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A B S T R A C T   

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs (ncRNAs) that plays important roles in 
many biological processes and major cancer diagnosis and treatment, thus becoming a hot research topic. This 
study aims to provide an in-depth review of computational piRNA-related research, including databases and 
computational models. Herein, we perform literature analysis and use comparative evaluation methods to 
summarize and analyze three aspects of computational piRNA-related research: (i) computational models for 
piRNA-related molecular identification tasks, (ii) computational models for piRNA–disease association prediction 
tasks, and (iii) computational resources and evaluation metrics for these tasks. This study shows that compu
tational piRNA-related research has significantly progressed, exhibiting promising performance in recent years, 
whereas they also suffer from the emerging challenges of inconsistent naming systems and the lack of data. 
Different from other reviews on piRNA-related identification tasks that focus on the organization of datasets and 
computational methods, we pay more attention to the analysis of computational models, algorithms, and per
formances that aim to provide valuable references for computational piRNA-related identification tasks. This 
study will benefit the theoretical development and practical application of piRNAs by better understanding 
computational models and resources to investigate the biological functions and clinical implications of piRNA.   

1. Introduction 

Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA 
(ncRNAs) [1] that are 26–32 nucleotides in length [1,2], slightly longer 
than other small ncRNAs. piRNAs have attracted the attention of many 
researchers in the fields of molecular biology, genomics, and biomedi
cine since they were first isolated from the vas deferens of male mice in 
2006 [3]. Initial studies have found that piRNAs are specifically 
expressed in animal germ cells and play an important role in germline 
integrity and stem cell development [4]. Within the past decade, 
growing evidence has continuously extended our knowledge of piRNAs, 
showing that they are also involved in many biological processes such as 
transposon silencing, histone modification, translational control, DNA 
methylation, and viral defense [5,6]. Such evidence reveals the mech
anistic insights of piRNAs in the regulation of gene expression in both 
germ and somatic cells as well as diseases caused by piRNA dysregula
tion, which may help identify new biomarkers and therapeutic targets 

for many diseases [7]. For example, piR-hsa-25781, piRhsa-28467, 
piR-hsa-1177, piR-hsa-26593, and piR-hsa-29114 may be effective bio
markers for Alzheimer’s disease [8], whereas piR-823 may be strongly 
associated with breast cancer [9], gastric cancer [10], kidney cancer 
[11], rectal cancer [12] and liver cancer [13]. Therefore, studying the 
mechanisms of piRNAs in biological processes and the potential asso
ciation between piRNAs and diseases will undoubtedly help to better 
understand the function of piRNAs and the pathogenesis of related dis
eases. Recently, a review article [14] comprehensively summarized the 
latest advances in piRNA biology, including the biogenesis, function and 
mechanism of piRNAs, as well as their novel roles in Drosophila and 
mouse germline development and human infertility, cancer and neuro
logical diseases. This article provides an important background and 
reference for this study. 

Currently, research on piRNAs has mainly focused on their molecular 
mechanisms and functions in various diseases. Biological experiments 
contribute to accurately identifying piRNAs and finding piRNA–disease 
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associations; however, such work always requires delicate and expen
sive experimental settings [15], such as gene knockout [16] and RNA 
interference [17]. In addition, because the number of piRNAs and dis
eases is continuously increasing, finding an association between them 
through biological experiments is time-consuming. In recent years, 
computational analysis approaches, such as classical machine learning 
algorithms and deep learning algorithms, have been applied in 
piRNA-related research. For example, Liu et al. [18] and Wang et al. 
[19] used support vector machine (SVM) [20] and convolutional neural 
network (CNN) [21] approaches to identify piRNAs from different 
ncRNAs. Wei et al. [22] and Zheng et al. [23] employed random forest 
(RF) [24] and Graph ATtention neural networks (GAT) [25] to predict 
potential associations between piRNAs and diseases. In addition, 
large-scale piRNA databases such as piRNABank [26] and piRBase 
[27–29] have been built for computational analysis. The hypothesis of 
this study was that computational methods can effectively assist in the 
identification of piRNAs and the prediction of piRNA–disease associa
tions; therefore, a thorough review of piRNA-related computational 
models and resources can provide valuable information for the func
tional research and clinical application of piRNAs. 

