutants) that can be engineered (19 X 164 =
3116). There is experimental activity data available for 2015
mutants that are distributed between positions 2—-164, and
the dataset has 12—13 mutations at each of the positions. For
these 2015 mutants, bacteriophage T4 lysozyme enzymes, the
label for each one has been experimentally determined to be
either “active” (1724 samples) or “inactive” (291 samples)

[5].

Lac Repressor. It was tessellated from chain “B”, which
consists of 331 amino acid residues. There are 6289 possible
single-point mutations (mutants) that can be engineered (19
X 331 = 6289). There is experimental data available for 4041
mutants that are distributed among positions 2 and 329. The
dataset has 12-13 mutations at each of the positions. For
these 4041 mutant Lac repressor enzymes, the label for each
one has been experimentally determined to be either “active”
(2267 samples) or “inactive” (1774 samples) [13].

The protocols used for performance evaluation are as
follows. The experiments (both one-shot and incremental
learning) are carried out using 4-fold cross-validation when
using the HIV-1 dataset and 10-fold cross-validation when
using the T4 and LAC datasets. 10-fold cross-validation
was not performed on the HIV-1 dataset since the size of
this dataset is too small. An important experimental design
implementation is that during cross-validation the folds
are not randomly generated. Instead, a method of “smart
partitions” is employed for all the learning algorithms com-
pared. Towards that end, data is organized such that samples
representing a mutation at a given position in the primary
structure of the protein are evenly distributed (as much as
possible) between each of the folds. This ensures that during
cross-validations there would always be samples of mutations
at the same locations for both training and testing.

Two kinds of experimental designs are carried out.
The first set of experiments involves one-shot learning and
classification, and explores the classification accuracies of
five popular learning algorithms (AdaBoost, LogitBoost,
SVM, random forest, and decision tree) as well as the
standard transduction algorithm (Strategy T1). They are run
in standard way with no additions or modifications. The
second series of experiments involves the introduction of
our novel incremental transductive strategies (Strategy T2a
and T2b) where only “reliable” labeled samples augment the
original training sets. The majority of the experiments and
algorithms were written and ran using MATLAB [33], with
the remaining ones using WEKA [34]. Microsoft Excel was
used to aid in preprocessing the data. Other preprocessing
and data manipulation programs were written to aid in other
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miscellaneous tasks (such as to format the data to suit the
input style of the novel algorithms), and these were written
and run using MATLAB.

6. Experimental Results

All the experiments were run using the three datasets
described in the previous section, that is, HIV-1, T4, and
LAC. 4-fold and 10-fold cross-validation is employed using
smart (balanced) partitioning. The results reported are
based upon an average of 10 runs using four performance
evaluation indexes: average accuracy, standard deviation,
sensitivity, and specificity. Confusion (“contingency”) matri-
ces are derived for protein “binary” function (“activity”)
prediction for each experiment using different learning
algorithms. Using TP, TN, FP, and FN to indicate true
positive, true negative, false positive, and false negative rates,
respectively, the performance indexes are defined as follows.
Accuracy is defined as (TP + TN)/(TP + TN + FP + FN).
Sensitivity (the true positive rate), which is defined as TP/(TP
+ FN) is a measure of how well the positive class is predicted.
A test with high sensitivity has a low Type II error rate. While
a good and useful performance indicator, its sensitivity does
not describe how well predictions are made for the other
classes, in this case the negative class. Towards that end,
specificity (the true negative rate) is defined as TN/(TN +
FP). A test with high specificity has a low Type I error rate.

The first series of experiments explores the classification
accuracy of five popular learning algorithms, AdaBoost,
LogitBoost, SVM, RF (random forest), and DT (decision
tree), as well as the standard transduction algorithm (Strat-
egy T1 using neural networks or random forests as base
classifier; see Section 4.1). One can see from Table 1 that
one-shot random forest (RF) performs best. One can also
see that random forest (RF) as base classifier improves
the performance of one-shot transduction (T1) compared
to neural networks. These experiments implement a one-
shot training and cross-validation methodology and are
performed with the no-selectivity option, where all the test
data gets labeled and augments the training set. Table 1
reports the outcomes for “traditional” one-shot methods
for which balanced and randomized partitions yield similar
results, which are consonant with the results reported by
Masso and Vaisman [5, 13]. We note that the random forest
algorithm performs the best compared to the other classifiers
including the standard transductive algorithm [32].

The next series of experiments employs incremental
learning and validation methodology. As a consequence,
there are errors in annotation, which possibly propagate
during training. These experiments therefore assess how
learning is impacted by adding possibly mislabeled examples
to training data. Note that ground truth is always available
but only for evaluation purposes. Towards that end the sec-
ond series of experiments uses the transductive incremental
strategies T2a and T2b (see Section 4.1) using selectivity,
that is, only confidently labeled examples (but possibly
incorrectly labeled) augment the training set. Table 2 reports
on incremental learning using balanced partitions and shows
that the best results obtained using T2bRF are superior to

TABLE 1: One-shot learning.

