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Abstract: The overuse of synthetic pesticides in plant protection strategies has resulted in numerous
side effects, including environmental contamination, food staff residues, and a threat to non-target
organisms. Several studies have been performed to assess the pesticidal effects of plant-derived
essential oils and their components, as partially safe and effective agents, on economically important
pests. The essential oils isolated from Satureja species are being used in medicinal, cosmetic, and
food industries. Their great potential in pest management is promising, which is related to high
amounts of terpenes presented in this genus. This review is focused on the acute and chronic
acaricidal, insecticidal, and nematicidal effects of Satureja essential oil and their main components. The
effects of eighteen Satureja species are documented, considering lethality, repellency, developmental
inhibitory, and adverse effects on the feeding, life cycle, oviposition, and egg hatching. Further, the
biochemical impairment, including impairments in esterases, acetylcholinesterase, and cytochrome
P450 monooxygenases functions, are also considered. Finally, encapsulation and emulsification
methods, based on controlled-release techniques, are suggested to overcome the low persistence
and water solubility restrictions of these biopesticides. The present review offers Satureja essential
oils and their major components as valuable alternatives to synthetic pesticides in the future of
pest management.

Keywords: biopesticides; essential oil; multiple modes of action; Satureja; terpenes

1. Introduction

Although synthetic chemicals have been considered as the pest management strategy
so far, their overuse has led to several side effects. These include soil and groundwater
pollution, toxic residues on the food stuffs, pest resistance, outbreak of secondary pests, and
harmful effects on non-target organisms such as fish, bees, predators, and parasites [1–4].

The plant essential oils as low-risk agents are recommended alternatives to chem-
ical pesticides [5,6]. Essential oils are complex mixtures of aromatic and aliphatic com-
pounds, which mainly consist of hydrocarbon monoterpenes, monoterpenoids, hydro-
carbon sesquiterpenes, and sesquiterpenoids, and can be made by all plant parts, such
as flowers, seeds, leaves, stems, and bark [7]. Essential oils are composed by plants as
secondary metabolites with anti-herbivore activity, resulted in critical defense strategies
against herbivorous pests along with other significant roles, such as allelopathic plant–plant
interactions and attraction of pollinators [8]. Hence, the possibilities of pest resistance
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to plant-derived essential oils is very low [9]. Along with multiple modes of action and
efficiency against a wide range of arthropod pests, essential oils also exhibit comparative
lower toxicity on non-target organisms, such as mammals and beneficial insects compared
to chemicals [10]. Additionally, with about 24–48 h half-lives, they are degraded quickly
by natural degradation mechanisms and considered as biodegradable agents [9]. The
pesticidal effects of essential oils isolated from several species of plant families, such as
Lamiaceae, Asteraceae, Myrtaceae, Apiaceae, Cupressacae, and Rutaceae, against diverse
groups of agricultural pests have been well-endorsed in recent years [11–13]. Along with
the toxicity of plant essential oils to arthropod pests, there are promising findings against
pathogenic nematodes [14,15].

The genus Satureja belongs to the Lamiaceae family, Nepetoidae subfamily, and the
Mentheae tribe, that includes about 200 species of aromatic herbs and shrubs. They
are broadly distributed in America, the Mediterranean area, Middle East, North Africa,
and West Asia [16]. Several species from this genus, conventionally known as savory,
especially summer savory (Satureja hortensis L.), are cultivated in various countries [17].
These aromatic plants possess a high content of essential oil (even about 4%) located in
their leaves, stems, and flowers [18]. Numerous medicinal properties, including reduction
of blood pressure, joint pains, rheumatic pains, stomachache, toothache, fever, diarrhea,
dyspepsia, gastrointestinal bloating, influenza, colds, scabies and itching, eye strengthening,
antioxidant, antidiabetic, and antimicrobial properties, of Satureja species, especially their
extracted essential oils, are well-documented in the literature [16,19–21].

The present review aimed to update the current knowledge on the essential oils ex-
tracted from different Satureja species in controlling economically damaging insects, mites,
ticks, and nematodes. Thus, vast amounts of individual research have been gathered from
scientific databases, including Scopus, Web of Science, PubMed, and Google Scholar. Our
main aim was to introduce a novel, safe, and efficient bio-rational agent(s), as alternatives
to the detrimental chemicals. The search also considers the sub-lethal and biochemical
changes after application of these compounds in order to obtain a thorough insight into
their mode of action.

2. Pesticidal Effects of Essential Oils Extracted from Various Satureja Species

The great potential of several species from the Satureja genus, including S. aintabensis
Davis, S. bachtiarica Bung, S. cilicica Davis, S. cuneifolia Ten, S. hellenica Halásky, S. hortensis
L., S. intermedia C. A. Mey, S. isophylla L., S. khuzestanica Jamzad, S. montana L., S. parnassica
Heldr & Sart ex Boiss, S. parvifolia (Phil) Epling, S. rechingeri Jamzad, S. sahendica Bornm,
S. spicigera Boiss, S. spinosa L., S. thymbra L., and S. wiedemanniana (Avé-Lall) Velen, has
been reported in the insects, mites, ticks, and nematodes’ management. As shown in
Table 1, the efficiency of Satureja essential oils was assessed against a diverse group of
insects from Coleoptera to Diptera, Hemiptera, Homoptera, Lepidoptera, Phthiraptera,
and Thysanoptera orders, and similarly, on other arthropods, including mites and ticks,
and plant pathogenic nematodes.