In this study, we reviewed the use of computational methods for 
piRNA molecular identification and piRNA–disease association predic
tion. The results of this study can help analyze and predict the features, 
clusters, targets, and functions of piRNAs, provide a theoretical basis 
and computational tools for revealing the biological mechanisms of 
piRNAs, help investigate and evaluate the association of piRNAs with 
human diseases, especially reproductive, cardiac, neurological, and 
cancer diseases, and provide new molecular biomarkers and drug targets 
for disease diagnosis, treatment, and prevention. In the piRNA molec
ular identification task, researchers construct different classifiers or 
clusters to identify piRNAs and their related molecules based on ma
chine learning methods, using the sequence, structure, expression, and 
functional features of piRNAs, as well as the interaction features of 
piRNAs with other molecules. Using deep learning methods, different 
neural network layers were constructed to learn the embedding repre
sentation of piRNAs and their related molecules and then identify piR
NAs and their related molecules. For example, Costa et al. [30] proposed 
a deep learning model, piRNet, to help doctors and researchers quickly 
discover transposon-derived piRNAs, thus improving the understanding 
of the role of piRNAs in transposon silencing and genome stability. Khan 
et al. [31] proposed a model named 2 L-piRNADNN to provide doctors 
and researchers with a fast and accurate method and tool for identifying 
functional piRNAs, thus improving the utilization efficiency and value of 
functional piRNAs. 

In addition, in the piRNA–disease association prediction task, since 
the number and function of known piRNAs are still very limited, the 
experimental verification of the association between piRNAs and dis
eases is time-consuming and resource-intensive. Using computational 
methods to predict the association between piRNAs and diseases can 
help doctors and researchers quickly discover the role of piRNAs in 
different diseases, thus improving the understanding and identification 
of diseases. For example, iPiDA-sHN [32] predicted that piR-has-1849, 
piR-hsa-23209, piR-hsa-23210, piR-hsa-15023, and piR-hsa-1823 were 
associated with Alzheimer’s disease, and these piRNAs showed different 
expression levels in patients with Alzheimer’s disease than in normal 
people and may be related to neuronal damage and repair. iPiDi-PUL 
[22] predicted that piR-hsa-1849 was associated with breast cancer, 
and it was downregulated in breast cancer tissues and may be used as a 
potential biomarker for breast cancer. iPiDA-LTR [33] predicted that 
piR-hsa-23210 and piR-hsa-23209 were associated with multiple dis
eases, and their target genes played important roles in human sper
matogenesis and nervous system development and may be key 
therapeutic targets. iPiDA-GCN [34] predicted that piR-hsa-31280 and 
piR-hsa-8245 were associated with cardiovascular diseases, and they 
were abnormally expressed in cardiovascular disease tissues and may be 
related to cardiac function and repair. 

Efforts have been made to summarize the computational knowledge 
in piRNA-related research. Liu et al. [35] reviewed computational 
methods and resources for identification tasks related to piRNAs, where 
feature engineering approaches and data sources for piRNA-related 
identification were summarized taxonomically. Zhang et al. [36] 
investigated existing piRNA databases and outlined computational 
methods for piRNA functions. Briefly, these studies retrospectively 
analyzed piRNA-related computational resources and methods. How
ever, they involved a few summative investigations into current 
computational models for piRNA-related tasks, including architectures, 
algorithms, and performance comparisons, which are essential as an 
informative reference for piRNA-related computational studies. In 
addition, not all up-to-date computational studies, especially 
state-of-the-art models for piRNA-related prediction, have been included 
in these overviews. 

This study provides a comprehensive review of the computational 
resources and methods for piRNA-related prediction tasks. The aim of 
this study was to help researchers better understand the recent advances 
in computational piRNA studies, especially emerging deep learning 
technologies. To this end, this study investigates computational models 
for these tasks, including architectures, algorithms, and performances, 
and discusses research challenges and perspectives. This study offers 
practical guidance for the computational modeling of piRNA-related 
prediction tasks. 

The remainder of this manuscript is organized as follows. Section 2 
presents the relevant dataset resources. Section 3 reviews the perfor
mance evaluation metrics of the computational methods for piRNA- 
related tasks. Section 4 summarizes the computational methods used 
for piRNA-related identification. Section 5 focuses on computational 
models for piRNA–disease association prediction. Finally, Section 6 
discusses the limitations and challenges of the current computational 
methods for piRNA-related tasks and provides perspectives for future 
research. 

2. Databases 

With the development of high-throughput sequencing technologies, 
an increasing number of piRNAs has been identified. Two public data
bases, NONCODE [37] and NCBI Genetic Expression Omnibus [38], 
were the primary data sources for the construction of initial piRNA 
datasets. With the accumulation of piRNA-related knowledge, datasets 
for various piRNA-related computational tasks have recently been 
established. Such datasets can be taxonomically divided into six types: 
piRNA comprehensive annotation databases, piRNA cluster annotation 
databases, piRNA target databases, piRNA isoform annotation data
bases, PIWI-bound piRNA databases, and piRNA–disease association 
databases; the last four of which are mainly built for specific tasks. 

2.1. piRNA comprehensive annotation databases 

These databases are piRNAdb [39], piRNABank [26] and piRBase 
[27–29], which provide comprehensive information on RNA sequences, 
alignments, clusters, genomic elements, and targets. piRBase is the 
largest comprehensive piRNA annotation database available. It was first 
released in 2014 and updated to its third version in 2021. Currently, it 
contains more than 181,000,000 unique piRNA sequences from 44 
species. 

