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Introduction

The ultimate goal of cancer research is to develop therapeu-
tic strategies that specifically target tumor cells with minimal 
collateral damage to healthy tissue. The discovery of common 
mutations that drive tumorigenesis has enabled the develop-
ment of drugs that produce dramatic clinical responses—at least 
in specific clinical settings—along with minimal side effects. 
Examples of this approach include the tyrosine kinase inhibi-
tor imatinib (Gleevec®), which targets the chronic myelogenous 
leukemia (CML)-specific kinase BCR-ABL,1 and PLX4032, 
which inhibits mutated BRAF in a subset of metastatic mela-
noma patients.2 Despite these successes, non-specific approaches 
to cancer such as chemo- and radiotherapy, which impart sub-
stantial toxic side effects, remain the standard of care for the vast 
majority of cancer patients.
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The ability of T cells to recognize a vast array of antigens 
enables them to destroy tumor cells while inflicting minimal 
collateral damage. Nevertheless, tumor antigens often are 
a form of self-antigen, and thus tumor immunity can be 
dampened by tolerance mechanisms that evolved to prevent 
autoimmunity. Since tolerance can be induced by steady-
state antigen-presenting cells that provide insufficient co-
stimulation, the exogenous administration of co-stimulatory 
agonists can favor the expansion and tumoricidal functions 
of tumor-specific T cells. Agonists of the co-stimulatory tumor 
necrosis factor receptor (TNFR) family members CD134 and 
CD137 exert antitumor activity in mice, and as monotherapies 
have exhibited encouraging results in clinical trials. This review 
focuses on how the dual administration of CD134 and CD137 
agonists synergistically boosts T-cell priming and elaborates 
a multi-pronged antitumor immune response, as well as how 
such dual co-stimulation might be translated into effective 
anticancer therapies.
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One of the hallmarks of cancer is genetic instability, resulting 
from chromosomal rearrangements and defects in DNA repair 
mechanisms that normally operate during DNA replication.3,4 
Genetic mutations can give rise to new antigenic determinants 
that are selectively expressed by tumor, but not by healthy, cells, 
the number of which likely increases with disease progression.5 
The random recombination of genes encoding T-cell receptor 
(TCR) chains endows the T-cell compartment of the adaptive 
immune system with a diverse repertoire of specificities. These 
can recognize short peptides derived from virtually any microbe 
when complexed with major histocompatibility (MHC) mol-
ecules expressed on the surface of infected cells or specialized 
antigen-presenting cells (APCs).6,7 This diversity also raises the 
potential for T cells to recognize tumor-specific peptides, which 
has fueled the development of therapeutic strategies to induce 
antitumor T-cell immunity.