The pesticidal effects of Satureja essential oils can be considered from two viewpoints,
i.e., lethal and sub-lethal. For example, along with acute fumigant toxicity of S. thymbra es-
sential oil against the adults of Acanthoscelides obtectus, Ephestia. kuehniella, and Leptinotarsa
decemlineata, its repellent effect on Aedes albopictus was also reported [22–24]. In general,
there are several sub-lethal bio-efficiencies of Satureja essential oils, including repellent
and antifeedant activities and adverse effects on fecundity, fertility, and life cycle. Some
of these studies have also considered the biochemical mode of action in pests such as
general esterase, acetylcholinesterase, and cytochrome P450 monooxygenases [25–27]. The
studies include different developmental stages of pests, from eggs to larvae, pupae, and
adults. Among the large species of Satureja studied, the essential oils of S. hortensis, S.
montana, and S. thymbra are considered as the most promising in pest management (Table 1).
Another prospective is the possibility of using Satureja essential oil along with other pest
control agents, such as entomopathogenic fungi. For example, Hosseinzadeh et al. [28]
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indicated that the essential oil of S. sahendica had a significant synergistic effect with
entomopathogenic fungus Beauveria bassiana against the cowpea weevil, Callosobruchus
maculatus (Fabricius).

Table 1. Reported acaricidal, insecticidal, and nematicidal effects of the essential oils isolated from different Satureja species.

Pests Satureja Species Bioassay and Target Pest Efficiency

Insects S. aintabensis Davis
Contact assay (on treated filter papers) against
the adult females of the turnip aphid (Lipaphis

pseudobrassicae (Davis)).

Significant toxicity with LC50 (lethal
concentration to kill 50% of tested insects) of

1.7 mg/mL after 1 h [29].

S. bachtiarica Bung

Aqueous suspension of essential oil against
the third- and fourth-instar larvae of the Asian

malaria mosquito (Anopheles stephensi) and
filariasis vector (Culex quinquefasciatus Say).

The larval mortality of 100% at the
concentration of 160 ppm after 24 h [30].

Fumigant and repellency assays (by
impregnated filter papers in glass vials and

Petri dishes, respectively) against the adults of
red flour beetle (Tribolium castaneum (Herbst)).

Significant fumigant toxicity
(LC50 = 4.71 mg/L) and repellent action (100%
at the concentration of 1% v/v after 8 h) [31].

Fumigant assay (by impregnated filter papers)
against the fourth-instar larvae of tomato

leafminer (Tuta absoluta (Meyrick))

Significant fumigant toxicity
(LC50 = 25.03 µL/L) and reduction in activity
of general esterases (α and β) (p < 0.05) [25].

S. cilicica Davis
Contact assay (on treated filter papers) against

the Colorado potato beetle
(Leptinotarsa decemlineata Say).

High mortality of the first (97.7%), second
(95.5%), third (91.1%), and fourth (97.7%)

instar larvae and the adults (84.4%) at
20 µL/cm2 after 96 h [24].

S. cuneifolia Ten
Fumigant assay (by impregnated filter papers)

on field-collected sand flies (Diptera:
Psychodidae: Phlebotomie).

The knockdown rate of 100% at the
concentration of 20.0 µL/L after 0.5 h [32].

Contact assay (on treated filter papers) against
L. decemlineata.

High mortality of the first (93.3%), second
(91.1%), third (95.5%), and fourth (88.8%)

instar larvae and the adults (86.6%) at
20 µL/cm2 after 96 h [24].

S. hortensis L. Aqueous suspension of essential oil against
the larvae of the C. quinquefasciatus.

Significant toxicity (LC50 = 36.0 µg/mL), the
reduction in the adult emergence by a quarter
of the control (p < 0.05), and 100% oviposition

deterrence by the concentration
of 200 ppm [33].

Fumigant assay (by impregnated filter papers)
against the adults of bean weevils (Bruchus

dentipes (Baudi)).

The mortality of 100% at the concentration of
20.0 µL/L after 24 h [34]

Fumigant assay (by impregnated filter papers)
against the cotton whitefly (Bemisia tabaci) on

the eggplant leaves.

The 100% mortality of adult females at
2.4 mL/cm3 of essential oil after 24 h [35].

Fumigant assay (by impregnated filter papers)
against the adults of B. tabaci on

cucumber leaves.

The mortality of 100% at 2 µL/L of essential
oil after 12 h [36].

Contact assay (on treated filter papers) against
the adults of C. maculatus.

Toxic to the adults with LC50 values of 5.36
and 6.41 µL/cm2 on the males and females,

respectively [37].

Fumigant assay (by impregnated filter papers)
against the adults of C. maculatus.

The 91.2% adult mortality at 60 mL/L and the
94.5% egg mortality at 4.3 mL/L of essential

oil after 24 h [38].
Fumigant assay (by impregnated filter papers)

against the adults of maize weevil
(Sitophilus zeamais Motschulsky).

The 100% mortality at the concertation of
10 µL/L after 96 h exposure time [39].

Leaf dipping method against the larvae of
mulberry pyralid (Glyphodes pyloalis Walker)

Significant feeding inhibition (44.35% at the
concentration of 0.025%), decrease in the

amount of protein, lipid, carbohydrates, and
the activity of α-amylase, esterase, and
glutathione S-transferase (p < 0.05) [40].

Antifeedant assay (by treated flour disk) on
first-instar larvae of the Indian meal moth

(Plodia interpunctella Hübner).

