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A B S T R A C T   

The global commitment toward carbon neutrality and net zero emissions has substantially pressed 
the needs for all countries to accelerate the adoption of the circular economy paradigm. Tracking 
the national progress in terms of circular economy performance would provide valuable insights 
that could aid the effective design of improvement strategies toward sustainability. The current 
research proposes the combination of super-efficiency dual Data Envelopment Analysis and 
Malmquist productivity index to provide a full ranking and measure productivity changes in 
terms of circular economy of 27 European countries. The assessment involved six circular 
economy indicators encompassing waste generation per capita, waste intensity of the economy, 
recycling rate of waste in both overall and specific types of waste, i.e., packaging waste and 
biowaste, and circular material use rate. Our study indicates about one-half of the European 
countries were efficient in terms of circularity in 2018, where Netherlands, Germany, Austria, and 
Belgium were the front runner. The proposed approach suggests the European countries enhance 
their overall circular economy performance by prioritizing improvements strategies through 
promoting the recycling of biowaste and the circular material use rate. The MPI results over 
2012–2018 indicate that Luxembourg exhibited the highest circularity advancement by 6%. 
Overall, the European countries have slightly enhanced their progression towards circular 
economy around 0.2% improvement. This suggests the European countries strengthen their policy 
and regulatory frameworks in support of the transition towards circular economy and encourage 
progressive movements in such a collaborative manner with the relevant stakeholders to build the 
momentum for change.   

1. Introduction 

The exponential growth of world population in contrast with the scarcity of non-renewable resources has led to a critical imbalance 
between production and consumption. Natural resources have been extensively exploited while tremendous amounts of waste have 
also been generated. Global waste generated annually has significantly increased from 635 million tonnes in 1965 to 2 billion tonnes in 
2015 and is expected to reach at 3.5 billion tonnes by 2050 [1]. This gigantic amount of waste has caused detrimental environmental 
burdens to ecosystems, e.g., greenhouse gas emissions, air pollution, and plastic accumulation in water reservoirs. In light of this, there 
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is an urgent need to develop methods or strategies that could foster active environmental and social responsibility along with the 
progressive development of economic perspective, which could finally lead to sustainability. 

The “Circular Economy” paradigm has emerged as a potential and effective solution inaugurating the transition towards sus
tainable development. The concept has been proposed as a paradigm shift aiming at retaining the materials in the circularity of 
extraction, manufacturing, utilization, recycling, and reusing processes as long as possible [2]. This implies the implementation of 
closed-loop systems that create the unceasingly recycling process to minimize the resulting waste, while diminishing the exploitation 
of primary resources and utilizing the secondary raw materials instead [3]. This concept has received much attention among public, 
business sector, government, and especially in academic where recent extensive research has been explored [4,5]. The circular 
economy (CE) concept has considerable benefits that could promote economic gains while relieving environmental pressure; it, 
therefore, has been successfully implemented in various scales from organizational level through country or regional level. 

The CE concept has been widely applied for the improvements in production/distribution as well as consumption section, which 
operate at three different spatial levels, i.e., micro level (e.g., companies, products, customers), meso level (e.g., industrial symbiosis) 
and macro level (e.g., city, region, country) [6]. Tracking the progress on how successful the CE paradigm has been implemented at the 
macro or national level necessarily requires a set of performance measures that thoroughly reflect their “circularity’s evolution”. There 
have been various national and intergovernmental initiatives attempting to measure and monitor the advancement of CE imple
mentation [7–10]; nevertheless, no common measuring scheme arises [11–13]. This research, therefore, aims to utilize official CE 
indicators proposed by the European Commission, which are publicly available on the Eurostat website [14]. Our analysis particularly 
draws attention to the indicators that directly capture diverse aspects of materials circularity in the economy, including those relevant 
to raw materials and wastes, but excluding those measuring indirect effects regarding environmental and social aspects. We have 
included the most common CE indicators presented in the previous literature as summarized in Table 1, i.e., generation of municipal 
waste per capita, recycling rate of municipal waste and circular material uses rate. The assessment also aims to measure the perfor
mance regarding the management of specific wastes; therefore, the recycling rate of packaging waste and biowaste were also included. 
Lastly, the indicator of the generation of waste excluding major mineral wastes per GDP was incorporated to capture how the countries 
gain more economic growth while at the same time generating less waste [15]. 

The assessment of circularity performance at the national level often involves various indicators covering the key areas of circu
larity. Performing this task is, in practice, not straightforward due to the fact that it is rare to find such a single country performing well 
across the full range of indicators, as inherent trade-offs naturally arise. One of the potential tools that can consider multiple criteria 
simultaneously and gives in turn the quantitative score representing the performance of each assessed entity is called a multi-criteria 
decision-making (MCDM) tool. The use of MCDM tools for the efficiency assessment considering multiple circularity indicators has 
been prevalent among researchers as systematically reviewed by dos Santos Gonçalves and Campos (2022) [16] and Sassanelli et al. 
(2019) . However, most of the traditional MCDM techniques are derived from weighted sum basis that the decision-makers must 
subjectively define the weights expressing the relative importance of each criterion. This situation would be problematic and 

Table 1 
Comparison of DEA models along with the CE indicators and countries assessed of the previous studies and current study.  

Publications DEA model Inputs Outputs Countries 

Halkos and Petrou 
(2019) 

DEA VRS CRS model - Labor force - GDP 28 European 
Countries - Investment - NOx emissions 

- Population density - SOx emissions 
- Waste - GHG emissions 

Giannakitsidou et al. 
(2020) 

DEA with weight restriction - MSW generated - Recycling rate of MSW 26 European 
Countries - Basic human needs - Circular material use rate 

- Foundations of wellbeing opportunity  
Huang and Hu (2021) Cooperative Game Network 

DEA 
- Labor force - GDP per capita 28 European 

Countries - Capital - Volume of recycled solid 
waste 

- Energy consumption - Volume of backfill 
- Total wastes generated - Energy recovery 

Lacko et al. (2021) DEA VRS CRS model - Waste generated per capita - Recycling rate of MSW Visegrád Group 
countries - Gross capital formation - Circular material use rate 

Temerbulatova et al. 
(2021) 

DEA VRS CRS model - Generation of municipal waste per capita - Recycling rate of 
municipal waste 

27 European 
Countries 

- Water exploitation index - Circular material uses 
rate 

- Final energy consumption  
- Social Progress Index  

Current study DEA Super-efficiency dual VRS 
with MPI 

- Generation of municipal waste per capita - Recycling rate of 
municipal waste 

27 European 
Countries 

- Generation of waste excluding major 
mineral wastes per GDP 

- Recycling rate of 
packaging waste  
- Recycling of biowaste per 
capita  
- Circular material uses 
rate  
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controversial among different decision-makers since they might come up with different sets of weights which finally lead to the 
different analysis results. 

Among the available MCDM tools, Data Envelopment Analysis (DEA) is a useful and distinct linear programming technique that 
offers an un-biased approach to quantify the efficiency of entities according to multiple criteria. In essence, DEA can avoid the 
subjectivity in the determination of weights attached to each indicator by optimizing them such that the assessed entity can achieve its 
greatest possible score as compared to the others. With its non-parametric nature, DEA does not require any assumptions on the 
production function as often the case in parametric techniques. In contrast, DEA creates the best-practice frontier or “Pareto frontier” 
and uses it as a benchmark for measuring the efficiency scores of the entities. The most fundamental model of DEA is called a CCR 
model [17]. A BCC or a dual model [18] is another DEA model that offers additional benefits over the CCR model in that it can suggest 
useful insights into how the inefficient DMUs can be improved and calculate quantitative performance targets for each indicator being 
assessed. Both models have been utilized by several researchers to determine the CE performance at the national level [19–21]. 
However, none of these publications addressed the insightful interpretations of the dual model through the identification of im
provements for specific CE measures. 