Immunosuppressive Nature  
of the Tumor Microenvironment

Although the immune system (and T cells in particular) can rec-
ognize tumor antigens, the high prevalence of cancer indicates 
that tumors must activate immunosuppressive mechanisms that 
thwart naturally arising antitumor T-cell responses. CD4+ T cells 
classically function as “helpers” to facilitate the function of cyto-
toxic CD8+ T cells (CTLs), natural killer (NK) cells, B cells and 
macrophages.8–11 It thus seemed paradoxical when North and 
colleagues found that depleting CD4+ T cells from tumor-bear-
ing mice could promote the regression of advanced neoplastic 
lesions.12,13 It was subsequently found that these tumor-induced 
immunosuppressive T cells (termed regulatory T cells or Tregs) 
are defined by the constitutive expression of CD25, the α chain 
of the interleukin (IL)-2 receptor (which confers high affinity for 
IL-2),14 as well as the forkhead transcription factor FOXP3.15,16 
CD25+FOXP3+ Tregs can suppress autoreactive T cells and 
control the magnitude of pathogen-specific T-cell responses.17,18 
Tregs can be recruited into the tumor microenvironment, where 
their presence correlates with unfavorable prognosis, by factors 
such as the chemokine CCL22.19,20 Tregs appear to impede the 
immune control of tumor growth through multiple mechanisms. 
For instance, they can promote the expression of anti-inflamma-
tory cytokines within the tumor microenvironment and suppress 
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between the targets of tumor-specific, as opposed to pathogen-
specific, responses. Thus, pathogen-derived antigens are typi-
cally associated with PAMPs that potently activate DCs to prime 
cognate T cells, while tumor antigens are a form of self antigen, 
and thus are typically presented under steady-state conditions 
that are associated with the induction of tolerance. An excep-
tion to this rule are antigens that derive from oncogenic viruses 
such as the human papillomavirus45 and Epstein-Barr virus,46 
which promote cervical tumors and B-cell lymphomas, respec-
tively. Many tumor-associated antigens are non-mutated self 
antigens that are expressed on both tumors as well as healthy 
cells. Prototypical examples of such tumor differentiation anti-
gens are the melanocytic antigens tyrosinase,47,48 TRP-249,50 and 
Pmel-17/gp100.51,52 Vaccination strategies against these antigens 
can elicit CD8+ CTLs with the potential to destroy both mela-
noma cells as well as healthy melanocytes (i.e., resulting in auto-
immune vitiligo).53,54 Nevertheless, the quality and magnitude of 
CTL responses to tumor differentiation antigens can be limited 
by peripheral tolerance, as induced by the same antigens derived 
from healthy tissue.55–57 Taken together, T-cell tolerance mecha-
nisms can limit the magnitude and effectiveness of antitumor 
immunity directed toward tumor differentiation antigens. In this 
scenario, when tolerance is overcome, autoimmunity may be a 
side effect of tumor immunity.

Tumor differentiation antigens most often induce T-cell 
tolerance prior to the onset of tumorigenesis, because they are 
expressed on healthy tissues.58 Thus, it might seem reasonable 
that T cells would be less tolerant of tumor-specific antigens 
that derive from mutated self proteins that are not encoded in 
the genome of healthy cells. Nevertheless, peripheral T-cell tol-
erance to tumor-specific antigens occurs in both transplantable 
and autochthonous tumor models.59–62 Specifically, steady-state 
DCs can acquire tumor antigens and present them in the same 
tolerogenic manner as self antigens deriving from healthy tis-
sues.63,64 This said, tolerance does not always occur,65 and in 
some situations cognate T cells can develop tumoricidal effec-
tor functions.66–68 The ability of tumors to prime rather than 
tolerize cognate T cells may depend on whether they release 
inflammation-inducing endogenous danger-associated molecu-
lar patterns (DAMPs) such as heat shock proteins,69 uric acid,70 
or HMGB171 when they metastasize or invade across basement 
membranes.72 Tumors that prime cognate T cells typically engage 
immunosuppressive mechanisms to dampen the activity of infil-
trating tumor-specific effector T cells (see above). Additionally, 
tumors can undergo “immunoediting,” a process whereby some 
cells within a heterogeneous tumor mass are eliminated by effec-
tor T cells and innate immune cells while another cell popula-
tion that has downregulated cognate T-cell epitopes and ligands 
for innate immune cells expands to form a non-immunogenic 
tumor.73 Notably, tumor-specific T cells can mediate immunoed-
iting while simultaneously undergoing tolerance,74 which may 
help to explain the early paradoxical observation that human 
cancer patients often harbor clonally expanded populations of 
anergic tumor-specific T cells.75 Hence, the initial phase of the 
antitumor immune response appears to promote the outgrowth 
of non-immunogenic tumors.

the ability of tumor-infiltrating CD8+ T cells to mediate antitu-
mor effector functions.21,22

In addition to Tregs, there are several other immunosup-
pressive cell types that can localize within the tumor micro-
environment. For instance, tumor infiltrating myeloid-derived 
suppressor cells (MDSCs) can desensitize tumor-specific CD8+ 
CTLs to cognate antigens by inducing covalent modifications 
of their TCR through the release of reactive oxygen species and 
peroxynitrite.23 In addition, tumor-associated macrophages 
(TAMs) can facilitate tumor angiogenesis, invasiveness and 
metastasis.24 Tregs, MDSCs, TAMs and other myeloid-
derived cells function within an intricate, but not yet fully 
understood, immunosuppressive network within the tumor 
microenvironment.25