Dataset Algorithm Avg. Acc. St.Dev. Sensitivity Specificity
AdaBoost 68.84 4.77 0.87 0.63
LogitBoost ~ 75.93 3.90 0.72 0.86

SVM 68.65 3.50 0.66 0.75

HIV-1 RF 79.28 1.96 0.88 0.76

DT 77.57 1.21 0.73 0.81

T1 NN 73.13 2.57 0.69 0.76

T1RF 74.64 3.24 0.65 0.74

AdaBoost 85.10 0.14 0.98 0.11
LogitBoost  85.65 0.31 0.97 0.20

SVM 86.88 0.24 0.99 0.17

T4 RF 87.12 0.44 0.97 0.30
DT 85.33 0.56 0.93 0.34

T1 NN 75.46 6.99 0.80 0.46

T1RF 85.02 7.44 0.94 0.35

AdaBoost 60.53 0.31 0.99 0.12
LogitBoost 71.88 0.58 0.91 0.48

SVM 72.15 0.16 0.88 0.52

LAC RF 80.80 0.37 0.86 0.75
DT 78.71 0.34 0.83 0.74

T1 NN 65.23 3.58 0.76 0.39

T1RF 77.73 3.64 0.78 0.77

Results of the AdaBoost, LogitBoost, SVM, random forest, decision tree, and
transduction T1 algorithms. Using one-shot learning, no selectivity, and 4-
fold cross-validation for the HIV-1 dataset and 10-fold cross-validation for
T4 and LAC datasets.

TaBLE 2: Incremental Transductive Learning.

Dataset Strategy Avg. Acc. St.Dev. Sensitivity  Specificity
T2aNN 75.53 2.70 0.71 0.76
HIV-1 T2bNN 78.05 2.50 0.75 0.81
T2aRF 83.46 2.62 0.78 0.82
T2bRF 86.88 2.55 0.76 0.83
T2aNN 82.69 4.11 0.89 0.50
T4 T2bNN 82.64 5.14 0.90 0.56
T2aRF 89.71 3.54 0.93 0.63
T2bRF 90.97 3.48 0.94 0.67
T2aNN 76.17 2.88 0.78 0.75
LAC T2bNN 82.51 2.93 0.80 0.75
T2aRF 86.54 2.71 0.86 0.80
T2bRF 90.84 2.87 0.86 0.80

Results of transductive learning algorithms T2a and T2b on HIV-1, T4, and
LAC using incremental transductive learning, and selectivity. (the number
of folds used for cross-validation is 4 for the HIV-1 dataset and 10 for T4
and LAC.)

those obtained under less stringent one-shot conditions (see
Table 1).

The incremental transductive approach with a neural
network (MLN) as the base classifier (Strategy T2aNN and



T2bNN in Table 2) performs better than one-shot trans-
ductive T1 (see Table 1). The motivation for using random
forests (RF) as a base classifier (Strategy T2aRF and T2bRF in
Table 2) comes from Table 1 where it was shown to perform
the best for all three datasets. The methodology behind
the results in Table2 (incremental transductive learning)
is more realistic and true to real-life circumstances than
one-shot learning. This methodology closely resembles the
situation with biological data where there is an abundance of
unlabeled data and limited amounts of labeled data, with the
latter slowly augmented by experimental results from the lab.
It is now apparent that incremental transduction learning
using selectivity yields better results than one-shot learning
(compare Table 2 against Table 1). In particular we note that
random forest was found to be the optimal base classifier
for incremental transduction (using random forest with
strategy T2b; See Strategy T2bRF in Table 2); their hybrid
enzyme mutant activity prediction method, T2bRE, yields
86.88% on HIV-1, 90.97% on T4, and 90.84% on LAC. This
compares favorably against an accuracy of 79.28% on HIV-1,
87.12% on T4, and 80.80% on LAC using standard methods
(see Table 1). The results obtained using T2bRF are also
significantly better than state-of-the-art competing methods
reported in bioinformatics [5, 13], whose performance is
80% or less using the same datasets from PDB. The results are
even more impressive when one considers that incremental
learning is more stringent than one-shot learning. Note
also that the ratio of “active” class to “inactive” class is
very skewed (most data belongs to active class) for T4
compared to HIV-1 and LAC, which is the reason for
better performance on T4 compared to LAC (see Tables 1
and 2). Tables 1 and 2 also show that there is a tradeoff
between sensitivity and specificity regarding HIV when using
one-shot and incremental learning. Regarding T4 and LAC
Tables 1 and 2 also show a significant improvement on
specificity from using incremental rather than one-shot
learning.

7. Conclusion

This paper expands on standard one-shot learning for
enzyme mutant activity prediction using incremental learn-
ing. The computational approach proposed is driven by
existing methods for protein sequence representation using
Delaunay tessellation and 4-body statistical potential. The
novelty of the paper comes from the use of transduction
strategies for incremental learning. The use of random forest
has been empirically found to perform best as base classifier
for both one-shot learning and incremental learning. The
novel enzyme mutant activity prediction method—T2bRF—
driven by incremental transduction using random forests
as base classifier, has been found empirically and cross-
validated to compare favorably against current state-of-the-
art contending methods.

Venues for future research include (a) access to multiple
protein and site mutations and their synergy, (b) alternative
representational methods where the effect of mutations is
fully reflected in updated Delaunay tessellations with optimal
feature selection available, and (c) investigating additional

Advances in Bioinformatics

functionalities, for example, protein stability (instead of
protein activity).
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