Significant reduction in the relative growth
(0.01 mg/day) and consumption

(0.31 mg/day) rates of larvae treated by
0.22 µL/cm2 of essential oil compared to

control (0.05 and 0.10 mg/day, respectively)
(p < 0.05) [41].

In-vivo repellent assay (by counting the
number of bites on the back of rabbits) against

the adult females of A. stephensi.

A protection time of 4.16 h at ED50 (effective
dose) of 5.63 mg/cm2 [42].



Int. J. Environ. Res. Public Health 2021, 18, 6050 4 of 16

Table 1. Cont.

Pests Satureja Species Bioassay and Target Pest Efficiency

Contact assay (by direct spraying) on the
larvae of the American White Butterfly

(Hypantria cunea Drury).

The 68.8% mortality of third- and
fourth-instars larvae at 1.67 µL/cm2

after 96 h [43]
Spraying on black chokeberry inflorescences

ingested by the larvae of grey Knot-horn
(Acrobasis advenella (Zinck)).

Significant reduction in the amount of α- and
β-glucosidase of treated larvae and the
emergence and longevity of adults [17].

Fumigant assay (by impregnated filter papers)
on the third-instar larvae of Mediterranean

flour moth (Ephestia kuehniella Zeller).

A mortality of 88.3% at 60 µL/L after 24 h
(LC50 = 30.09 µL/L) [44].

Oviposition deterrence and feeding-site assays
(by choice test with treated black chokeberry

infructescences) on A. advenella.

Significant reduction in laid eggs (3.89%) and
feeding site of larvae (27.35%) compared to

control groups (17.15% and 4.69%,
respectively) [45].

Fumigant assay (by impregnated filter papers)
against the adults of lesser grain borer
(Rhyzopertha dominica (Fabricius)) and

T. castaneum.

Significant toxicity against both insects with
LC50 values of 16.47 and 25.75 µL/L after 72 h,

respectively [46].

S. intermedia C. A. Mey

Fumigant assay (by impregnated filter papers)
against the adults of saw-toothed beetle

(Oryzaephilus surinamensis (L.)), R. dominica, the
khapra beetle (Trogoderma granarium Everts),

and T. castaneum, and contact assay (leaf
dipping method) on the adult female of the

oleander aphid (Aphis nerii).

High fumigant and contact toxicity against all
pests with LC50 values of 8.15, 12.83, 2.49, and

35.61 µL/L, and 418.38 µg/mL,
respectively [47].

S. isophylla L.

Fumigant assay (by impregnated filter papers)
against cabbage aphid (Brevicoryne brassica L.)

and black bean aphid (Aphis fabae Scop) on
acacia leaves.

Significant fumigant toxicity against both
insects with LC50 values of 7.33 and

14.29 µL/L, respectively [48].

Fumigant assay (by impregnated filter papers)
against A. fabae on acacia leaf.

Significant fumigant toxicity against adult
females (LC50 = 14.29 µL/L) and nymph

production detergency at 8.53 µL/L
(p < 0.05) [49].

Fumigant assay (by impregnated filter papers)
against the adults of R. dominica and

T. castaneum.

High mortality of R. dominica (98.7%) and T.
castaneum (90.0%) at 35.3 and 55.0 µL/L

concentrations respectively, after 72 h [50].

S. khuzestanica Jamzad
In vivo mosquito repellents assay for human

skin (from elbow to wrist) against the adults of
A. stephensi.

Significant reduction in the number of
mosquito bites compared to the control group

(p < 0.01) [51].

Toxicity assay (by impregnated potato leaves
in Petri dishes) on the adults of L. decemlineata.

Significant mortality of the fourth-instar larvae
and adults with LC50 values of 23.36 and

167.96 ppm, respectively [52].
Fumigant and repellent assays (by

impregnated filter papers in glass vials and
Petri dishes, respectively) against the adults of

T. castaneum.

Significant fumigant toxicity
(LC50 = 2.51 mg/L) and repellent action (100%
at the concentration of 1% v/v after 8 h) [31].

Fumigant assay (by impregnated filter papers)
against the fourth-instar larvae of T. absoluta.

Significant fumigant toxicity
(LC50 = 17.51 µL/L) and reduction in activity
of general esterases (α and β) (p < 0.05) [25].

S. montana L.
Aqueous suspension of essential oil on the

fourth-instar larvae of common house
mosquito (Culex pipiens L.).

Significant larvicidal activity with LC50 value
of 37.70 mg/L [53].

Repellent assay (by treated green bean leaves
in Petri dishes) on the Western flower thrips

(Frankliniella occidentalis).

A complete repellency (100%) at the
concentration of 2.0% after 1 h [54].

Contact assay (topical application) against the
fruit fly (Drosophila suzukii (Matsumura)).

Significant toxicity with LC50 values of 2.95
and 4.59 µg/fly on the male and female adults,

respectively [26].
Aqueous suspension of essential oil against
the third-instar larvae of C. quinquefasciatus

High larvicidal effectiveness with LC50 value
of 25.6 µL/L [55].

Contact assay (on treated filter papers) against
L. decemlineata.

High mortality of the first (100%), second
(97.7%), third (95.5%), and fourth (97.7%)
instar larvae and the adults (88.8%) at the

concentration of 20 µL/cm2 after 96 h [24].
S. parnassica Heldr &

Sart ex Boiss
Aqueous suspension of essential oil on the

fourth-instar larvae C. pipiens.
Significant larvicidal activity with LC50 value

of 37.70 mg/L [53].
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Table 1. Cont.