Despite its considerable benefits when applying to multi-criteria assessment problems, the traditional DEA model still has a lim
itation in that it cannot distinguish the differences among the efficient entities since their efficiency scores are given the same as unity. 
To obtain the full ranking of the European countries with respect to the environmental and CE performance, DEA with weight re
striction model was proposed to impose common weights attached to each indicator [12]. However, this approach requires an 
articulation of preferential weights, thereby raising the question of common weights choice among different policy makers. Grey 
Relational Analysis is another technique proposed by the previous literature to construct the ranking of European countries with 
respect to CE performance [22]. Although this method can provide the full ranking of countries, it cannot suggest potential im
provements of each CE indicator for individual countries. This research, therefore, proposes the super-efficiency dual DEA model that 
not only preserves the distinguishing feature of the dual DEA (i.e., capable of identifying quantitative targets and prioritizing the areas 
of improvements for individual entities), but also can provide the full ranking of entities based on the super-efficiency concept. In 
essence, the super-efficiency model differentiates the score of the efficient entities according to how superiority of such an entity 
behaves against the Pareto fronts, thereby giving score larger than one. 

Furthermore, to investigate the dynamic development of CE performance, one potential tool is Malmquist Productivity Index (MPI), 
a time-series analysis technique that can measure productivity changes over time. MPI has several advantages over other time-series 
techniques such as Window analysis in that it can capture both technical efficiency (the efficiency of production processes) and 
technological changes (the adoption of new technologies). Moreover, its principle focuses on the production frontier representing the 
best performing units against which different units can be benchmarked. In light of this, MPI can be effectively facilitated by the super- 
efficiency dual DEA model to provide better discrimination of efficiency change among the efficient entities through the provision of 
distinguishable score given by the DEA. The integration of DEA and MPI has recently been employed to investigate countries’ per
formance in terms of eco-efficiency changes [23], as well as energy and environmental changes [24]. However, its application to 
capture changes in the national CE performance still has been scarce. 

This research, therefore, proposes to use the super-efficiency dual DEA model to benchmark and provide the full ranking of 
countries according to their circularity performance, and, for the ones found to be inefficient, identifying the indicators to be improved 
through the establishment of improvement targets that can be used to guide the transition efforts towards CE. The combination of the 
super-efficiency dual DEA model and MPI was explored to monitor the changes of national CE performance through time. The 
capability of the proposed approach was demonstrated through a circular economy assessment of 27 European countries according to 
six CE indicators, considering diverse perspectives of production and consumption, waste management, and circular materials aspects 
simultaneously. The rationale behind the selection of European countries as the case study is that they have adopted analogous rules, 
and regulations due to the legislation enforced by the European Union, thereby enabling their practices to be comparable. 

The contribution of this research is threefold. First, to the best of our knowledge, this is the first paper proposes the integration of 
the super-efficiency dual DEA model in combination with MPI to measure and monitor the progress towards the national CE. Second, in 
addition to providing the full ranking of countries based upon their circularity performance which are the primary focus of the existing 
literatures, this paper has put special emphasis on the potential interpretation of using super-efficiency dual DEA model to highlight 
the source of inefficiency and establish the quantitative targets of each CE perspective for individual countries. Third, the performance 
measures chosen in this study also comprehensively capture different perspectives of circularity, particularly in terms of the level of 
waste generation, the recycling rate of waste in both overall and specific types of waste, and the use of secondary raw materials. This 
could allow the policy makers to extensively examine each aspect of circularity and provide breakdown details for performance 
improvements that are useful for further policy development. Our ultimate goal with this research is to emphasize the contribution of 
DEA as an alternative data analytics tool that could extract beneficial insights to enable appropriate data-driven decisions towards 
sustainable development. 

The rest of the paper is constructed as follows. Section 2 describes the details of methods employed in this paper. Section 3 in
troduces the case study based on the CE assessment of European countries to express the capability of the proposed approach. In 
Section 4, the analysis results are put forward and discussed. Finally, the conclusions and key findings are drawn at the end of the 
paper. 

2. Methods 

This section provides detailed information regarding the relevant mathematical tools used in this study. 
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2.1. Fundamentals of DEA 

Data Envelopment Analysis is a linear programming-based technique to measure the relative efficiency of the entities, also known 
as decision-making units (DMUs), according to various inputs and outputs. It makes use of the non-dominated front principle to 
establish the best-practice frontier from the given data, which represents the relationship between inputs and outputs. This frontier is 
then used as a benchmark against which the efficiency score of other entities is measured. In this sense, DEA is deliberately utilized as 
an MCDM tool for performance benchmarking considering a wide range of performance measures simultaneously, which are further 
categorized as inputs or outputs. Here, the inputs and outputs may not truly represent the resources and outcomes as is normally the 
case relating to the production theory. The inputs and outputs, however, are referred to the “less-the-better” and the “more-the-better” 
type of performance measures, respectively [25]. 

The DEA efficiency is originally determined from the ratio of weighted-sum outputs over weighted-sum inputs. The mathematical 
algorithm is calculated for each DMU while attempting to maximize its efficiency such that the efficiency of the other DMUs is 
restricted by unity. This is the original definition of the most fundamental DEA model, so-called a primal problem or CCR model. This 
model is formulated based on the concept of CRS which means that the ratio of the change in outputs to the change in inputs is 
constantly proportionate. The dual problem is another DEA model that is equivalent to the primal one but offers additional benefits in 
that it can suggest useful insights on how the inefficient DMUs can be improved by benchmarking against the best-practice frontier. 
The efficiency score obtained by solving the dual model are in the range between 0 and 1 where the highest score as of 1 implies that 
such DMUs are deemed efficient, while those with the score less than 1 are regarded as inefficient. However, giving an identical score 
of 1 for all efficient DMUs is one major limitation of the traditional DEA model. 

2.2. Super-efficiency dual DEA model 

The super-efficiency dual DEA model has emerged as one of potential tools capable of overcoming the aforementioned limitation of 
the conventional dual model as it can further differentiate the most efficient DMUs above all. The super-efficiency model was firstly 
introduced by Banker and Gifford (1988) [26], and Andersen and Petersen (1993) [27], where the model excludes the DMU under 
evaluation from the reference set. In essence, the model measures how superior the assessed DMU is against the Pareto frontier 
constructed from the remaining DMUs. The super-efficiency dual DEA model, however, might experience infeasibility when the 
assumption of VRS is made. The current study, therefore, chose a two-stage super-efficiency dual DEA model from Lee et al. (2011) 
[28] which can handle the infeasibility issues in the original super-efficiency dual VRS DEA model where the corresponding math
ematical formulation is shown in Eq. (1) below. 

min
λj ,Sr

∑s

r=1
sr (1)  

subjected to :
∑n

j=1,j∕=o
λjyrj + sryro ≥ yro ; ∀r  

∑n

j=1
λj = 1  

λj ≥ 0, sr ≥ 0, r = 1,…, s 

Eq. (1) is calculated for individual DMUo. Let a symbol ‘*’ refers to the optimal decision variable obtained from the model. The 
optimal solutions (s∗r ) obtained by solving Eq. (1) will be further used in Eq. (2) as follows. 

min
λj

θ̂o (2)  

subjected to :
∑n

j=1,j∕=o
λjxij ≤ θ̂oxio ; ∀i  

∑n

j=1,j∕=o
λjyrj + s∗r yro ≥ yro ;∀r  

∑n

j=1
λj = 1  

λj ≥ 0, i = 1,…,m, r = 1,…, s  

where n is the number of DMUs involving in the assessment; o is an index for the assessed DMU for o = 1, …, n; j is an index for other 
DMUs for j = 1, …, n; m is the number of inputs consumed by DMUj; xij is the amount of input i (for i = 1, ..., m) consumed by DMUj; s is 
the number of outputs produced by DMUj; and yrj is the amount of output r (for r = 1, …, s) produced by DMUj. The variables obtained 
by solving the optimization problem in Model (2) are as follows: θ̂o is the super-efficiency score of DMUo; and λj is a linear weight 
attached to every single DMUj (for j = 1, …, n). 