Tumor-Reactive T cells and Tolerance

To prevent autoimmunity, the bulk of developing T cells 
expressing self-reactive TCRs undergo negative selection in the 
thymus.26,27 A variety of peripheral tolerance mechanisms such 
as deletion,28 functional inactivation (i.e., anergy29) and suppres-
sion by Tregs17 control the activity of T cells recognizing self 
antigens that are not presented in the thymus. These periph-
eral tolerance mechanisms are not necessarily mutually exclu-
sive, and in fact are likely to be deeply interrelated. For instance, 
self-reactive T cells often become anergic prior to undergoing 
deletion30,31 and under certain conditions anergic T cells express 
regulatory functions.32

Dendritic cells (DCs) are a central player in programming 
peripheral T-cell tolerance. Paradoxically, these bone marrow-
derived APCs were originally defined by their potent ability to 
prime pathogen-specific T cells to develop effector and memory 
functions. Thus, in addition to their ability to efficiently acquire, 
process and present peptide epitopes from microbe-infected cells, 
DCs are induced by pathogen-associated molecular patterns 
(PAMPs) to express co-stimulatory ligands and cytokines that 
provide critical signals to enable antigen-stimulated naïve T cells 
to proliferate and develop effector functions.33–35 Co-stimulatory 
ligands principally belonging to the Ig superfamily such as CD80 
(B7.1) and CD86 (B7.2) bind the co-stimulatory receptor CD28 
on antigen-stimulated T cells to induce the initial phase of T-cell 
activation.36–38 DCs can also supply a second wave of co-stimu-
latory signals, mainly via members of the tumor necrosis factor 
receptor (TNFR) superfamily, which provide antigen-stimulated 
T cells with anti-apoptotic signals as well as with signals that pro-
gram effector function and the capacity to form memory cells.39,40 
Importantly, in steady-state conditions, DCs only express low 
levels of CD80 and CD86 and little-to-no levels of TNFR fam-
ily members or cytokines such as IL-12. Thus, when steady-state 
DCs acquire and present self-antigens, their low expression of 
co-stimulatory ligands and cytokines causes cognate self-reactive 
T cells to undergo an abortive proliferative response that cul-
minates in anergy, deletion or in the development of regulatory 
functions.41–44

Although the immune system can—at least theoretically—
respond to tumor antigens, there is a fundamental difference 
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expressed on T cells (Fig. 1D). An example is the TNFR family 
member CD134 (OX40), which is expressed on T cells following 
TCR stimulation83,84 and normally bound by CD252 (OX40L) 
on activated, but not steady-state, DCs.85 When naïve T cells 
are primed by cognate peptide-presenting activated DCs, the 
CD252-CD134 interaction initiates signals that program T-cell 
survival and effector differentiation.84,86–88 CD134 agonists thus 
enable T cells stimulated by steady-state DCs that lack CD252 to 
avoid tolerance and undergo expansion and effector differentia-
tion.89–94 Importantly, agonists to several TNFR co-stimulatory 
family members such as CD40,81,82 CD134,93,95 CD137,96 CD2797 
and GITR98 can elicit antitumor immunity in mice. Further, 
humanized agonists to CD134 and CD137 are being tested in 
clinical trials to treat human neoplasms.99,100

Co-stimulatory Agonists can be Applied  
in Synergistic Therapeutic Combinations

The TNFR superfamily contains at least 29 receptors (and 19 
ligands), several pairs of which play a role in T-cell co-stimulation: 
CD134-CD252, CD27-CD70, CD30-CD30L, CD137-4-1BBL, 

