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Abstract. Cell binding to extracellular matrix (ECM)
components changes cytoskeletal organization by the
activation of Rho family GTPases. Tenascin-C, a devel-
opmentally regulated matrix protein, modulates cellu-
lar responses to other matrix proteins, such as fibronec-
tin (FN). Here, we report that tenascin-C markedly
altered cell phenotype on a three-dimensional fibrin
matrix containing FN, resulting in suppression of actin
stress fibers and induction of actin-rich filopodia. This
distinct morphology was associated with complete sup-
pression of the activation of RhoA, a small GTPase

that induces actin stress fiber formation. Enforced acti-
vation of RhoA circumvented the effects of tenascin.
Effects of active Rho were reversed by a Rho inhibitor
C3 transferase. Suppression of GTPase activation al-
lows tenascin-C expression to act as a regulatory switch
to reverse the effects of adhesive proteins on Rho func-
tion. This represents a novel paradigm for the regula-
tion of cytoskeletal organization by ECM.
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Introduction

Changes in tissue organization that govern development,
disease, aging, and injury require defined alterations in ex-
tracellular matrix (ECM)! composition and architecture
(Adams and Watt, 1993; Fleischmajer et al., 1998). Expres-
sion levels of fibronectin (FN), an adhesive protein, and
tenascin-C, an ECM protein that modulates cell-FN in-
teractions, vary during wound repair, tumor formation,
and embryonic development. This provides a mechanism
for modulating cell functions through temporal and spa-
tial variations in proportions of adhesive and anti-adhe-
sive ECM proteins. FN mediates cell adhesion primarily
through heterodimeric integrin receptors binding to the
arg-gly-asp (RGD) and adjacent sequences in the central
cell binding domain (Hynes, 1992). Cell-FN interactions
direct cytoskeletal organization and intracellular signaling
and connect cells to other matrix components such as
collagen, fibrin, and glycosaminoglycans (Mosher, 1989;
Hynes, 1990).

Contrary to the adhesive role of FN, tenascin-C induces
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loss of focal adhesions and prevents cell adhesion and
spreading on FN (Spring et al., 1989; Murphy-Ulirich et
al., 1991). Tenascin-C signals can be mediated directly by
interactions with cell surface proteins such as annexin 11
(Chung and Erickson, 1994) or with several different inte-
grin receptors (Joshi et al., 1993; Prieto et al., 1993; Srira-
marao et al., 1993; Yokosaki et al., 1994). Alternatively,
control of cell responses may be indirect through binding
to other matrix components including heparin and FN
(Chiquet-Ehrismann et al., 1991; Aukhil et al., 1993;
Chung et al., 1995). These complex effects and multiple
binding partners suggest that tenascin-C functions in a
context-dependent manner to modulate cell-matrix inter-
actions. Indeed, the protein is expressed in areas of re-
duced cell adhesion during development, wound healing,
and tumorigenesis (Mackie et al., 1988; Erickson and
Bourdon, 1989; Chiquet-Ehrismann, 1993; Zagzag et al.,
1995).

Signals from the matrix are communicated through inte-
grins to intracellular pathways including the Rho family of
small GTPases (Rho, Rac, and Cdc42; Hall, 1998; Schoen-
waelder and Burridge, 1999). Rho activation promotes ac-
tin stress fiber assembly and focal adhesion formation
which are common cell responses to FN (Ridley and Hall,
1992; Hall, 1998). Active Rac and Cdc42 induce extension
of lamellipodia and filopodia, respectively (Hall, 1998),
and appear to contribute to cell spreading on FN (Price et
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al., 1998). Soluble extracellular factors including LPA,
PDGF, and bradykinin stimulate activation of individual
members of this family. However, direct regulation of Rho
GTPases by specific components of the ECM has not been
fully defined.

To address the opposing stimuli of FN and tenascin-C in
a physiologically relevant matrix model, we used a co-
valently cross-linked fibrin-FN matrix as a three-dimen-
sional substrate. This matrix resembles the fibrin-FN
provisional matrix that forms at sites of tissue injury. Com-
pared with FN alone, this matrix has distinct effects on cell
behavior (Corbett et al., 1996; Corbett and Schwarzbauer,
1997). Here we show that inclusion of tenascin-C in the fi-
brin-FN matrix resulted in an altered fibroblast morphol-
ogy with actin-rich filopodial projections. This unusual cell
phenotype differs from the cortical actin arrangement that
develops on fibrin-FN matrix. We find that the change in
actin organization occurs because RhoA activation is com-
pletely suppressed by tenascin-C. These results show that
signals from tenascin-C, and possibly other ECM proteins,
modulate cell responses to FN through control of GTPase
activities.