The final super-efficiency score (θSE
o ) can then be computed by Eq. (3) following the associated conditions. 
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θSE
o =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

r∈R

(
yro

yro − S∗
r yro

)

|R|
+θ̂

∗

o, if R ∕= ∅

θ̂
∗

o, if R = ∅

(3)  

where R = {r
⃒
⃒s∗r > 0} based on Model (1) and |R| is the cardinality of the set R. 

The super-efficiency score (θSE
o ) of the efficient DMUs is always greater than or equal to 1 so that they can be discriminated for 

further analysis. The super-efficiency dual model is mathematically analogous to the conventional dual model, but one important 
condition that has been imposed is that the DMU being assessed must be excluded from the reference set that establishes the frontier. 
For the inefficient DMUs, the super-efficiency dual model will give identical efficiency results as the dual model. However, the super- 
efficiency dual model will give distinctive super-efficiency scores to each of the efficient DMUs so that they can be further differen
tiated and ranked. 

In addition, the super-efficiency dual model can suggest the improvement pathway of every DMU deemed inefficient through its 
projection onto the Pareto frontier. Considering a single-input (X-axis) single-output (Y-axis) problem as shown in Fig. 1, the DMUs A, 
B, C and D are considered as efficient and form a Pareto frontier (A-B-C-D; the blue solid line). This production frontier has a piecewise 
linear characteristic imposed by the convexity constraints 

∑N
j=1λj = 1, which leads to a VRS assumption [29]. 

Each inefficient entity can be improved by moving towards the projected target on the frontier. The inefficient DMUs (E and F; the 
yellow circles) can become efficient by projecting a dashed line that is parallel to the X-axis onto the frontier. This approach of 
improving projection is called input-oriented which aims at minimizing inputs while retaining at least a certain level of outputs. The 
target point is contributed by the efficient DMUj and the extent to which DMUj have contributed is represented by their corresponding 
linear weights (λ∗j ) obtained by solving the model (2). For example, the improvement target of DMU E is essentially the projected point 
e which is formed by the linear combination between the efficient DMU B and C (e = λ∗B B + λ∗C C). The DMU B and C can be called an 
efficient peer group that is referenced by the DMU E. In a general term, the improvement target can be calculated by a summation of 
the multiplication between the raw data of the efficient DMUs and their corresponding linear weights obtained by solving the model. 
The improvement target for each input and output of any DMUo is expressed as shown in the following Eq. (4). 

T∗
io =

∑n

j=1
λ∗j xij (4)  

T∗
ro =

∑n

j=1
λ∗j yrj  

where T∗
io is a target of input i for DMUo; T∗

ro is a target of output r for DMUo; and λ∗j is a linear weight attached to DMUj. The symbol ‘*’ 
refers to the optimal decision variable obtained from the model. 

The improvement target for inputs and outputs is always lower and higher than the original value, respectively, in order to 
approach efficiency. After the target has been determined, the next step is to compute the improvement percentage (i.e., the amount 
required to become efficient) for each input and output of such an inefficient DMUo. The improvement percentage is calculated on the 
basis of the projecting distance from the inefficient DMUo onto the front as shown in Eq. (5). 

%IMP∗
i =

xio −
(∑n

j=1λ∗j xij

)

xio
× 100 (5) 

Fig. 1. An improvement of an inefficient DMU by input-oriented projection.  
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%IMP∗
r =

yro −
(∑n

j=1λ∗j yrj

)

yro
× 100  

where the improvement percentage (%IMP∗) for each indicator is computed by the difference between the attribute value and the 
target value divided by the attribute value. 

2.3. Malmquist productivity index 

The traditional DEA model can perform the efficiency assessment only at a particular period of time. Investigating the evolution of 
CE performance over time, therefore, requires other tools that can appropriately capture overall efficiency changes. One of the most 
favorable methods is Malmquist Productivity Index (MPI) which can be used to compare the changes in performance of the DMUs over 
time through the consideration of two essential changes, namely efficiency change (EC) and technological change (TC) [30]. The 
measure of MPIo of any DMUo from time period t to time period t+1 can be mathematically expressed as shown in Eq. (6). 

MPIo =

[
Dt

o

(
xt+1

o , yt+1
o

)

Dt
o

(
xt

o, yt
o

) ·
Dt+1

o

(
xt+1

o , yt+1
o

)

Dt+1
o

(
xt

o, yt
o

)

]1
2

(6)  

MPIo =ECo × TCo  

where 

ECo =
Dt+1

o

(
xt+1

o , yt+1
o

)

Dt
o

(
xt

o, yt
o

)

TCo =

[
Dt

o

(
xt

o, yt
o

)

Dt+1
o

(
xt

o, yt
o

) ·
Dt

o

(
xt+1

o , yt+1
o

)

Dt+1
o

(
xt+1

o , yt+1
o

)

]1
2 

From the above equation, Dt
o(xt

o, yt
o) and Dt+1

o (xt+1
o , yt+1

o ) denote the efficiency of DMUo at time period t and t+1, respectively. 
Dt+1

o (xt
o, yt

o) refers to the efficiency of DMUo at time period t+1 by using the production possibility set of time period t (i.e., the data of 
time period t) and Dt

o(xt+1
o , yt+1

o ) refers to the efficiency of DMUo at time period t by using the production possibility set of time period 
t+1 (i.e., the data of time period t+1) [31]. In other words, the calculation of MPI can be decomposed into two essential elements, 
which are efficiency change (EC) and technological change (TC) [32]. The efficiency change (EC) measures the change in the relative 
efficiency score between period t and t+1. The technological change (TC) represented by the geometric mean of the multiplication of 
two ratios measures the shift in technology, or in other words, the shift in best-practice frontier between period t and t+1. 

The interpretation of the MPI value can provide useful insights on how such a DMUo has evolved over time. If MPIo > 1, it means 
that the DMUo has improved their productivity. If MPIo < 1, it means that the productivity of the DMUo has worsened. If MPIo = 1, it 
means that there is no change in the productivity of the DMUo over a period of t to t+1. 