Pests Satureja Species Bioassay and Target Pest Efficiency

S. parvifolia (Phil.) Epling
Fumigant assay (by impregnated filter papers)

on the adult-females of the head louse
(Pediculus humanus capitis De Geer).

Significantly toxic with KT50 value (time to
50% knockdown) of 36.06 min at 60 µL of

essential oil concentration [56].
Repellent assay (by treated filter papers in
Petri dishes) against the nymphs of kissing

bug (Triatoma infestans Klug).

The repellency of 100% and 76.0% at the
concentration of 0.5% (w/v) after

1 and 24 h [57].

S. rechingeri Jamzad

Fumigant and repellency assays (by
impregnated filter papers in glass vials and

Petri dishes, respectively) against the adults of
T. castaneum.

Significant fumigant toxicity
(LC50 = 3.27 mg/L) and repellent action (100%
at the concentration of 1% v/v) after 8 h [31].

Fumigant assay (by impregnated filter papers)
against the fourth-instar larvae of T. absoluta.

Significant fumigant toxicity
(LC50 = 34.33 µL/L) and reduction in activity
of general esterases (α and β) (p < 0.05) [25].

S. sahendica Bornm Fumigant assay (by impregnated filter papers)
against the adults of C. maculatus.

Significant toxicity with LC50 value of
22.42 µL/L [28].

S. spicigera Boiss
Fumigant assay (by impregnated filter papers)

against the adults of granary weevil
(Sitophilus granarius (L.)).

The 94.27% mortality at the concentration of
20.0 µL/L after 86 h [58].

Fumigant assay (by impregnated filter papers)
against S. zeamais.

The mortality of 100% at concertation of
10 µL/L after 96 h exposure time [39].

Contact assay (on treated filter papers) against
L. decemlineata.

High mortality of the first (100%), second
(100%), third (95.5%), and fourth (95.5%) instar

larvae and the adults (80.0%) at 20 µL/cm2

after 96 h [24].

S. spinosa L. Aqueous suspension of essential oil on the
fourth-instar larvae C. pipiens.

Significant larvicidal toxicity with LC50 value
of 37.70 mg/L [53].

S. thymbra L. Aqueous suspension of essential oil on the
fourth-instar larvae C. pipiens.

Significant larvicidal toxicity with LC50 value
of 37.70 mg/L [53].

Fumigant assay (by impregnated filter papers)
against E. kuehniella and P. interpunctella.

The 100% egg mortality of E. kuehniella and P.
interpunctella at 200 µL/L after 96 h [59].

Fumigant assay (by impregnated filter papers)
against the adults of E. kuehniella, P.

interpunctella, and bean weevil
(Acanthoscelides obtectus Say).

The 100% mortality of E. kuehniella, P.
interpunctella (at 9 and 25 µL/L respectively,

after 24 h), and A. obtectus (195 µL/L
after 144 h) [22].

Fumigant assay (by impregnated filter papers)
against E. kuehniella.

Significant adulticidal toxicity
(LC50 = 13.92 µL/L after 12 h) and reduction

in the larval and adult emergence and egg
production compared to control groups

(p < 0.05) [60].
Fumigant (by impregnated filter papers on the
adults) and aqueous suspension (on the larvae)
assays on African malaria mosquito (Anopheles

gambiae Giles).

The 100% mortality of adults and larvae at
32.2 µg/mL and 3 mg/mL of essential oil

respectively, after 24 h [61].

Spraying on grape leaves against the nymphs
and female adults of the vine mealybug

(Planococcus ficus (Signoret)).

Significant mortality on nymphs
(LC50 = 2.7 mg/mL) and adults

(LC50 = 6.3 mg/mL) after 24 h [62].
In vivo larvicidal assay in basins against the

larvae of dengue vector
(Aedes albopictus Skuse).

Significant larval mortality (96.00% at 29 mg/L
of the essential oil) after 24 h [23].

Contact assay (on treated filter papers) against
L. decemlineata.

High mortality of the first (100.0%), second
(95.5%), third (97.7%), and fourth (95.5%)

instar larvae and the adults (97.7%) at
20 µL/cm2 after 96 h [24].

S. wiedemanniana
(Avé-Lall) Velen

Contact toxicity (on treated filter papers)
against the adult females L. pseudobrassicae.

Significant toxicity with LC50 of 1.0 mg/mL
after 1 h [29].

Mites and Ticks S. bachtiarica

Fumigant (by impregnated filter papers) and
repellency assays (by treated leaf discs) against

the two-spotted spider mite (Tetranychus
urticae Koch) in Petri dishes.

Significant fumigant toxicity
(LC50 = 44.06 µL/L) and high repellent action

at 44.06 µL/L after 24 h [27].

S. hortensis Fumigant assay (by impregnated filter papers)
against T. urticae on fresh leaves of bean.

The 96.6% mortality of nymphs and adults of
T. urticae at concentration of 3.13 µL/L

after 96 h [63].
Fumigant (by impregnated filter papers) and
contact (leaf dipping method) assays on the

adults of T. urticae.

Significant fumigant and contact toxicity with
LC50 values of 7.074 µL/L and 0.876% (v/v),

respectively [64].

Fumigant assays (by impregnated filter
papers) against T. urticae on bean leaves.

Significant toxicity against the adults and eggs
with 24 h LC50 values of 1.44 and

1.31 µL/L [65].
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Table 1. Cont.