Co-stimulatory Agonists Program T Cells 
Encountering Non-Immunogenic Antigens to Expand 

and Develop Tumoricidal Effector Functions

Because tumor-reactive T cells can undergo tolerization when 
tumors elicit insufficient inflammation to induce co-stimulatory 
activity on DCs (Fig. 1A and B), agonistic monoclonal antibod-
ies to co-stimulatory ligands and receptors have been used to 
program tumor-reactive T cells to expand and acquire tumori-
cidal effector functions (Fig. 1C and D). For instance, CD40 is 
a TNFR family member expressed on DCs that—when bound 
by the its ligand (CD40L or CD154) expressed on activated 
CD4+ helper T cells—upregulates MHC molecules, co-stim-
ulatory ligands such as CD80 and CD86, as well as cytokines 
such as IL-12, and hence has the potential to effectively prime 
CD8+ CTLs.76–79 CD40 agonists thus can compensate for the 
absence of activated CD4+ helper T cells, and—similar to clas-
sical adjuvants (e.g., PAMPs that bind Toll-like receptors)—can 
induce DCs to express co-stimulatory ligands and release cyto-
kines enabling effective T-cell priming (Fig. 1C).80–82 A recipro-
cal approach is to employ agonists to co-stimulatory receptors 

Figure 1. Co-stimulatory agonists enable T cells responding to tolerogenic tumor antigens to undergo expansion and effector differentia-
tion. (A) Pathogen-associated molecular patterns (PAMPs) activate dendritic cells (DCs) presenting microbial peptides to express cytokines and 
co-stimulatory ligands that program T-cell expansion and effector differentiation. (B) In steady-state conditions, DCs acquire and present tumor anti-
gens, but the absence of PAMPs results in the sub-optimal expression of cytokines and co-stimulatory ligands, causing cognate tumor-specific T cells 
to undergo tolerization. (C) CD40 agonist can activate DCs presenting tumor antigens to express cytokines and co-stimulatory ligands that program 
T-cell expansion and effector differentiation. (D) Agonists to co-stimulatory receptors program T cells responding to tumor antigens presented by 
steady-state DCs to undergo expansion and effector differentiation. A potential advantage of the approach described in (D), as compared with that 
depicted in (C), is that potentially toxic cytokines produced by DCs such as IL-12 are likely to be elaborated in much lower amounts.
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response. A first prong of this program is a robust CD8+ CTL 
response.121,123–125 A second one stems from ability of CD137 alone 
to activate innate immune cells such as DCs and NK cells.110–114

A third, and unexpected, prong is the ability of dual co-stim-
ulation to program CD4+ T cells to differentiate into cytotoxic 
T

H
1 effectors that not only produce IFNγ, but also kill target 

cells presenting cognate MHC Class II-restricted peptides.126 
Cytotoxic functions are classically associated with CD8+ CTLs 
and NK cells,127,128 and although it was known that cultured 
CD4+ T cells can develop cytotoxic potential in vitro,129,130 it 
has only recently become clear that these cells can be induced 
in vivo in response to certain infections.131–133 Cytotoxic CD4+ 
T cells might be useful in targeting MHC Class II+ tumors and 
notably melanomas, which can express MHC Class II mol-
ecules134 but have a propensity to downregulate their Class I 
counterparts.135 Indeed, cytotoxic CD4+ T

H
1 cells can effectively 

target murine melanoma.136,137 Moreover, CD134 plus CD137 co-
stimulated CD4+ T cells exert antitumor activity against murine 
melanoma.126

Given that humanized CD134 and CD137 agonists are 
being tested in human cancer patients,99,100 it will be important 
to understand how CD134 plus CD137 co-stimulation induces 
cytotoxic CD4+ T

H
1 cells and fully explore their therapeutic 

potential. Consistent with the notion that CD4+ T cells are typi-
cally more responsive to CD134 co-stimulation,84,102–104 a CD134 
agonist, but not 4-1BB, is sufficient to program the cytotoxic 
CD4+ T

H
1 functional profile (i.e., the ability to express IFNγ and 

the apoptosis-inducing serine protease granzyme B, GzmB).126 
Nevertheless, the addition of CD137 co-stimulation maximizes 
the clonal expansion of cytotoxic CD4+ T

H
1 cells,126 an effect 

that might promote their therapeutic potential. Mechanistically, 
cytotoxic T

H
1 differentiation depends upon the cytokine IL-2 

and the T-box transcription factor Eomesodermin (Eomes).126 
Eomes was initially characterized as a CD8+ T cell-specific fac-
tor that drives the expression of GzmB, perforin and IFNγ,138,139 
indicating that CD134 plus CD137 co-stimulation programs a 
sort of “CD8-like” CD4+ T cells by inducing a transcription fac-
tor normally expressed by CD8+ T cells in a restricted fashion. 
An intriguing facet of this dual co-stimulation response is that 
while antigen-responding CD4+ T cells undergo cytotoxic T