2.4. Data analytics approach for national circular economy assessment 

In this section, we introduce a data analytics approach based on the combined use of the super-efficiency dual DEA and MPI to 
measure the CE performance of the countries using following steps:  

1. Problem definition and classification of indicators: This step defines the essential DEA components, i.e., defining the countries whose 
performance are of interest as DMUs and specifying the assessment criteria as inputs or outputs. Specifically, the CE indicators to be 
minimized were considered as inputs and those to be maximized as outputs. Note that there is a suggested guideline for choosing 
the number of DMUs and the number of indicators following this relationship: n ≥ max{m × s,3 × (m + s)}, where n is the number 
of DMUs, m and s are the number of inputs and outputs, respectively [33]. However, this is just a recommendation to ensure proper 
discriminatory power of DEA.  

2. Data collection: This step requires the collection of the attribute values expressing individual aspects of circularity for each DMU 
from reliable sources. Calculating the super-efficiency score requires a matrix of the attribute values for all DMUs at a particular 
time period. However, measuring the MPI requires a time series of attribute values.  

3. Application of super-efficiency dual DEA: The use of super-efficiency dual DEA model aims at measuring the circularity performance 
of the countries at a particular period. This step comprises of sub-steps as follows: (1) solve the super-efficiency dual model by using 
a matrix of the attribute values as the model parameters, while solving the model for every country will give in turn its best-possible 
super-efficiency score (θSE

o from Eq. (3)) and the linear weights attached to the peer group (λ∗j from Model (2)). All these optimal 
variables will be used for further useful interpretation in the following steps, (2) perform efficiency assessment where the countries 
will be categorized into the efficient and inefficient countries, and then further discriminated according to their super-efficiency 
score, and (3) perform inefficiency assessment where each inefficient country will be provided with its improvement target, a 
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list of peer group members it uses as references, how much each member of the peer group contributes to the target and how much 
effort it needs to become efficient.  

4. Application of MPI: This step is to compute the MPI of each country to examine its progress in terms of CE over time. There are the 
sub-steps as follows: (1) set up the evaluated period of t and t+1 to calculate the MPI over that period, (2) calculate the super- 
efficiency score at the specific time period t and t+1 by benchmarking with the frontier derived from their own period, (3) 
calculate the super-efficiency score at the time period t by benchmarking with the frontier derived from period t+1 and calculate 
the super-efficiency score at the time period t+1 by benchmarking with the frontier derived from period t, (4) compute the terms of 
EC, TC and MPI for each DMU. 

3. Case studies – circular economy performance of European countries 

In this research, the assessment of CE performance of 27 European countries was divided into two small case studies. First, the 
capabilities of the super-efficiency dual DEA model in measuring the national circularity performance at a specific time was 
demonstrated by using the data in 2018 as an illustrative case. Second, the combined approach of the super-efficiency dual DEA model 
and MPI for monitoring the national circularity progress overtime was exemplified over the year of 2012–2018. The data source of this 
research relies on EUROSTAT database which provides high-quality and trustworthy European statistics available to the public [34]. 

3.1. Assessed European countries 

The countries involved in the assessment were carefully chosen on the basis of the availability and the completion of the attribute 
values over the entire period being evaluated. The list of the assessed European countries is presented in Table 2. 

3.2. Selected EUROSTAT circular economy indicators 

European commission has launched the monitoring framework on the circular economy through four thematic areas and ten in
dicators encompassing different elements of circularity as detailed in Eurostat (2020) [35]. This research aims to use the official 
circular economy indicators classified by the European Commission; however, the list of indicators entails only some variables that can 
be compared over the entire European countries and the entire period being evaluated. It is still encouraging to incorporate any other 
circular economy performance indicator in the DEA analysis as long as the data is available in order to provide insight into how to 
improve the inefficient countries so as to make them optimal in terms of circular economy. 

The following six sub-indicators considered in this research were from three thematic areas to comprehensively capture different 
perspectives of circularity as follows. 

3.2.1. Production and consumption 
Production and consumption sectors are significant drivers of the economy. The industrial and household sectors should take key 

roles in reducing the amount of waste generated through the production and consumption processes, which could ultimately promote 
self-sufficiency of raw materials. Due to data availability, two indicators from this area were used in this research as shown below.  

• Generation of municipal waste per capita (GMW) considers the amount of waste collected by municipality and treated by the waste 
management system, expressing in kg per capita. Municipal waste includes mainly household waste and also analogous waste from 
merchants, offices, and public institutions. Reduction in municipal waste generation by households is a good signal of successful 
implementation of waste prevention policies and effective shift in consumption patterns responded by the population.  

• Generation of waste excluding major mineral wastes per GDP unit (GWG) measures the waste intensity of the economy in kg per 
thousand euro. It considers the waste generated from both households and industrial sectors, including secondary waste. However, 
this indicator excludes major mineral wastes to improve comparability across countries since an inclusion of them could underrate 
some countries whose total generated waste is predominantly driven by the mineral wastes from construction/demolition and from 
mining activities. 

Table 2 
List of the European countries involved in this study.  

European Countries 

Belgium (BE) Ireland (IE) Cyprus (CY) Austria (AT) Finland (FI) 
Bulgaria (BG) Greece (EL) Latvia (LV) Poland (PL) Sweden (SE) 
Czechia (CZ) Spain (ES) Lithuania (LT) Portugal (PT) United Kingdom (UK) 
Denmark (DK) France (FR) Luxembourg (LU) Romania (RO)  
Germany (DE) Croatia (HR) Hungary (HU) Slovenia (SI)  
Estonia (EE) Italy (IT) Netherlands (NL) Slovakia (SK)   
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3.2.2. Waste management  

• The waste management area puts emphasis on the share of recycled waste that is recirculated back to the economic system. The 
indicators fall into this area consider both overall recycling rate and recycling rates for specific waste streams, e.g., packaging 
waste, biowaste, electronic waste, etc. Due to data availability, three indicators from this area were included. Recycling rate of 
municipal waste (RM) is the ratio of the amount of municipal waste recycled through material recycling, composting and anaerobic 
digestion processes over the total municipal waste generated, measured in percentage of total waste generated.  

• Recycling rate of packaging waste (RP) is the ratio of recycled packaging waste over the total generated packaging waste, expressing 
as percentage of total packaging waste generated. Packaging waste can be categorized according to types of materials used, i.e., 
paper and cardboard, plastic, wooden, metallic, and glass. 

• Recycling of biowaste (RB) is indirectly estimated as the ratio of municipal waste that is composted/methanized through com
posting/anaerobic digestion processes over the total population, expressing in kg per capita. Biowaste is particularly crucial as it 
often ends in mixed municipal waste and if being improperly treated such landfilled, it will create significant environmental im
pacts. This indicator is, therefore, useful for monitoring progress of the implementation of composting and anaerobic digestion that 
contributes towards circular economy of municipal wastes. 

3.2.3. Secondary raw materials 
Secondary raw materials are the reutilization of materials from recycling stages instead of/or in combination with the virgin raw 

materials. The use of secondary raw materials can reduce the material and energy use, reduce the environmental impacts during the 
production and consumption stages, as well as enhance the security of materials supply. Due to data availability, only a single indicator 
from this category was included.  

• Circular material uses rate (CMU) is expressed as the ratio of the circular use of materials over the overall material use, measured in 
percentage of total material use as shown in the following Eq. (7). 

CMU=
RCV − IMPw + EXPw

DMU + (RCV − IMPw + EXPw)
(7) 

The overall material use is defined as the summation of domestic material consumption (DMC) and the circular use of materials. 
DMC measures the total amount of materials used domestically by an economy obtained from material flow accounts [14]. The circular 
use of materials can be estimated as the amount of waste recycled by domestic recovery plants (RCV) minus imported waste bound for 
recovery (IMPw) plus exported waste bound for recovery abroad (EXPw). This indicator captures the proportion of materials that are 
recycled and returned to the economy, thereby minimizing the extraction of virgin materials, the total material use and resulting 
environment burdens. 