Pests Satureja Species Bioassay and Target Pest Efficiency

S. khuzestanica
Fumigant (by impregnated filter papers) and

repellency assays (by treated leaf discs) against
T. urticae in Petri dishes.

Significant fumigant toxicity
(LC50 = 31.11 µL/L) and high repellent action

at 18.85 µL/L after 24 h [27].

S. sahendica Fumigant assay (by impregnated filter papers)
against T. urticae on bean leaf discs.

Significant adulticidal (24 h LC50 = 0.98 µL/L)
and ovicidal (72 h LC50 = 0.54 µL/L)

toxicity [66].

S. thymbra
Fumigant assay (by treated cotton wick) on the

adults of the Mediterranean tick
(Hyalomma marginatum).

The complete mortality (100%) at 40.0 µL/L
within 3 h [67].

Nematodes S. hellenica Halácsy

Immersion of the cotton root-knot nematode
(Meloidogyne incognita (Kofold & White)) and
the root-knot nematode (Meloidogyne javanica

(Treub)) in aqueous suspension of essential oil.

The 100% paralysis of the second-stage
juveniles (J2) of both species at the

concentration of 2000 µL/L after 96 h [68].

S. montana
Immersion of the mixed stages of pine wood
nematode (Bursaphelenchus xylophilus Nickle)

in aqueous suspension of essential oil.

The 100% mortality of nematodes exposed to a
2 mg/mL solution after 24 h [69].

Spraying of the aqueous suspension of
essential oil on B. xylophilus co-cultured with

Pinus pinaster shoot.

Significant decrease in the population growth
of nematode compared to the control groups

(p < 0.05) [70].
Spraying of the aqueous suspension of
essential oil on the Columbia root-knot

nematode (Meloidogyne chitwoodi Golden)
co-cultured with Solanum tuberosum

hairy roots.

Significant decrease in the population growth
of nematode compared to the control groups

(p < 0.05) [71].

Furthermore, as shown in Table 1, in addition to agricultural pests, the acute toxicity
and repellent action of Satureja essential oils against larvae and adults of blood-sucking
mosquitos that carry pathogenic agents were also approved. For example, high suscep-
tibility of the Asian malaria mosquito (A. stephensi) and the filariasis vector mosquito
(C. quinquefasciatus) to the essential oil of S. bachtiarica was reported, in which 100% lar-
val mortality of both insects was attained by the concentration of 160 ppm after 24 h
exposure time [30].

3. Relationship between Compositions of Satureja Essential Oils with
Pesticidal Properties

The major compounds of essential oils of different Satureja species’ insecticidal, aca-
ricidal, and nematicidal activities are depicted in Table 2. Some compounds such as
γ-terpinene, borneol, carvacrol, p-cymene, and thymol were identified in many species.
For example, thymol with high percentage is the main compound of S. aintabensis, S.
bachtiarica, S. cilicica, S. intermedia, S. isophylla, S. montana, S. parnassica, S. sahendica, S.
spinosa, S. thymbra, and S. wiedemanniana essential oils. However, some compounds, such as
estragole, piperitenone, piperitenone oxide, α-terpineol, β-caryophyllene, and β-myrcene,
were recognized in a species: estragole in the S. hortensis, Piperitenone and piperitenone
oxide in S. parvifolia essential oil, and β-myrcene in S. isophylla essential oil (Table 2).

Table 2. Main components of the Satureja species essential oils documented as promising insecticidal, acaricidal, and
nematicidal agents.

Essential Oil Main Components

S. aintabensis p-Cymene (33%) and thymol (32%) [29].
S. bachtiarica Thymol (28.0%), caryophyllene oxide (17.0%), carvacrol (13.2%), borneol (11.6%), and linalool (9.6%) [31].
S. cilicica Thymol (68.9%), p-cymene (7.8%), borneol (2.9%), and linalool (1.8%) [29].
S. cuneifolia Carvacrol (48.7%), p-cymene (38.1%), α-terpineol (1.9%), and borneol (1.9%) [72].
S. hellenica p-Cymene (27.46%), carvacrol (23.25%), and borneol (6.79%) [68].
S. hortensis Estragole (82.1%), β-ocimene (11.9%), and limonene (2.3%) [46].
S. intermedia Thymol (48.1%), carvacrol (11.8%), p-cymene (8.1%), and γ-terpinene (8.1%) [47].
S. isophylla Thymol (41.5%), p-cymene (25.9%), γ-terpinene (16.9%), β-myrcene (2.1%), and α-terpinene (1.6%) [50].
S. khuzestanica Carvacrol (48.0%), p-cymene (18.5%), and γ-terpinene (11%) [21].



Int. J. Environ. Res. Public Health 2021, 18, 6050 7 of 16

Table 2. Cont.

Essential Oil Main Components

S. montana Carvacrol (58.3%), p-cymene (18.3%), γ-terpinene (9.2%), and thymol (4.8%) [73].
S. parnassica Carvacrol (6.4%), thymol (44.4%), γ-terpinene (12.3%), p-cymene (8.4%), and β-caryophyllene (4.4%) [53].
S. parvifolia Piperitenone oxide (67.3%), piperitenone (7.2%), and pulegone (1.9%) [74].
S. rechingeri Carvacrol (82.5%), γ-terpinene (2.7%), p-cymene (2.6%), and terpinene-4-ol (2.0%) [31].
S. sahendica p-Cymene (30.2%), thymol (29.6%), and γ-terpinene (27.7%) [75].
S. spicigera Carvacrol (90.1%), p-cymene (4.1%), and γ-terpinene (2.6%) [29].
S. spinosa Carvacrol (47.1%), thymol (12.4%), γ-terpinene (6.5%), p-cymene (5.5%), and β-caryophyllene (5.0%) [53].
S. thymbra Carvacrol (57.1%), p-cymene (21.9%), thymol (8.0%), and γ-terpinene (4.4%) [29].
S. wiedemanniana Carvacrol (40%) and thymol (14%) [29].