Materials and Methods

Protein Production

Rat plasma FN was purified by gelatin-Sepharose (Pharmacia Biotech)
affinity chromatography from freshly drawn plasma (Wilson and
Schwarzbauer, 1992). Recombinant amino-terminal 70-kD fragment of rat
FN and mouse tenascin-C cDNA have been previously described
(Schwarzbauer, 1991; Luczak et al., 1998). Native human tenascin-C from
U251 glioma cells and consisting of >90% large splice variant was gener-
ously provided by Dr. Harold Erickson (Duke University Medical Center)
(Aukhil et al., 1990).

Recombinant 70Ten cDNA was constructed in the baculovirus vector
pVL1393 by ligating a 1,810-bp BamHI-Pstl fragment encoding FN 70 kD
with two tenascin-C fragments spanning the 3’ two thirds of the coding se-
quence, a 342-bp Pstl-Xbal fragment and a terminal 3,891-bp Xbal-Xhol
fragment. The junction between FN and tenascin-C sequences is a natural
Pstl site at position 1810 in FN and an engineered site at position 1987 in
tenascin-C. A primer (5'-GGCTGCAGTCTGAGGTGTCCCC-3") with a
Pstl site in frame (denoted in bold) was used with a downstream primer to
amplify a 342-bp Pstl-Xbal fragment of tenascin-C. PCR amplification
was carried out for 30 cycles under the following conditions: 94°C, 30 s;
47°C, 1 min; 72°C, 30 s. The DNA sequence of the PCR product was veri-
fied. 70Ten was produced using the baculovirus insect cell expression sys-
tem and protein was purified from cell culture medium by gelatin-
Sepharose chromatography (Sechler et al., 1996).

Substrate Preparation

Fibrin-FN matrices were prepared using a mass ratio of 20:1 fibrinogen/
FN and give identical adhesion results to matrices prepared at a physio-
logic ratio of 10:1. The ratio of FN/tenascin-C was 1:3, a 1:1 molar ratio of
dimeric FN to hexameric tenascin-C. Ratios lower than 1:2.5 did not in-
duce filopodia. 0.6 mg/ml fibrinogen (American Diagnostica, Inc.), 30 pg/
ml FN, 120 pg/ml tenascin-C and/or 72 pg/ml 70Ten, and 10 pg/ml coagu-
lation factor XII1 (Calbiochem-Novabiochem) were mixed in 150 mM
NaCl, 20 mM CaCl,, 10 mM Tris-HCI, pH 7.4, as described (Corbett and
Schwarzbauer, 1999). Immediately after addition of thrombin (Sigma
Chemical Co.) at 1.5 U/ml, the mixture was pipetted onto a glass coverslip
(Fisher Scientific). Fibrinogen and thrombin were reconstituted and con-
taminating FN was removed from fibrinogen as previously described
(Corbett et al., 1996; Wilson and Schwarzbauer, 1992). Human coagula-
tion factor XIIl was diluted to 0.5 mg/ml with 50% glycerol, 0.5 mM
EDTA before use. After overnight incubation at 4°C, the clots were care-
fully aspirated from the coverslip leaving a matrix attached to the surface
(Corbett et al., 1996) and the substrate was blocked with 1% BSA in PBS.
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Covalent cross-linking was monitored by SDS-PAGE (Wilson and
Schwarzbauer, 1992).

Cell Attachment

Mouse NIH 3T3 fibroblasts were cultured in DME (GIBCO BRL) con-
taining 10% calf serum (Hyclone Laboratories). Ratl fibroblasts stably
transfected with activated RhoA-V14 (Qiu et al., 1995) or Cdc42-V12
(Qiu et al., 1997) cDNA (gifts from Dr. Marc Symons, Picower Institute)
were maintained in DME containing 10% fetal calf serum, 2 mM
glutamine, 400 pg/ml G418 (GIBCO BRL). Because RhoA-V14 is driven
by a tetracycline-repressible promoter, medium also contained 2.5 pg/ml
puromycin and 2 pg/ml tetracycline. Tetracycline was withdrawn from the
medium 2 d before the start of each experiment (Qiu et al., 1995). Cells
were grown to confluence and prepared for cell attachment and spreading
assays as described (Corbett et al., 1996).