4. Results and discussion 

The investigation was conducted thoroughly by following the assessment procedure as aforementioned in Section 2.4 and the 
corresponding results are discussed next. 

Step1: According to the DEA terminology, all of the assessed countries were defined as DMUs and the selected circular economy 
indicators were clearly labelled into inputs and outputs on the basis of how they contribute to the circularity efficiency as presented in 
Table 3. Two CE indicators were regarded as inputs since they should be minimized to enhance the efficiency: generation of municipal 
waste per capita (− ), and generation of waste excluding major mineral wastes per GDP unit (− ). The other four indicators were 
specified as outputs since they should be maximized to promote efficiency: recycling rate of municipal waste (+), recycling rate of 
packaging waste (+), recycling of biowaste (+) and circular material uses rate (+). The number of DMUs and indicators also follow the 
aforementioned guideline thereby ensuring reliable assessment. 

Step2: The attribute values of 27 European countries over the year of 2012–2018 were retrieved from the EUROSTAT database [14]. 
Table 4 below shows the data in 2018 along with its descriptive statistics as an example and the data for the other periods were 
provided in the supplementary materials. A heatmap of Pearson correlation coefficients (r) of all indicators is depicted in Fig. 2. It 
shows that the correlation between the majority of indicators is very low to moderate with r ≤ |0.6|. There is a strong positive 
relationship between recycling rate of municipal waste (RM) and recycling of biowaste (RB) with r = 0.8. This is because these two 
indicators are partially contributed from the same element, that is the recycling amount of biowaste. However, they still distinctively 
capture different angles of circularity, while RM focuses on the overall recycling rate of municipal waste, RB specifically measures the 

Table 3 
CE indicators as inputs and outputs of DEA assessment.  

Inputs Outputs 

Generation of municipal waste per capita (GMW) Recycling rate of municipal waste (RM) 
Generation of waste excluding major mineral wastes per GDP (GWG) Recycling rate of packaging waste (RP)  

Recycling of biowaste (RB)  
Circular material uses rate (CMU)  
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recycling of biowaste per capita. Therefore, both indicators are included in the assessment as they will provide different insights for 
such an overall perspective as well as specific types of waste. 

Step3: The super-efficiency dual DEA model features 35 variables and 7 constraints. It was implemented in GAMS 36.2.0 and solved 
with CPLEX 20.1.0.1 on an Intel® Core™ i7-11370H processor operating at 3.30 GHz. It took around 0.01 CPU seconds to solve every 
instance to global optimality. 

Table 4 
DEA inputs and outputs data in terms of CE of European Countries in 2018.  

Country Inputs Outputs 

GM GWG RM RP RB CMU 

Belgium 409 (7) 99 (21) 54.4 (5) 85.3 (1) 82 (10) 19.9 (2) 
Bulgaria 407 (5) 473 (26) 31.5 (20) 60.4 (20) 7 (27) 2.5 (24) 
Czechia 494 (15) 86 (19) 32.2 (19) 69.6 (8) 50 (16) 8 (14) 
Denmark 814 (27) 37 (3) 49.9 (7) 70.1 (6) 143 (4) 8.1 (13) 
Germany 606 (24) 52 (8) 67.1 (1) 68.5 (10) 109 (6) 11.7 (7) 
Estonia 405 (4) 650 (27) 28 (22) 60.4 (21) 15 (23) 13.5 (6) 
Ireland 598 (23) 28 (2) 37.6 (14) 63.9 (16) 50 (17) 1.6 (26) 
Greece 515 (19) 85 (18) 20.1 (25) 63.6 (17) 26 (21) 3.3 (22) 
Spain 475 (13) 62 (11) 34.8 (17) 68.8 (9) 80 (11) 9.3 (12) 
France 535 (20) 46 (5) 45.1 (11) 65.7 (14) 108 (7) 19.5 (3) 
Croatia 432 (9) 77 (17) 25.3 (23) 58.4 (23) 12 (24) 5 (18) 
Italy 499 (16) 69 (13) 49.8 (8) 68.3 (11) 105 (8) 18.8 (4) 
Cyprus 646 (25) 39 (4) 16.5 (26) 70.2 (5) 11 (25) 2.8 (23) 
Latvia 407 (6) 58 (9) 25.2 (24) 55.8 (26) 25 (22) 4.7 (20) 
Lithuania 464 (12) 105 (23) 52.5 (6) 60.7 (19) 131 (5) 4.3 (21) 
Luxembourg 803 (26) 27 (1) 49 (9) 70.9 (3) 154 (2) 10.8 (9) 
Hungary 381 (3) 87 (20) 37.4 (15) 46.1 (27) 32 (19) 7 (15) 
Netherlands 511 (18) 63 (12) 55.9 (4) 77.4 (2) 147 (3) 28.9 (1) 
Austria 579 (22) 50 (7) 57.7 (3) 65.5 (15) 187 (1) 11.1 (8) 
Poland 329 (2) 168 (25) 34.3 (18) 58.7 (22) 27 (20) 9.8 (11) 
Portugal 507 (17) 72 (15) 29.1 (21) 57.6 (25) 86 (9) 2.2 (25) 
Romania 272 (1) 128 (24) 11.1 (27) 57.9 (24) 9 (26) 1.5 (27) 
Slovenia 486 (14) 73 (16) 58.9 (2) 68 (12) 79 (12) 10 (10) 
Slovakia 414 (8) 102 (22) 36.3 (16) 66.6 (13) 39 (18) 4.9 (19) 
Finland 551 (21) 70 (14) 42.3 (13) 70.2 (4) 72 (14) 5.9 (17) 
Sweden 434 (10) 49 (6) 45.8 (10) 70.1 (7) 69 (15) 6.6 (16) 
United Kingdom 463 (11) 58 (10) 44.1 (12) 62.1 (18) 78 (13) 16 (5) 
Minimum 272 27 11.1 46.1 7 1.5 
Maximum 814 650 67.1 85.3 187 28.9 
Average 498 108 39.7 65.0 72 9.2 
Standard Deviation 123 137 14.0 7.3 51 6.7 

Remark The number shown in the parenthesis is the ranking of countries in each indicator. 

Fig. 2. Pearson correlation coefficients of DEA inputs and outputs.  
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4.1. Efficiency assessment 

The results of super-efficiency score indicate 13 out of 27 European countries were efficient in terms of CE in 2018 (i.e., the super- 
efficiency score is larger than 1) as depicted by green bars in Fig. 3. The ranking of the efficient European countries according to their 
circularity from the top of the table is as follows: Netherlands, Germany, Austria, Belgium, Luxembourg, Romania, Ireland, Sweden, 
France, Poland, Lithuania, Slovenia, and Latvia. The efficient countries account for approximately 48% of the European countries 
assessed in this research. Netherlands was found to be the best performer in terms of CE with the highest score of 2.620. Netherlands, 
Germany, Austria, Belgium, and Luxembourg were ranked as the top five of the table since they were the best countries with respect to 
CMU, RM, RB, RP, and GWG, respectively. Although, Romania performed poorly in the areas of RM, RB, and CMU, it is the best 
performer in terms of GMW, thereby coming at the rank 6th. 