The identified compounds in the essential oils of Satureja species are categorized in the
monoterpene hydrocarbon, monoterpenoid, sesquiterpene hydrocarbon, sesquiterpenoid,
and phenylpropanoid groups (see Table 3). Indeed, the majority of recognized compounds
are in the monoterpene group, with lower molecular weight than others, and only three
compounds belong to other categories. There is sufficient evidence that the monoterpenes,
especially monoterpenoids, have high pesticidal properties, and some novel and reliable
outcomes in this field are shown in Table 3. For example, the toxicity of thymol, as one
of main components in several species of the Satureja genus, was reported against the
African cotton leafworm (Spodoptera littoralis Boisduval), the bed bugs (Cimex lectularius L.),
the Colorado potato beetle (Leptinotarsa decemlineata Say), the granary weevil (Sitophilus
granarius (L.)), the green peach aphid (Myzus persicae (Sulzer)), and the root-knot nema-
tode (Meloidogyne javanica (Treub) Chitwood) [73,76,77]. It can be concluded from these
studies that the presence of higher total monoterpenoid content of essential oils had a
positive correlation with their pesticidal activity [78–81]. Thus, the acaricidal, insecticidal,
and nematicidal effects of Satureja essential oils may be related to the high amounts of
compounds listed in Table 3. It was also demonstrated that the phenolic monoterpenoids
such as thymol with CH(CH3)2 functional group displayed significantly higher pesticidal
effects compared to other terpenes, such as carvacrol and eugenol with CH3 and OCH3
functional groups, respectively [82,83]. However, the synergistic acaricidal, insecticidal,
and nematicidal effects of minor components such as α- and β-pinene, camphor, menthol,
sabinene, and thujene should also be considered [84–87]. For instance, the synergistic
insecticidal action of terpenes that have methyl functional groups such as p-cymene and
limonene with borneol is another consideration already reported by Pavela [83].

Table 3. Characteristics and pesticidal activities of main components identified in Satureja species.

Classification Components Structure Formula Molecular Weight
(g/mol) Pesticidal Activities

Monoterpene
hydrocarbon p-Cymene
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Table 3. Cont.

Classification Components Structure Formula Molecular Weight
(g/mol) Pesticidal Activities
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oxide 
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 Insecticidal effects against the larvae 
and pupae of fall armyworm (Spodop-

tera frugiperda (Smith)) [93]. 

C10H16O 152.23 Strong fumigant toxicity against
the adults of M. domestica [90].
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Table 3. Cont.

Classification Components Structure Formula Molecular Weight
(g/mol) Pesticidal Activities

Sesquiterpenoid Caryophyllene
oxide

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 10 of 18 
 

 

 Pulegone 

 

C10H16O 152.23 Strong fumigant toxicity against the 
adults of M. domestica [90]. 

 Geranial 

 

C10H16O 152.23 Larvicidal and pupicidal activity 
against C. quinquefasciatus [91]. 

 Borneol 

 

C10H18O 154.25 
Acute toxicity and synergistic effect on 

the C. quinquefasciatus larvae [86]. 

 Geraniol 
 

C10H18O 154.25 
Fumigant and contact toxicity, and 

neurophysiological impacts against C. 
lectularius [77]. 

 Linalool 
 

C10H18O 154.25 
The inhibition of acetylcholine esterase 

and insecticidal activity on S. oryzae 
[87]. 

 Terpinene-4-ol 

 

C10H18O 154.25 
The inhibition of acetylcholine esterase 

and insecticidal activity on S. oryzae 
[87]. 

 α-Terpineol 
 

C10H18O 154.25 
Fumigant toxicity on the adults of S. 

granarius [76].  

 Piperitenone 
oxide 

 

C10H14O2 166.22 Larvicidal activity against C. pipiens 
[92]. 

 Geranyl acetate 
 

C12H20O2 196.29 
Fumigant toxicity on the adults of S. 

granarius [76].  

Sesquiterpene hy-
drocarbon 

β-Caryo-
phyllene 

 

C15H24 204.35 
The inhibition of acetylcholine esterase 

and insecticidal activity on S. oryzae 
[87]. 

Sesquiterpenoid Caryophyllene 
oxide 

 

C15H24O 220.35 
 Insecticidal effects against the larvae 
and pupae of fall armyworm (Spodop-

tera frugiperda (Smith)) [93]. 
C15H24O 220.35

Insecticidal effects against the
larvae and pupae of fall

armyworm (Spodoptera frugiperda
(Smith)) [93].

Phenylpropanoid Estragole

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 11 of 18 
 

 

Phenylpropanoid Estragole 

 

C10H12O 148.20 
Fumigant and contact toxicity, and 

acetylcholine esterase inhibition 
activity against B. germanica [89]. 