H
1 

differentiation, antigen-non-responding (bystander) T cells are 
also induced to express GzmB.126 A common reason for the fail-
ure of T cell-based antitumor therapies is the outgrowth of anti-
gen-loss variant tumor cells that lack expression of the targeted 
epitopes.74,140–144 Given that dual co-stimulation-programmed 
GzmB+ bystander T cells have a diverse polyclonal TCR reper-
toire, they may have the potential to target such antigen-loss vari-
ant tumor cells.

A fourth prong derives from the fact that CD134 plus CD137 
co-stimulation can program effector T cells to elaborate TCR-
independent effector functions. Recently, it has been shown that 
dual-co-stimulated CD8+ T cells produce prodigious amounts of 
IFNγ when exposed to IL-33 in the context of IL-12.145 Unlike 
IL-12, active IL-33 is typically released by necrotic cells to alert 
the immune system of danger.146,147 This new finding has yet to 
be exploited in tumor models. Thus, the potential of IL-33 plus 

LIGHT-HVEM, CD40-CD40L and GITR-GITRL.39,40,101 This 
plethora of co-stimulatory mechanisms likely reflects the fact that 
individual pathways program unique facets of T-cell functions. 
For instance, although CD134 and CD137 are both expressed on 
activated CD4+ and CD8+ T cells, CD134 co-stimulation gener-
ally has a greater impact on CD4+ T-cell function84,102–104 while 
CD137 more significantly impacts CD8+ T cells.104–109 Further, 
innate immune cell types such as DCs and NK cells are more 
responsive to CD137 than CD134.110–114 The particular combina-
tion of co-stimulatory signals engaged during an immune response 
is therefore likely to influence the overall functional outcome of 
T-cell priming. Given that the most effective antitumor immune 
responses may involve the recruitment of multiple immune effec-
tor arms, the administration of co-stimulatory agonists in combi-
nation may elicit the most potent therapeutic responses.

The potential to elicit synergistic effects by multiple co-stim-
ulatory pathways may depend (at least in part) on the ability of 
each pathway to trigger unique downstream signaling events. 
Thus, although all TNFR family members initiate cytoplasmic 
signaling through one or more of the six TNFR-associated fac-
tors (TRAF1-6) that interact with their intracellular domains 
and engage several downstream signal transduction pathways 
such as ERK-, JNK-, p38- and NFκB-dependent pathways, the 
distinct TNFR family members engage different combinations 
of TRAFs.40,100,101,115 Furthermore, TNFR family members dif-
fer in their expression patterns. For instance, CD40 is princi-
pally expressed on APCs,116–118 CD134 is transiently expressed 
on TCR-stimulated conventional T cells83,84 but constitutively 
present on the surface of FOXP3+CD25+ Tregs,119 while CD137 
can be expressed on T cells, NK cells, DCs and other innate 
cells.110,111,113 Thus, the potential for individual TNFR agonists 
to exert distinct effects in shaping T-cell responsiveness may be 
determined by a combined effect of triggering unique combina-
tions of intracellular signaling pathways in distinct cell subsets.

One example of an effective combination therapy involves 
the co-administration of CD40, CD137 and DR5 (apoptosis-
inducing receptor for TNF-related apoptosis-inducing ligand, 
TRAIL) agonists, eliciting a CD8+ T cell-dependent eradication 
of pre-established tumors in mice.120 In analyzing the potential 
of various combinations of CD40, CD134 and CD137 agonists 
to program CD8+ T cell responsiveness, multiple mouse stud-
ies have revealed that the combination of CD134 plus CD137 
agonists was particularly effective in boosting CD8+ T-cell 
expansion, effector function and antitumor immunity.121–124 The 
fact that the effects of CD134 plus CD137 co-stimulation were 
not simply additive was demonstrated both by their synergistic 
effect in boosting CD8+ T-cell clonal expansion as well as by the 
necessity for CD137 co-stimulation to enable CD134 agonist to 
program CD8+ T cells to differentiate into interferon γ (IFNγ) 
superproducers.125