The other 14 countries were deemed inefficient according to the efficiency score that is less than 1 as depicted by yellow bars in 
Fig. 3. The inefficient countries consist of United Kingdom, Hungary, Cyprus, Italy, Spain, Croatia, Slovakia, Denmark, Estonia, 
Portugal, Czechia, Bulgaria, Finland, and Greece. The inefficient countries show high efficiency values (ranges between 0.772 and 
0.995), which indicates that they performed close to the efficient frontier. Greece was indicated as the worst performer in terms of CE 
with the lowest efficiency score of 0.772 since its performance was relatively poor in all CE indicators. This was followed by Finland 
and Bulgaria with the scores of 0.783 and 0.797, respectively. The results obtained here were in good agreement with the work done by 
Lacko et al. (2021) in that the Visegrád group countries (i.e., Poland, Czechia, Slovakia, and Hungary) did not perform well in terms of 
CE implementation when compared to the EU average. Even though these countries were inefficient in terms of CE, they can improve 
by approaching towards the efficient frontier constructed from efficient countries. It is worth pointing out here that some countries 
might have performed poorly in our assessment while they appeared at the top-ranked in other studies. This might be because of the 
different choice of indicators and the data retrieved from different periods which will alter the analysis results. Therefore, the results 
are valid only for specific CE indicators at specific time. 

4.2. Inefficiency assessment 

4.2.1. Interpretation of improvement percentage 
Solving the super-efficiency dual model for each inefficient country provides in turn its improvement targets for each indicator 

calculated by Eq. (4). These targets are numerical goals that each inefficient country should aim to achieve in order to become efficient 
in CE through a decrease (or an increase) in its input (or output) values. Approaching these targets enables us to compute the 

Fig. 3. Super-efficiency score of 27 European countries in terms of CE in 2018.  
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corresponding improvement percentage for each indicator by using Eq. (5). Fig. 4 shows an average improvement percentage across all 
inefficient countries for each indicator where inputs are presented by blue bar graphs indicating the decrease in the values and the 
outputs are displayed by green bar graphs indicating the increase in the values. Considering an input category, GWG was found to be 
the worst indicator needed to decrease (− ) by 19.5% on average. Meanwhile, the worst output was the RB needed to increase by 
124.7% on average, followed by CMU, which requires an 84.1% increase on average. These two outputs can be regarded as primary 
sources of CE inefficiency causing those inefficient countries to obtain an efficiency score of less than 1. This can be implied that, 
overall, the inefficient European countries performed deficiently in these two indicators and were greatly distant from their best 
practice. They should also be the first two indicators worth prioritizing to enhance the CE performance of the poorly performing 
countries, thereby narrowing the gap between the poorest players and the best practices, which will ultimately foster the CE per
formance of the EU as a whole. 

To promote the recycling of biowaste of the inefficient countries, it might be useful to follow the practices of best performer, 
Austria, who has implemented several regulatory frameworks in supporting the recycling of biowaste. These include an increase of 
Landfill tax to reduce landfilled waste, the development of composting and anaerobic digestion infrastructure to encourage decen
tralized biowaste management, and the provision of incentives to encourage the separate collection of biowaste from other types of 
waste streams [36]. Meanwhile, the circular material uses rate of the countries can also be enhanced through several successful 
policies, e.g., the implementation of Extended Producer Responsibility (EPR) schemes, the provision of incentives to promote 
eco-design practices that encourage the design of products that use less material or incorporate recycled materials, and the devel
opment of a market for secondary raw materials. 

The CE assessment by using DEA can provide the preliminary information of the CE efficiency score for each country. In addition, 
more comprehensive analysis on detailed improvements of each country would allow us to gain more valuable insight through the 
focus on individual indicators which could be used as a guideline for improvement strategies towards CE efficiency. A heatmap dis
playing the improvement percentage in each indicator for all the inefficient countries is shown in Fig. 5. A more intense blue/green 
color reflects a stronger improvement percentage for minimizing/maximizing the corresponding inputs/outputs to become efficient in 
the CE. For example, Bulgaria had two outputs shown in the green zone including RB and CMU that need to increase by 293.7% and 
260%, respectively. For input indicators, Bulgaria needed to decrease GWG by 67% and decrease GMW by 20.3%. Improving these 
indicators could potentially enable Bulgaria to become efficient in terms of CE. This could be done through several policy recom
mendations such as encouraging product longevity and repairability, setting waste reduction targets, and increasing public awareness 
and education about the importance of reducing waste generation and the benefits of sustainable consumption. 

4.2.2. Practical improvements through contribution analysis 
To strategically implement the circularity improvement approaches in practice, it might be worthwhile to place emphasis on the 

primary factors that predominantly contribute to the values of circularity indicators. For clearer illustration, Greece, with the poorest 
performance in Europe in 2018, had several output values that are considered relatively low compared with the other European 
countries. For example, CMU of Greece was only about 3.3%, comparing with the best performer as Netherlands at 28.9%. This in
dicator is calculated through Eq. (4) using the following terms: DMC, RCV, IMPw and EXPw. To obtain high values in this attribute, RCV 
and EXPw should be large while DMC and IMPw should be small. However, the DMC and RCV are the key elements that play vital role 
on this indicator since the values of IMPw and EXPw are often comparatively small. Let us investigate the breakdown of elements 
contributing to the overall material use for 27 European countries in 2018 which was sorted by CMU values in descending order as 
depicted in Fig. 6. It is interesting to note that even though the IMPw contribution was relatively trivial, most of the European countries 
(i.e., 23 of 27) had imported waste for recovery. Greece as the worst performer exhibited a very small proportion of RCV only 3.7% in 
contrast to the high-performance countries in this indicator, i.e., Netherlands, Belgium, and France, whose RCV accounted for 28%, 
20%, and 19% of the overall material use, respectively. That is, an increase of the RCV proportion will increase the value of CMU 
indicator, which potentially lead to higher efficiency score. 

Another example of detailed improvements in the circularity indicator is the recycling of packaging waste. Fig. 7 shows the 

Fig. 4. An average improvement percentage for each CE indicator.  
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Fig. 5. Heatmap of improvement percentage for each inefficient country.  

Fig. 6. Percentage contribution of each element constituting the overall material use for 27 European Countries in 2018.  

Fig. 7. Percentage contribution of packaging waste recycle to the overall packaging waste and the breakdown of recycled and non-recycled 
packaging waste in million tonnes for 27 European countries in 2018. 
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breakdown comparison of the recycled packaging waste for 27 European countries in 2018 which was sorted by RP values in 
descending order. Let us investigate in detail of Portugal and Netherland, it was observed that even both countries performed quite 
well in general since their percentage of recycled packaging waste were more than 50%; however, Portugal still had low proportion of 
recycled packaging waste in contrast with Netherland whose accounts for 77.4%. In essence, Portugal has recycled 1.027 million 
tonnes of the packaging waste which constitutes 57.6% of overall packaging waste [37]. If Portugal can increase the amount of 
recycled packaging waste while retaining or minimizing the overall packaging waste generated, this would benefits Portugal to 
become closer to the efficiency in CE. This could be done through the promotion of separate collection and sorting of packaging waste, 
the implementation of a deposit-return system, and the implementation of EPR scheme for packaging producers. 

Reducing packaging waste generated could support Portugal to become closer to the CE efficiency frontier. Deeper insights on 
material types of packaging waste in 2018 of Portugal indicated paper and cardboard materials constituting the largest proportion of 
packaging waste at 803,769 tonnes which accounts for approximately 45% of all packaging waste [37] as shown in Fig. 8. Prioritizing 
the reduction in this type of waste while promoting its recycling would help Portugal enhance the attribute value in this indicator and 
eventually approach the efficiency in a CE. 