Cells spread on substrate-coated glass coverslips for varying times were
fixed, permeabilized, and stained with rhodamine-phalloidin as described
(Corbett et al., 1996). Coverslips were mounted with SlowFade Light An-
tifade Kit (Molecular Probes Inc.). Cells were visualized with a Nikon Op-
tiphot-2 microscope and images were captured using an Optronics three
sensor cooled CCD camera.

Preparation of Recombinant C3 Transferase

Recombinant C3 transferase cDNA in the pGEX-2T vector (a gift from
Dr. Larry Feig, Tufts University) was expressed in E. coli DH12S as a glu-
tathione S-transferase (GST) fusion protein and purified as described
(Ridley et al., 1992) with the following modifications. Cells were lysed
with Bacterial Protein Extraction Reagent (B-PER; Pierce Chemical Co.)
and GST-C3 transferase in the pellet was released by incubation for 10
min in 200 pg/ml lysozyme at room temperature, dialyzed into 50 mM
Tris-HCI, pH 7.5, 50 mM NaCl, 5 mM MgCl,, 1 mM DTT, and isolated by
binding to glutathione agarose beads. The GST fusion protein bound to
beads was cleaved with thrombin, thrombin was removed, and purified C3
transferase was dialyzed into DME. Purity was checked by SDS-PAGE.
C3 transferase protein was added to the culture medium at 25 pg/ml for
24 h (Zhong et al., 1998).

GTPase Activity Assay

GTP-bound RhoA and Cdc42 were affinity isolated from cell lysates using
the Rho-binding domain of murine Rhotekin (GST-RBD; Ren et al.,
1999) or the Cdc42-binding domain of murine p65PAX (GST-PBD; Ba-
grodia et al., 1995) (gifts from Dr. Keith Burridge, University of North
Carolina). Fusion proteins expressed in E. coli strain BL21 were induced
with 0.3 mM IPTG, cells were lysed in B-PER and solubilized proteins
were incubated with glutathione-agarose beads. Bound protein concen-
trations were determined using the BCA Protein Assay (Pierce Chemi-
cal Co.).

Serum-starved NIH 3T3 fibroblasts spread on matrices for 1 h were
lysed in cold RIPA buffer (50 mM Tris-HCI, pH 7.5, 500 mM NacCl, 10 mM
MgCl,, 1% NP40, 0.25% Na-deoxycholate, 1 mM PMSF, 1 mM NaVvQ,, 1
mM EGTA, 50 p.g/ml leupeptin, and 0.5% aprotinin), and spun at 4°C for
10 min. Lysates with equal amounts of protein were added to glutathione-
agarose beads with 20 g bound GST-RBD or GST-PBD. After a 30-min
incubation at 4°C, beads were washed and protein was eluted by boiling in
electrophoresis sample buffer (Waterman-Storer et al., 1999). Bound pro-
teins and whole cell lysates were separated on 13% polyacrylamide-SDS
gels, transferred to nitrocellulose and detected with anti-RhoA or anti-
Cdc42 monoclonal antibodies diluted 1:250 (Transduction Laboratories).
Primary antibodies were detected with horseradish peroxidase—conju-
gated secondary antibody diluted 1:50,000 (Pierce Chemical Co.) and
ECL Plus detection reagent (Amersham Pharmacia Biotech).

Results

Tenascin-C Alters Actin Organization on
Fibrin-FN Matrix

In wounds, the fibrin-FN provisional matrix supports fi-
broblast movements and interactions vital for tissue repair
(Clark, 1996; Corbett and Schwarzbauer, 1999). Tena-
scin-C expression is upregulated during tissue injury (Fors-
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Figure 1. Filopodia form in
response to a fibrin-FN +ten-
ascin-C matrix. Fibrin-FN (A
and B), fibrin-FN+tena-
scin-C (C and D), and fi-
brin-FN+70Ten (F and G)
matrices were formed on
glass coverslips and cells were

70 kD (FN) 150 kD (Tenascin)

berg et al., 1996; Mackie et al., 1988) and is known to affect
ECM-dependent cell functions (Chiquet-Ehrismann, 1993;
Erickson, 1993; Crossin, 1996). Tenascin-C’s modulatory
effects are also apparent in cells on a three-dimensional fi-
brin-FN matrix. NIH3T3 fibroblasts showed circumferen-
tial spreading with a cortical arrangement of actin stress fi-
bers on fibrin-FN matrix (Fig. 1, A and B). In contrast,
inclusion of tenascin-C during formation of the matrix gave
a fibrin-FN+tenascin-C substrate that induced a distinct
cell morphology with a dramatically different actin organi-
zation that lacked stress fibers (Fig. 1, C and D). Instead,
actin was organized into short filaments throughout the cy-
toplasm with numerous filopodia extending out from the
cell bodies and processes. Thus, native tenascin-C mark-
edly altered cellular responses to the fibrin-FN matrix.