CD134 plus CD137 Co-Stimulation Programs  
a Multi-Pronged Antitumor Immune Response

A major advantage of CD134 plus CD137 dual co-stimulation 
therapy is its potential to elicit a multi-pronged antitumor 
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bulk of our understanding of how these co-stimulatory path-
ways stimulate immunity derive from mouse models. Although 
it is known that CD134 and CD137 can co-stimulate human 
T cells160,161 and results from clinical trials so far support the anti-
neoplastic potential of individual humanized agonists,99,100 it will 
be critical to gain deeper insight into how dual co-stimulation 
impacts human immune responses. Preliminary studies dem-
onstrating that CD134 plus CD137 co-stimulation boosts the 
priming of human T cells in vitro beyond the effects of either 
co-stimulator alone162 support a potential of dual co-stimulation 
therapy to elicit therapeutic responses in cancer patients.

It will also be important to further dissect how CD134 and 
CD137 mechanistically synergize to program robust effector 
T-cell responses. For instance, CD137 co-stimulation (occurring 
on either CD8+ T cells or innate immune cells) enables CD134 
agonist to elicit supereffector CD8+ T cells that express high levels 
of both IFNγ and TNF.125 However, it is not clear how CD137 
engages the CD134 pathway. In addition, CD134, but not CD137, 
induces robust IFNγ and GzmB expression in CD4+ T cells, 
while the addition of CD137 co-stimulation maximizes the clonal 
expansion of cytotoxic CD4+ T

H
1 cells.126 Given the overlap in 

the intracellular signaling pathways initiated by the these two 
TNFR family members (both involving TRAFs), it is surprising 
that they play distinct (rather than simply additive) roles in pro-
gramming both CD4+ and CD8+ T-cell responses. One possibility 
is that subtle differences in the respective downstream signaling 
pathways confer distinct effects in programming T-cell respon-
siveness. Also, critical signaling events might occur on different 
cells. Specifically, the mostly T cell-restricted expression pattern of 
CD13483,84 suggest that CD134 co-stimulation presumably needs 
to occur on antigen-stimulated T cells. In contrast, numerous 
innate cell types express CD137110,111,113 and CD137 co-stimula-
tion in innate cells can impact specific T-cell responses.125 Thus, 
the synergistic effect of CD134 and CD137 co-stimulation may 
occur through both cell-extrinsic and cell-intrinsic mechanisms.

Advanced cancer is inherently difficult to treat in part due 
to its high degree of genetic instability. This can lead to the 
outgrowth of tumor clones that are resistant not only to a par-
ticular immunotherapy, for instance owing to variants that have 
downregulated MHC Class I molecules or specific CTL epi-
topes,74,140–144 but also to non-immunological therapies such as 
oncoprotein-targeted small molecules like imatinib163 and BRAF 
inhibitor.164–166 In some cases, it has been possible to control 
chemoresistant tumors using drug combinations that differen-
tially target the same oncogenic pathway (e.g., using dasatinib to 
treat imatinib-resistant tumors163). As discussed above, dual co-
stimulation therapy may be effective in limiting the outgrowth 
of antigen-loss variants, given its potential to engage multiple 
tumoricidal immune effector arms. Nevertheless, dual co-stimu-
lation might become more effective if combined with antagonists 
to immune checkpoint molecules such as CTLA-4 and PD-1, 
which themselves possess therapeutic potential151–155,167 but elicit 
more potent therapeutic responses when combined with immune 
stimulators.168–171 Another potential area to exploit is the use of 
alarmins (e.g., IL-33) or cytokines that dual-co-stimulated effec-
tor T cells have become able to respond to.145

IL-12 administered directly into tumors to trigger dual-co-stim-
ulated CD8+ effector T cells to secrete IFNγ may bypass the con-
sistent problem of MHC downregulation by malignant cells,135 
which theoretically precludes the TCR-triggered elaboration 
of effector functions. This concept provides a novel approach 
that may avoid toxic side effects associated with systemic high 
dose IL-12.148 Thus, dual co-stimulation may lower the overall 
threshold for effector cell activation by programming both TCR-
dependent and -independent effector functions.