4. Modes of Action of Essential Oils and Their Components 
The acetylcholinesterase (AChE) is actively involved in metabolic conversion of ‘ac-

etylcholine’ in the synaptic cleft of arthropods and has two catalytic and peripheral target 
sites. The insect-specific cysteine residue positioned at the acetylcholinesterase active site 
is a proposed target site for developing insecticides to reduce off-target toxicity [94]. On 
the other hand, inhibition of pest-specific acetylcholinesterase will decrease the risk of 
utilized pesticides on non-target organisms, such as mammals [94]. Some essential oils 
and compounds are reported to bind with these target sites to inhibit the AChE action 
[95–97]. Park et al. [26] revealed that the essential oil of S. montana had significant AChE 
inhibitory activity against the fruit fly (Drosophila suzukii (Matsumura)), along with high 
toxicity. The inhibition of AChE leads to acetylcholine accumulation, hyperactivity, paral-
ysis, and death of the pest. Along with terpenes, the well-known phenylpropane estragole 
has also shown AChE inhibitory effects [98,99]. It should be noted that the AChE inhibi-
tion can occur in both contact and fumigation methods of used essential oils [100,101]. 
Octopamine, as a neurotransmitter, neuromodulator, and hormone, is one of the im-
portant biogenic amines in invertebrates and is released at times of high energy demands 
[102]. Octopamine receptor alteration is considered as another mode of action of essential 
oils or their components [103]. The blockage of gamma-amino butyric acid (GABA) and 
nicotinic acetylcholine (nAChR) receptors has also been documented in some studies 
[97,104]. 

Beside the neurotoxic modes of pesticidal action of essential oils and compounds, 
there are several studies indicating enzymatic and non-enzymatic effects. The destructive 
effects of essential oils and their compounds on esterases and glutathione S-transferases 
(GSTs) as imperative detoxifying enzymes in arthropod pests are reported [88,105,106]. 
Disruption of the function of detoxifying enzymes may reduce the probability of pest re-
sistance [107], and this has been clearly depicted by essential oils and their components. 
Farahani et al. [27] showed that the essential oil of S. khuzestanica had adverse effects on 
cytochrome P450 monooxygenases (P450, responsible for the oxidative metabolism of a 
variety of xenobiotics and endogenous compounds) function of two spotted spider mites 
(Tetranychus urticae Koch), along with toxic and repellent activities. The adverse effects of 
these agents on digestive enzymes such as lipases, proteases, α-amylases, α-glucosidases, 
and β-glucosidases were also reported [106], which can be very effective in reducing the 
nutritional efficiency of pests. Effects on energy reservoirs of the pest by decreasing the 
protein, glucose, and triglyceride contents and disrupting the action of immunological 
and hematological parameters are the other reasons to approve the multiple modes of 
action of these eco-friendly bio-pesticides [108,109]. 

5. Proposed New Formulations for Greenhouse and Field Applications 
Although great potential for acaricidal, insecticidal, and nematicidal activity of 

Satureja essential oils and compounds have been reported, limitations such as susceptibil-
ity to light, moisture, oxygen, and temperature may restrict their application in the pest 
management strategies [5]. Indeed, the use of essential oils and their components in non-
crop agriculture in the management of stored product pests, flies, and cockroaches is ef-
fective [110]. Additionally, the larvicidal activity of essential oils by treating standing wa-

C10H12O 148.20

Fumigant and contact toxicity,
and acetylcholine esterase
inhibition activity against

B. germanica [89].

4. Modes of Action of Essential Oils and Their Components

The acetylcholinesterase (AChE) is actively involved in metabolic conversion of ‘acetyl-
choline’ in the synaptic cleft of arthropods and has two catalytic and peripheral target
sites. The insect-specific cysteine residue positioned at the acetylcholinesterase active site
is a proposed target site for developing insecticides to reduce off-target toxicity [94]. On
the other hand, inhibition of pest-specific acetylcholinesterase will decrease the risk of
utilized pesticides on non-target organisms, such as mammals [94]. Some essential oils and
compounds are reported to bind with these target sites to inhibit the AChE action [95–97].
Park et al. [26] revealed that the essential oil of S. montana had significant AChE inhibitory
activity against the fruit fly (Drosophila suzukii (Matsumura)), along with high toxicity. The
inhibition of AChE leads to acetylcholine accumulation, hyperactivity, paralysis, and death
of the pest. Along with terpenes, the well-known phenylpropane estragole has also shown
AChE inhibitory effects [98,99]. It should be noted that the AChE inhibition can occur in
both contact and fumigation methods of used essential oils [100,101]. Octopamine, as a neu-
rotransmitter, neuromodulator, and hormone, is one of the important biogenic amines in
invertebrates and is released at times of high energy demands [102]. Octopamine receptor
alteration is considered as another mode of action of essential oils or their components [103].
The blockage of gamma-amino butyric acid (GABA) and nicotinic acetylcholine (nAChR)
receptors has also been documented in some studies [97,104].

Beside the neurotoxic modes of pesticidal action of essential oils and compounds,
there are several studies indicating enzymatic and non-enzymatic effects. The destructive
effects of essential oils and their compounds on esterases and glutathione S-transferases
(GSTs) as imperative detoxifying enzymes in arthropod pests are reported [88,105,106].
Disruption of the function of detoxifying enzymes may reduce the probability of pest
resistance [107], and this has been clearly depicted by essential oils and their components.
Farahani et al. [27] showed that the essential oil of S. khuzestanica had adverse effects on
cytochrome P450 monooxygenases (P450, responsible for the oxidative metabolism of a
variety of xenobiotics and endogenous compounds) function of two spotted spider mites
(Tetranychus urticae Koch), along with toxic and repellent activities. The adverse effects of
these agents on digestive enzymes such as lipases, proteases, α-amylases, α-glucosidases,
and β-glucosidases were also reported [106], which can be very effective in reducing the
nutritional efficiency of pests. Effects on energy reservoirs of the pest by decreasing the
protein, glucose, and triglyceride contents and disrupting the action of immunological and
hematological parameters are the other reasons to approve the multiple modes of action of
these eco-friendly bio-pesticides [108,109].