4.2.3. Interpretation of linear weights 
The projection of the inefficient countries onto the efficient frontier creates such an improvement target which is essentially 

established from the linear combination of the efficient countries. Every inefficient country uses the efficient countries as references 
through the linear weights (computed by DEA) assigned to them which represent how much they have contributed to such target. Fig. 9 
displays heatmap of linear weights attached to each efficient country referenced by the inefficient countries for improvements, where 
Y-axis represents 13 efficient countries, X-axis refers to the rest 14 inefficient countries and color range reflects different value of linear 
weights. For such an illustrative case, the interpretation of Croatia’s column indicates that the improvement target of Croatia was 
constituted from the linear combination of Belgium, Latvia, Romania, and Sweden with linear weight values of 0.042, 0.736, 0.148, 
and 0.074, respectively. This might be implied that in order to become efficient, Croatia should try to mimic the circularity charac
teristics of Latvia at 73.6%, followed by Romania at 14.76% and so on. On the other hand, the interpretation of Netherland’s row 
means that Netherland contributes to the improvement targets of Spain, Italy, Portugal, Finland, and UK with the linear weight values 
of 0.194, 0.490, 0.306, 0.067 and 0.445, respectively. 

The linear coefficients of the efficient countries that were referenced by the inefficient ones are presented in each row of the heat 
map in Fig. 9, and they were summed up (across each row) and displayed as a bar chart of the efficient countries in Fig. 10. It was 
observed that Sweden was used as references by 12 inefficient countries with the summation of linear weights at 6.58, followed by 
Netherlands and Romania at 5.92 and 2.82, respectively. Let us revisit the attributes data of Sweden in 2018, it was found that all of 
them were neither the best nor the worst in every way. In other words, its attribute values were balanced in all indicators, thereby 
making Sweden as the best compromise country that usually forms a convex hyperplane on which the inefficient countries radially 
project. Sweden was also the reference that requires much less efforts to mimic in order to reach the circularity efficiency, and, 
therefore, was rather more approachable to be referenced by most of the inefficient countries. 

Step4: We next investigate the advancement in CE implementation of the European countries over the period of 2012–2018 by using 
the combination of super-efficiency dual DEA and MPI, which allows us to monitor the development in the aspects of efficiency change 
and technological progress. In this study, the evaluated period was divided into three intervals, i.e., 2012–2014, 2014–2016, and 
2016–2018, since the data was available biannually. The computed super-efficiency scores of each country in 2012, 2014, 2016, and 
2018 were provided in the supplementary materials. These scores were essentially used to compute different terms in Eq. (6) 
constituting an MPI score of every country for each time interval. In this study, the interpretation of MPI was categorized according to 
the values as follows: (1) MPIo < 1 means that the circularity productivity of such DMUo has deteriorated and is represented by down 
right arrows (↘), (2) MPIo = 1 means that the DMUo has no progress and is represented by right arrows (→), (3) MPIo > 1 means that 
the circularity advancement of the DMUo has improved and is represented by up right arrows (↗). 

The overall MPI of the European countries over the period of 2012–2018 as shown in Table 5 and Fig. 11 revealed a slight progress 
of circularity productivity as a whole with MPI of 1.002, implying that the European countries have progressed towards CE by 0.2%. 
The increase in productivity was contributed by an increase in overall technological changes (or frontier shift) of 0.4% and a decrease 
in overall efficiency changes of 0.2% over the entire period. The biannual CE progress of the European countries captured by MPI 
shows 3.5% regression, 0.1% growth, and 3.0% growth during 2012–2014, 2014–2016, and 2016–2018, respectively. The highest CE 
productivity was in 2016–2018 which is mainly due to technological progress which increased by 7.4% and a decline in efficiency 

Fig. 8. Breakdown contribution of packaging waste according to material types of Portugal in 2018.  
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change of 4.1%. 
We investigated further the MPI for individual European countries over the period of 2012–2018 to track the circularity pro

ductivity. The result of an average MPI across the evaluated period for each country suggests that 13 European countries have 
advanced their circularity productivity. While the other countries have slightly improved by 0.1–2.4%, Luxembourg exhibited the 
highest circularity advancement of 6.0%, contributing by an increase in efficiency change of 4.8% and an increase in technological 
changes of 1.2%. Slovakia came after with 2.4% CE productivity, resulting from an increase in technological changes of 6.1% and a 
decline in efficiency change of 3.5%. Germany was the only country continuously enhancing its productivity over the evaluated period 
of 2012–2018 with 2.3% advancement in CE. However, Denmark showed the largest deteriorating change in circularity performance 
at 8.8%, which is mainly due to a decline in technological changes of 12.1%, while the other 14 countries exhibited slight regression 
between 0.3 and 3.2%. 

Over the period of 2012–2014, Netherlands and Germany were only two countries whose circularity performance have enhanced 
by 3.7% and 2.3%, respectively, while the others have recessed. Cyprus showed the lowest MPI of 0.899 and had regressed CE pro
ductivity by of 10.1%, resulting from the deteriorating changes in both technical efficiency of 5.9% and technological advancements 
by 4.4%. Estonia and Ireland also had comparatively low MPI of 0.902 and 0.904, respectively; however, these were primarily due to 

Fig. 9. Heatmap of linear weights.  

Fig. 10. Summation of linear weights for the efficient countries.  
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Table 5 
Malmquist Productivity Index for circularity development of European Countries over the period of 2012–2018.  