Potential Therapeutic Advantages  
and Disadvantages of Dual Co-Stimulation Therapy

Like any experimental therapy, CD134 plus CD137 co-stim-
ulation has both potential advantages and disadvantages. As 
described above, the strong therapeutic potential of this approach 
stems from a multi-pronged immune response that involves cells 
from the innate immune system, antigen-specific CD8+ CTLs, 
cytotoxic T

H
1 CD4+ cells, and bystander CTLs. This broad 

attack that engages both innate and adaptive immune compo-
nents should help to minimize outgrowth of tumors resistant to 
individual (and even multiple) immune effector arms.

A common toxicity associated with T cell-based cancer thera-
pies that target tumor differentiation antigens is autoimmune 
reactions directed against the healthy tissues from which the 
tumors develop.53,54,149,150 Notably, an antagonist to the T-cell 
immune checkpoint protein CTLA-4 (ipilimumab) that has 
recently received FDA approval for the treatment of advanced 
melanoma patients can elicit autoimmune side effects.151–155 
Co-stimulatory modulators can also elicit antigen-unrelated 
immune toxicities. Thus, in a clinical trial testing the tolerability 
of a CD28 superagonist (that was expected to only activate Tregs) 
six out of six healthy volunteers experienced multiorgan failure in 
association with a storm of pro-inflammatory cytokines.156

Thus far, in a Phase I clinical trial, CD134 agonist mono-
therapy has not produced any toxicities99 while in Phase II trials 
CD137 monotherapy has exhibited both clinical efficacy as well 
as some degrees of liver toxicity.157 It has previously been shown 
that the careful titration of CD134 and CD137 agonists in mice 
significantly lowers the effective dose required to achieve opti-
mal CD8+ T-cell responses.125 This approach may thus preserve 
beneficial antitumor activity while limiting adverse side effects. 
The use of lower doses of agonistic antibodies might also limit 
the development of human anti-chimeric antibodies (HACA),158 
hence allowing for multiple dosing. This strategy seems less fea-
sible with single co-stimulators,159 and thus represents a potential 
in-built clinical advantage of dual co-stimulation-based thera-
peutic approaches over monotherapies.

Translating Dual Co-Stimulation  
into Effective Anticancer Therapies

The successful translation of CD134 plus CD137 co-stimulation 
into an effective therapy for human cancer will be facilitated by 
efforts in several areas. First, an increased understanding of how 
such agonists regulate human immune responses is required. The 
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tumors as well as by priming tumori-
cidal CD4+ effector T cells180,181 suggests 
that it may be worthwhile to examine 
the therapeutic efficacy of combining 
CD134 plus CD137 co-stimulation with 
chemotherapy.

Prostate cancer, the most common 
malignancy in American men,182 is an 
attractive target for T cell-based therapies 
in part because potential autoimmune 
side effects directed against healthy pros-
tatic tissue should be tolerable, given the 
non-vital nature of the prostate gland. 
Further, T cell-based therapies might 
be particularly effective when given in 
conjunction with the standard of care 
treatment for advanced prostate can-
cer (Fig. 2). Thus androgen ablation/
deprivation is used for advanced disease, 
which cannot be treated by surgery or 
radiation.183 Although androgen ablation 
is typically effective in initially reducing 
tumor burden, because most prostate 
tumor cells depend upon androgens to 
grow and survive, disease inevitably recurs 
due to the outgrowth of tumor clones in 
which the androgen receptor signaling 
axis functions even in the absence of nor-
mal androgen levels or in the presence of 
anti-androgens.184,185 The development 
of autochthonous prostate tumors in 
mice induces T-cell tolerance to prostate-
specific antigens, but—importantly—
androgen ablation diminishes this effect, 
apparently by reducing tumor mass and 