To eliminate the possibility that proteins other than ten-

Wenk et a. Control of Rho by Tenascin-C Matrix

allowed to spread for 1 h.
Cells were analyzed by phase
microscopy or washed, fixed,
permeabilized, and incubated
with rhodamine-phalloidin to
stain filamentous actin. (E)
70Ten contains the amino-
terminal 70-kD region of FN
including the fibrin cross-
linking site (X) connected to
all type Il repeats and the
terminal knob of tenascin-C
containing adhesive and anti-
adhesive domains. Bars: (A,
C, and F) 10 um; (B, D, and
G) 100 pm.

ascin-C contributed to the cell response, we used a recom-
binant tenascin-C polypeptide expressed in insect cells un-
der serum-free conditions. This recombinant, 70Ten, is a
chimeric molecule consisting of the amino-terminal 70-kD
region of FN joined to the carboxy-terminal 150-kD of
tenascin-C (Fig. 1 E). The 70-kD FN segment promotes
specific, efficient covalent cross-linking to the fibrin ma-
trix. The 150-kD region includes the 13 type 11l repeats
and terminal knob from tenascin-C and contains multiple
sites for interacting with cells (Crossin, 1996). Highly puri-
fied recombinant 70Ten had an effect on cells identical to
native tenascin-C (Fig. 1, F and G). Therefore, this recom-
binant protein provides a reliable source of pure tenascin-C
sequences for use in characterizing the cytoskeletal and
morphological responses to the fibrin-FN+tenascin-C
provisional matrix.
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Figure 2. Tenascin-C inhib-
its Rho activation. Relative
amounts of activated (GTP-
bound) Rho and Cdc42 were
determined using an affinity
assay. (A and B) NIH3T3 fi-

Fib-FN- + + - + + broblasts were serum starved,

70Ten- - + - - + then plated on tissue culture

B Cdca? pl_astic (—)_ or on matrices

- with the indicated compo-

Active Total nents. Active GTPases were

- i A isolated and analyzed along

side total cell lysates by im-

Fib-FN - + + - + + munoblotting with anti-Rho
70Ten- - + - - + or anti-Cdc42 antibodies.

Tenascin-C Suppresses Activation of Rho

Rho and Cdc42 are small GTPases that regulate the orga-
nization of the actin cytoskeleton into stress fibers and
filopodia, respectively (Hall, 1998). To determine the ef-
fects of tenascin-C sequences on RhoA and Cdc42 activi-
ties, active GTPases were isolated from spread cell lysates
by binding to GST fusion proteins containing the binding
domain of rhotekin for Rho or of p65°AK for Cdc42 (Ba-
grodia et al., 1995; Benard et al., 1999; Ren et al., 1999).
Under all conditions, equivalent levels of total RhoA or
Cdc42 protein were found in whole cell lysates (Fig. 2, A
and B). A low level of active RhoA was present in serum-
starved NIH3T3 cells plated on tissue culture plastic in the
absence of a FN matrix (Fig. 2 A, lane 1). Active RhoA
levels were elevated when cells were plated on a fibrin-FN
matrix (Fig. 2 A, lane 2). Therefore, adhesion and spread-
ing on this matrix stimulates Rho activation. Surprisingly,
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with the inclusion of 70Ten in the fibrin-FN matrix, abso-
lutely no active RhoA could be detected (Fig. 2 A, lane 3).
Levels were far below those seen in control cells, indicat-
ing that tenascin-C sequences in the matrix suppress
RhoA activation.

This was not the case, however, with Cdc42. Fibroblasts
plated with or without fibrin-FN matrix showed similar
levels of active protein (Fig. 2 B, lanes 1 and 2) which did
not increase with inclusion of 70Ten (Fig. 2 B, lane 3).
Clearly, tenascin-C does not act by increasing the levels of
active Cdc42. Instead, the presence of tenascin-C se-
quences in the fibrin-FN matrix caused complete suppres-
sion of RhoA activation while maintaining the level of ac-
tive Cdc42 and allowing induction of filopodia.