No. European countries 2012–2014 2014–2016 2016–2018 2012–2018 

EC TC MPI Change EC TC MPI Change EC TC MPI Change EC TC MPI Change 

1 Belgium 0.992 0.968 0.960 ↘ 1.106 0.989 1.094 ↗ 0.879 0.983 0.864 ↘ 0.988 0.980 0.968 ↘ 
2 Bulgaria 0.957 1.012 0.968 ↘ 1.243 0.820 1.019 ↗ 1.007 1.046 1.053 ↗ 1.062 0.954 1.013 ↗ 
3 Czechia 1.083 0.901 0.977 ↘ 0.999 1.016 1.016 ↗ 0.677 1.491 1.009 ↗ 0.901 1.110 1.000 → 
4 Denmark 1.643 0.579 0.951 ↘ 1.743 0.423 0.737 ↘ 0.390 2.776 1.083 ↗ 1.038 0.879 0.912 ↘ 
5 Germany 1.010 1.013 1.023 ↗ 1.007 0.997 1.004 ↗ 1.039 1.002 1.041 ↗ 1.019 1.004 1.023 ↗ 
6 Estonia 0.525 1.716 0.902 ↘ 1.024 1.078 1.104 ↗ 1.029 1.020 1.049 ↗ 0.821 1.236 1.015 ↗ 
7 Ireland 0.679 1.331 0.904 ↘ 1.239 0.919 1.139 ↗ 1.062 0.896 0.952 ↘ 0.963 1.031 0.993 ↘ 
8 Greece 1.004 0.978 0.982 ↘ 1.212 0.865 1.048 ↗ 0.983 1.050 1.032 ↗ 1.062 0.961 1.021 ↗ 
9 Spain 0.989 0.983 0.972 ↘ 1.023 0.995 1.018 ↗ 0.992 1.003 0.995 ↘ 1.001 0.994 0.995 ↘ 
10 France 1.020 0.952 0.971 ↘ 1.093 0.940 1.027 ↗ 0.938 1.035 0.971 ↘ 1.015 0.975 0.990 ↘ 
11 Croatia 0.902 1.069 0.964 ↘ 0.980 1.069 1.047 ↗ 1.010 1.044 1.055 ↗ 0.963 1.060 1.021 ↗ 
12 Italy 0.998 0.970 0.968 ↘ 1.006 0.984 0.991 ↘ 1.016 0.983 0.999 ↘ 1.007 0.979 0.986 ↘ 
13 Cyprus 0.941 0.956 0.899 ↘ 1.041 1.040 1.083 ↗ 1.036 0.939 0.973 ↘ 1.005 0.977 0.982 ↘ 
14 Latvia 0.914 1.075 0.983 ↘ 1.095 0.943 1.033 ↗ 1.080 0.952 1.028 ↗ 1.026 0.988 1.014 ↗ 
15 Lithuania 1.064 0.916 0.975 ↘ 1.224 0.820 1.004 ↗ 1.058 0.939 0.993 ↘ 1.113 0.890 0.990 ↘ 
16 Luxembourg 1.240 0.746 0.925 ↘ 0.656 1.005 0.659 ↘ 1.412 1.383 1.953 ↗ 1.048 1.012 1.060 ↗ 
17 Hungary 1.068 0.916 0.978 ↘ 1.071 0.931 0.997 ↘ 1.101 0.971 1.068 ↗ 1.080 0.939 1.014 ↗ 
18 Netherlands 1.079 0.962 1.037 ↗ 1.021 1.022 1.043 ↗ 0.826 1.156 0.955 ↘ 0.969 1.043 1.011 ↗ 
19 Austria 0.902 1.097 0.990 ↘ 0.992 0.988 0.980 ↘ 0.955 0.983 0.939 ↘ 0.949 1.021 0.969 ↘ 
20 Poland 1.314 0.732 0.962 ↘ 0.831 1.195 0.993 ↘ 0.933 1.099 1.025 ↗ 1.006 0.987 0.993 ↘ 
21 Portugal 0.973 1.008 0.980 ↘ 1.022 0.994 1.016 ↗ 0.955 1.055 1.007 ↗ 0.983 1.019 1.001 ↗ 
22 Romania 0.896 1.065 0.955 ↘ 1.039 0.996 1.036 ↗ 1.034 1.028 1.064 ↗ 0.988 1.030 1.017 ↗ 
23 Slovenia 0.769 1.251 0.962 ↘ 1.244 0.801 0.996 ↘ 0.991 0.981 0.971 ↘ 0.982 0.994 0.977 ↘ 
24 Slovakia 0.973 1.009 0.981 ↘ 0.956 1.080 1.032 ↗ 0.966 1.097 1.060 ↗ 0.965 1.061 1.024 ↗ 
25 Finland 1.047 0.923 0.967 ↘ 0.973 1.042 1.013 ↗ 0.950 1.045 0.992 ↘ 0.989 1.002 0.990 ↘ 
26 Sweden 1.006 0.946 0.952 ↘ 0.954 1.094 1.044 ↗ 1.047 0.953 0.997 ↘ 1.002 0.995 0.997 ↘ 
27 UK 0.972 1.001 0.973 ↘ 1.005 0.994 1.000 → 1.024 0.971 0.995 ↘ 1.000 0.989 0.989 ↘  

Average 0.980 0.985 0.965 ↘ 1.052 0.951 1.001 ↗ 0.959 1.074 1.030 ↗ 0.998 1.004 1.002 ↗  
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the substantial regression in efficiency changes of 47.5% and 32.1%, respectively. 
From 2014 to 2016, approximately 70% or 19 of the 27 European countries had a progressive productivity. This developing trend 

also corresponded to the implementation of the First Circular Economy Action Plan in 2015. The action plan has encouraged every 
member of the EU to realize the importance and benefits of adopting the CE paradigm, and, as a result, brought about the practical 
implementation and the continuous development towards CE of most of the European countries. Ireland was the first rank in circularity 
progression with the productivity of 13.9%, which comes from a substantial growth in efficiency change of 23.9% and a decrease in 
technological change of 8.1%. Luxembourg was at the bottom of the table in terms of circularity evolution during 2014–2016 with the 
lowest MPI of 0.659, mostly due to the worsening change in efficiency change of 34.4% even though it was deemed efficient by the 
super-efficiency dual model in both periods. 

Later in the period of 2016–2018, the improvement trends seemed to slightly drop since the lower number of countries, that was 14, 
compared to the period of 2014–2016 had enhanced the CE efficiency. Luxembourg has progressively developed in terms of CE with 
the highest MPI of 1.953 due to the considerable growth both in efficiency change of 41.2% and in technological change of 38.3%. 
Meanwhile, Belgium has recessed its circularity productivity with the smallest MPI of 0.864 which came from declining changes both 
in efficiency change of 12.1% and in technological change of 1.7%. 

5. Conclusions 

This research proposes an integration of the super-efficiency dual DEA and MPI to measure the CE performance and track the 
circularity progress of 27 European countries. The results of our study show that in 2018 Netherlands, Germany, Austria, and Belgium 
exhibited an excellent overall CE performance, particularly in terms of the recycling of municipal waste, packaging waste, biowaste 
and the use of secondary materials which corresponds to their well-recognized strong environmental policies and initiatives. The 

Fig. 11. MPI expressing circularity development of 27 European countries over the period of 2012–2018, (a) MPI over 2012–2014, (b) MPI over 
2014–2016, (c) MPI over 2016–2018, and (d) an average MPI over 2012–2018. (Spatial maps was created by using IMAGE Interactive map 
generator platform [38]). 
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majority of Southern Europe like Greece and Bulgaria were among the worst CE performers. The inefficiency assessment pinpoints the 
most critical CE aspects that need urgent and serious mitigations, i.e., an engagement of the recycling of biowaste, followed by the 
circular material uses rate to enhance the overall CE performance of the European countries. For those countries deemed inefficient, 
the approach can suggest country-specific improvements pathway through the identification of primary sources of inefficiency and the 
establishment of quantitative improvement targets that can be used to guide the transition efforts towards CE. 

The MPI results unveils that Luxembourg had the highest circularity advancement, mainly due to an increase in efficiency change, 
while Denmark showed the largest deteriorating change as a result from a decline in technological changes. Overall, the European 
countries have slightly advanced their circularity performance by 0.2% over the period of 2012–2018, which contributed by an in
crease in overall technological changes of 0.4% and a decrease in overall efficiency changes of 0.2%. This suggests the European 
countries strengthen their policy and regulatory frameworks in support of the transition towards circular economy and encourage 
progressive movements in such a collaborative manner with the relevant stakeholders to build the momentum for change. Some of the 
limitations of this study include the unavailability of data which limits the number of CE indicators and not all European countries can 
be included in the assessment for the sake of comparability. In addition, the DEA results are sensitive to the choice of inputs and outputs 
as well as the modelling choices, and therefore, this case study might not be compared to the others using different sets of CE indicators. 

It will be worthful for potential future research to investigate the key influential factors affecting efficiency and inefficiency in 
terms of CE via some regression analysis to obtain more insights for improving the CE performance. Other possibilities could be an 
extension of our analysis to incorporate other countries either those with better CE performance to establish the superior efficient 
frontier for more effective benchmarking practices, or those with the poor CE performance to provide recommendations for CE im
provements by benchmarking with the European’s best practices. 
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