5. Proposed New Formulations for Greenhouse and Field Applications

Although great potential for acaricidal, insecticidal, and nematicidal activity of Sat-
ureja essential oils and compounds have been reported, limitations such as susceptibility to
light, moisture, oxygen, and temperature may restrict their application in the pest man-
agement strategies [5]. Indeed, the use of essential oils and their components in non-crop
agriculture in the management of stored product pests, flies, and cockroaches is effec-
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tive [110]. Additionally, the larvicidal activity of essential oils by treating standing water
and waterways and their repellent effects on adults may be useful in mosquito management
(See Tables 1 and 3 for examples). Due to the disadvantage of low persistence in environ-
mental conditions, the application of essential oils in crop agriculture can be limited [6].
Soft body and sucking pests (viz., aphids, thrips, and mites) are usually controlled by
essential oils on crops, particularly under low pest pressure [110]. For example, Western
flower thrip and green peach aphid were successfully controlled by the essential oil-based
insecticide Ectrol (EcotecTM, California, USA) on lettuce and strawberry. However, partial
efficiency was achieved against larger chewing insect pests, such as coleopterans and
lepidopterans [110].

Nanoencapsulation based on the controlled release technique has been offered to over-
come the lack of persistence restriction of bio-pesticides [111]. In the nanoencapsulation
process, the active agent as a solid, liquid, or gas is surrounded by a thin layer of natural or
synthesized polymer or a membrane to keep the core active agent from harmful environ-
mental factors [112]. Generally, reducing the amount of active ingredients and minimizing
evaporation and its controlled release are main advantages of nanoencapsulation [111].
However, along with above-mentioned advantages, expensive and difficult processes of the
creation of nano-formulations should be considered. In the study of Ahmadi et al. [65], en-
capsulation of S. hortensis essential oil in chitosan-tripolyphosphate nanoparticles improved
its ovicidal and adulticidal toxicity against T. urticae. Along with high toxicity, nanoencap-
sulation of S. hortensis essential oil in chitosan-tripolyphosphate nanoparticles enhanced
its persistence so that 80% and 15% mortality was achieved for nano-encapsulated and
pure essential oil formulation after 14 days. Usha Rani et al. [113] evaluated the antifeedant
activity of pure and silica nanoparticles-based capsulated α-pinene and linalool against
the tobacco cutworm (Spodoptera litura F.) and the castor semi-looper (Achaea janata L.).
Although both terpenes had significant antifeedant effects, nano-capsule formulation aug-
mented their effectiveness up to 10 and 25 times for A. Janata and S. litura, respectively.
The same results regarding the enhancing toxicity and persistence of other essential oils
by encapsulation in polymeric and non-polymeric materials, such as poly(ethylene gly-
col), myristic acid-chitosan, and mesoporous material, were also documented [114–116].
The preparation of nano-emulsions is another applicable method to solve the solubility
restriction of essential oils in water and is more effective with minute quantities of toxic
substances, both in medicinal and agricultural pest management prospects [117,118]. Fur-
ther, the combination of essential oils with other protectants such as microbial agents may
enhance their effectiveness. For example, the combination of S. sahendica essential oil with
entomopathogenic fungus Beauveria bassiana augmented its toxicity against cowpea weevil,
and insect pest mortality increased from 50% after a 1-day exposure time to 80% after
7 days [28].

6. Conclusions

Along with antibacterial, antifungal, antiviral, and general importance in medicinal,
food, and cosmetic industries [119–121], the essential oils isolated from different species of
Satureja genus could have great potential in the management of detrimental mite and tick
Acari, insects, and nematodes. Pesticidal effects of Satureja species essential oils, which may
be commonly related to their main terpenes [67,83,86], were reported as lethal contact and
fumigant toxicity to sublethal repellent action, developmental inhibitory effects, adverse ef-
fects on the feeding, life cycle, oviposition, and egg hatching, and biochemical disturbances,
such as reduction in general esterase content and inhibition of acetylcholinesterase and
cytochrome P450 monooxygenases functions (see Tables 1 and 3). Such multiple modes
of action of essential oils and their compounds, in addition to reducing pest resistance,
can affect a wide range of pests [5,9]. Despite all of the mentioned advantages, high
volatility or lack of persistence and insolubility in water are the main restrictions in the
commercialization and extensive application of these compounds [110]. Accordingly, their
application is principally focused against indoor non-crop pests such as storage pests, flies,
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and cockroaches [96,114]. Further, the acute toxicity against larvae and repellent activity
on the adults of mosquitos that carry pathogens and suck blood were also documented in
Tables 1 and 3. However, with micro- and nano-encapsulation on the basis of controlled
release techniques, their persistence can be increased [122]. Although nano-emulsification
is also a suitable way to dissolve essential oils in water [123,124], it is possible to in-
crease their effectiveness by combined application with microbial control agents, such as
entomopathogenic fungi [28]. These less-toxic substances may help in agriculture and
environmental protection and can be proposed to countries that apply extreme amounts
of synthetic pesticides. However, effects on beneficial and non-target organisms, residues
on food products, and more importantly, considering a method for lower cost of Satureja
essential oils and their components, should also be investigated in future research.
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