Filopodium Formation Is Abrogated by Active Rho

The matrix-dependent reduction in levels of active Rho
suggested that Rho activity regulates cell responses to this
provisional matrix. Activation of Rho by treatment of 3T3
cells with lysophosphatidic acid (LPA), a component of se-
rum (Ridley and Hall, 1992), induced cell spreading and
development of prominent actin stress fibers but no
filopodia on a fibrin-FN+70Ten matrix (Fig. 3, A and B).
Inhibition of active Rho by coincubation with LPA and
the specific inhibitor C3 transferase abolished assembly
of stress fibers (Fig. 3, C and D). C3 transferase alone did
not alter cell responses to fibrin-FN+70Ten matrix (not
shown).

The C3 transferase sensitivity of stress fiber formation
induced by LPA indicates that inhibition of Rho activation
is a key step in cell interactions with this matrix. To test di-
rectly the effects of active Rho, we used Ratl fibroblasts
carrying a constitutively active form of RhoA cDNA

Figure 3. Rho inactivation
causes restoration of filopo-
dia. NIH3T3 cells were se-
rum starved for 24 h either
without (A and B) or with (C
and D) 25 pg/ml C3 trans-
ferase added to the medium.
Before plating on fibrin-
FN+70Ten matrices, all cells
were pretreated with 200 ng/
ml LPA while in suspension
for 30 min. Cells were allowed
to spread for 1 h before exam-
ination by phase optics (A
and C) or visualization of the
actin cytoskeleton (B and D).
Bars, 20 pm.

916



Fibrin-FN

(RhoA-V14) under the control of a tetracycline-repress-
ible promoter (Qiu et al., 1995). Ratl cells also express en-
dogenous RhoA and, when RhoA-V14 expression was re-
pressed by tetracycline, these cells reacted to fibrin-FN or
fibrin-FN+70Ten matrices in much the same way as
NIH3T3 fibroblasts (Fig. 4, A and B). Constitutive activa-
tion of RhoA by expression of RhoA-V14 gave identical
actin organization into stress fibers in cells on fibrin-FN
and on fibrin-FN+70Ten matrix (Fig. 4, C and D). Con-
versely, cells overexpressing constitutively active Cdc42-
V12 (Qiu et al., 1997) extended filopodia and showed re-
duced actin rearrangement into stress fibers on fibrin-FN
matrix (Fig. 4 E). However, Cdc42-V12 expression did not
enhance filopodial projections on fibrin-FN+70Ten ma-
trix (Fig. 4, compare F with B). Thus, enforced RhoA acti-
vation completely reverses the cytoskeletal effects of the
tenascin-C sequences. Together, these results show that

Wenk et al. Control of Rho by Tenascin-C Matrix

Fibrin-FN-70Ten

Figure 4. RhoA activity ab-
lates effect of tenascin-C.
Ratl fibroblasts carrying ac-
tive RhoA-V14 under the
control of a tetracycline re-
pressible promoter were al-
lowed to spread on fibrin-FN
(A and C) or fibrin-FN+
70Ten matrix (B and D).
Cells under repressed condi-
tions (no active RhoA-V14
protein; A and B) or after in-
duction to express active
RhoA-V14 (C and D) were
stained with rhodamine-phal-
loidin. Ratl cells constitu-
tively  expressing  active
Cdc42-V12 were plated on fi-
brin-FN (E) or fibrin-FN+
70Ten (F) matrix for 1 h. Bar,
20 pm.

suppression of Rho activation is an important step in ma-
trix induction of filopodia.

Provisional Matrix Components Collaborate to
Organize the Cytoskeleton

Distinct cytoskeletal organizations were induced by cell
interactions with these matrices. Circumferential spread-
ing with development of stress fibers on fibrin-FN matrix
(Fig. 5, left) was contrasted by extension of actin-rich
filopodial processes detectable at the earliest time point
on fibrin-FN+70Ten matrix (Fig. 5, 12 min, right). These
results show that cells actively reorganized their cytoskele-
ton in response to tenascin-C sequences within a fibrin-FN
matrix.

FN is essential for cell interactions with this matrix.
Cells adhered poorly and did not spread on fibrin-70Ten
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Figure 5. Matrix induction of filopodia formation. Cells were
fixed and stained with rhodamine-phalloidin at the indicated
times after plating on fibrin-FN (left) or fibrin-FN+70Ten matrix
(right). Bar, 20 um.

matrix lacking FN and cell attachment was ablated with an
RGD peptide that blocks integrin-FN interactions (not
shown). In addition, matrix presentation of FN and tena-
scin-C sequences was required. A planar substrate coated
with FN and 70Ten supported circumferential fibroblast
spreading. Furthermore, soluble tenascin-C added to the
medium after cells had spread on a fibrin-FN matrix did
not induce actin reorganization (not shown). Taken to-
gether, these results show that FN and tenascin-C collabo-
rate within the context of a fibrin provisional matrix to
induce a cytoskeletal organization distinct from either pro-
tein alone. This cell regulation relies on adhesive signals
from FN through integrins and suppressive signals from
tenascin-C to Rho family GTPases.