hence the quantity of tumor antigens available for presentation 
by steady-state tolerogenic DCs.64,186 Clinical trials are currently 
testing the idea that T cell-based prostate cancer therapies may be 
most effective when administered soon after androgen ablation.187 
Androgen ablation may improve the clinical outcome of immune 
therapy (at least in part) by reducing the number of tumor cells 
to be eliminated by the immune system. Additionally, androgen 
ablation reverses age-related thymic atrophy,188 and is therefore 
likely to increase the number of newly generated naïve prostate-
specific T cells available for priming. Furthermore, CD134 ago-
nists can reverse pre-existing T-cell anergy,189,190 and thus dual 
co-stimulation may also be able to engage previously tolerized 
prostate-specific T cells.

Concluding Remarks

As discussed above, translating dual co-stimulation into an 
effective anticancer therapy will require the resolution of several 
outstanding questions: (1) how CD134 and CD137 synergize at 
the genetic and biochemical level to program TCR-dependent 
effector functions beyond those elicited by single co-stimulators; 

Combining dual co-stimulation with standard therapies might 
produce the most beneficial clinical responses, as the genetic alter-
ations conferring resistance to these different treatment modali-
ties are very unlikely to overlap. Support for this idea come from 
studies in which tumor vaccines elicited more durable therapeutic 
responses against lymphoma when given following bone marrow 
transplantation,172 and against solid tumors when given following 
the administration of chemotherapeutic drugs.173,174 Importantly, 
besides establishing states of minimal residual disease (and 
hence minimize the tumor burden for the immune response to 
eliminate), these standard of care modalities may also promote 
antitumor immune responses.172,174 Anti-lymphoma vaccines 
administered following bone marrow transplantation may elicit 
stronger antitumor T-cell responses due to lymphopenia result-
ing from the pre-conditioning regimen.175,176 Chemotherapeutic 
drugs may augment antitumor immunity by eliciting the produc-
tion of Type I interferons177 or by inducing the release of DAMPs 
from dying tumor cells, which facilitate tumor antigen uptake by 
DCs and their activation.71,178,179 The fact that a CD134 agonist 
and the chemotherapeutic drug cyclophosphamide synergize in 
controlling melanoma growth by inducing Treg apoptosis within 

Figure 2. Dual co-stimulation administered following androgen ablation may be an effective 
combination therapy to treat prostate cancer. Top, prostate tumor antigens presented by steady-
state dendritic cells (DCs) in the draining lymph node program prostate-specific T cells to undergo 
tolerization. Bottom, androgen ablation induces a state of minimal residual disease by causing the 
majority of tumor cells to undergo cell death. Dual co-stimulation therapy may program prostate-
specific T cells to expand, acquire effector functions, and eliminate the residual tumor. Since 
androgen ablation also induces the regeneration of the aged thymus, these prostate-specific T cells 
may be naïve recent thymic emigrants (green). Dual co-stimulation may also engage previously 
tolerized prostate-specific T cells (gray) since CD134 agonists can reverse pre-existing T cell anergy.
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of this synergism will allow for the rationale design of small mol-
ecules that operate similarly to humanized reagents and poten-
tially spawn a more personalized approach to cancer treatment. 
In sum, many co-stimulatory pathways are known, but finding 
the right combination of co-stimulation or cytokines for selected 
clinical circumstances may be the holy grail for the efficient treat-
ment against different forms of cancer that strike humans.
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(2) whether dual co-stimulation-programmed TCR-independent 
effector functions (e.g., the release of IL-33) can be exploited for 
therapeutic use; and (3) whether potential synergies between dual 
co-stimulation and other immune modulators (e.g., CTLA-4 
antagonist) as well as non-immune-based therapeutic modalities 
may results in superior antineoplastic effects.

It is commonly known that “two heads are better than one” 
and we propose that dual co-stimulation is better than mono co-
stimulation. The capacity to administer lower doses of agonists 
while achieving greater clinical benefit is a therapeutic goal that 
can be achieved by triggering specific combinations of co-stimu-
latory pathways. As not all co-stimulatory pathways fit into this 
category, a goal for the field is to uncover why some agonistic 
combinations work better than others. Understanding the basis 
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