Discussion

We have identified a novel mechanism for tenascin-C reg-
ulation of cell phenotype through suppression of Rho GTP-
ases. Inhibition of Rho activation by tenascin-C sequences
prevented stress fiber formation and allowed projection of
numerous actin-rich filopodia. Apparently, Cdc42 was
functionally masked by active Rho and, by blocking Rho
activation, filopodia replaced stress fibers. Surprisingly,
these dramatic changes were stimulated by a relatively
modest change in matrix composition, in this case by addi-
tion of a single anti-adhesive protein to an otherwise adhe-
sive network. Thus, increased tenascin-C expression can
function as a regulatory switch to counteract matrix-
derived signals that activate Rho.

The link between tenascin-C suppression of Rho activa-
tion and extension of filopodia was confirmed by induc-
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tion of stress fibers through enforced activation of RhoA
and by filopodial extension when active Rho was inhibited
by C3 transferase. Analyses of integrin clustering and focal
adhesion formation in response to FN substrates have
shown that ECM contributes to Rho-induced cytoskeletal
changes (Hotchin and Hall, 1995; Machesky and Hall,
1997) and that adhesion on FN stimulates Rho activation
in Swiss 3T3 cells (Ren et al., 1999) and NIH3T3 cells (this
report). Thus, it is clear that integrin interactions with FN
upregulate Rho activity. However, it has not been previ-
ously reported that specific ECM components can prevent
this activation. While the dynamics of GTPase activation
remain to be elucidated during the course of spreading on
these matrices, it is clear that at 1 h, levels of active RhoA
but not active Cdc42 were altered in response to variations
in ECM. It appears that the suppression of RhoA activa-
tion by tenascin-C is a key element in allowing expression
of Cdc4z2 function.

Reduced focal adhesions, rounding of adherent cells,
formation of fascin microspikes, and increased cell migra-
tion and proliferation are documented cellular responses
to tenascin-C (Spring et al., 1989; Murphy-Ullrich et al.,
1991; Wehrle-Haller and Chiquet, 1993; Fischer et al.,
1997) and could result from tenascin-C blockade of Rho
activation. Tenascin-C may downregulate cell adhesion
strength through direct cell receptor binding and signaling.
Suppression of Rho by tenascin-C receptor ligation could
either be a direct downstream response or could result
from transdominant inhibition of signals initiated by FN
receptors (Blystone et al., 1994). The alternatively spliced
region is probably not responsible for the suppression
since the effects of both small and large tenascin-C splice
variants were similar (unpublished observations). Tena-
scin-C binding to FN (Chiquet-Ehrismann et al., 1991;
Chung et al., 1995) presents an alternative regulatory
mechanism whereby cell-FN interactions are modulated,
leading to changes in FN signaling. It is of interest that fi-
broblast spreading on recombinant FN fragments indi-
cates a role for FN’s heparin domain in filopodium exten-
sion (Bloom et al., 1999). Perhaps access to this domain is
enhanced in the presence of fibrin and tenascin-C.

In the wound bed, the combination of fibrin, FN, and
tenascin-C may collaborate to induce appropriate shape
changes and migratory behavior needed to properly posi-
tion cells for tissue remodeling. The more adhesive fibrin-
FN-rich regions of the provisional matrix would promote
stable cell-matrix contacts needed for new matrix deposi-
tion and wound contraction. In a dynamic situation such as
wounds or developing tissues, the deposition of tenascin-C
may be designed to provide an important regulatory
switch that signals cells to modulate their responses to an
adhesive environment. Although tenascin-C has a signifi-
cant role in the fibrin-FN provisional matrix, tenascin-
C-null animals do not show overt defects in wound repair
(Forsberg et al., 1996). It seems likely that the presence of
functionally related proteins such as thrombospondin or
SPARC at injury sites could provide related or additional
signals that would similarly modify cell behavior (Sage and
Bornstein, 1991). This suggests the interesting hypothesis
that other antiadhesive matrix proteins contribute to cy-
toskeletal patterning and cell shape through differential
activation of Rho family GTPases.
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