2.2. piRNA cluster databases 

piRNA clusters are piRNA-producing loci that are transcribed from 
one or both DNA strands into large precursor piRNAs, which are then 
converted into mature piRNAs [40]. piRNA cluster databases, including 
piRNAQuest [2] and piRNAclusterDB [41,42], focus on the annotation 
of piRNA cluster information. piRNAQuest annotates the piRNA clusters 
of humans, mice, and rats and provides piRNA feature motifs and 
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expression profiles; it is a database that uses the piRNA cluster as a 
central resource, which was first released in 2014 and updated to the 
third version in 2021. Currently, the piRNAclusterDB contains piRNA 
sequences that have expanded from 12 to 51 species. 

2.3. piRNA target databases 

To facilitate the development of piRNA target prediction, piRNA
target [43] and piRTarBase [44] are built. piRNA targets contain in
formation about human piRNAs, such as annotations, sequences, 
parental genes, targets, expression, mutations, and methylation profiles. 
However, they are not publicly accessible. piRTarBase uses pirScan [45], 
a piRNA target prediction tool, to predict piRNA target sites in published 
mRNA and small RNA sequencing data. These databases can help users 
to identify functional piRNA targets. 

2.4. piRNA isoform databases 

piRNA isoforms arise from their maturation process, especially the 
trimming step, which can modulate the ends of piRNAs, thereby 
resulting in variations in piRNA length [46]. IsopiRBank [47] was the 
first integrative database to focus on piRNA isoforms. Through the 
analysis of 2154 small RNA sequencing datasets from four species, 
including Homo sapiens, Mus musculus, lion, and Drosophila melanogaster, 
IsopiRBank collected 874,913,9 piRNA isoforms using the CPSS algo
rithm [48,49]. 

2.5. PIWI-bound piRNA databases 

piRNA-IPdb [50] is a database based on PIWI protein-bound piRNA 
sequences for analyzing the data and functions of small ncRNA. This 
database provides a more accurate and reliable source of data on piR
NAs. It includes 18,821,815 piRNA sequences that are only bound to 
PIWI proteins screened from piRBase; features of PIWI protein-bound 
piRNAs, such as length distribution, first uridine preference, and 
reverse complementary overlap, to verify the characteristics and clas
sification of piRNAs; and relationships between piRNAs and miRNAs, 
such as overlap, complementarity, and co-expression, to discover the 
possible duality and regulatory mechanisms between piRNAs and 
miRNAs. 

2.6. piRNA–disease association databases 

piRDisease [51] was the first database to study the piRNA–disease 
association; however, the website of the database is currently inacces
sible. piRPheno [52] is a database that provides a reference for the as
sociation between piRNA and diseases. It contains 9057 associations 
between 474 piRNAs and 204 diseases. Each association is assigned a 
clinical correlation label with a confidence score according to the evi
dence supported by the experiments. 

The databases mentioned above provide many features, including 
comprehensive piRNA-related data, experimental piRNA–disease asso
ciations, piRNA sequence and location information, disease semantics, 
and functional information. These databases effectively facilitate 
computational studies on piRNAs. These databases are summarized in  
Table 1. 

Existing piRNA databases were further classified into three categories 
according to the data collection methods: methods based on small RNA 
sequencing, methods based on experimental verification, and methods 
based on literature collection. Among them, the data collection method 
based on sequencing can yield a large number of piRNA sequences and 
cluster information, reflecting the expression level and distribution 
characteristics of piRNAs, making it suitable for discovering new piRNAs 
and studying their biological functions. However, this method requires 
high-throughput sequencing technology and professional data analysis 
software and has a high cost, large data volume, high analysis difficulty, 

and a certain sequencing error rate and bias. The data collection method 
based on experimental verification can directly observe and verify the 
targets and interactions of piRNAs, reflecting the regulatory mechanism 
and effect of piRNAs, and is suitable for studying the functional genomics 
and proteomics of piRNAs. However, experimental verification methods 
require specific experimental conditions and materials, are affected by 
experimental design and operation, have low data reproducibility and 
comparability, and have difficulty covering the whole genome range. 
Data collection methods based on the literature can use existing research 
results and data, save time and resources, and discover new knowledge 
and rules suitable for data mining, knowledge graphs, and other sce
narios. However, this method requires the screening and evaluation of the 
quality and credibility of the literature. Data integrity and consistency are 
poor, and there may be omissions and biases; thus, it is difficult to reflect 
on the latest research progress. 

In Table 1, it can be seen that some databases use multiple infor
mation collection methods at the same time, which increases their in
formation volume and reliability. However, different databases have 
different definitions and annotations for piRNAs, which may affect their 
accuracy and consistency. Researchers must compare and verify the 
information when using these databases. Different piRNA databases 
have different characteristics and applicabilities, and appropriate data
bases can be selected for queries and analyses according to different 
research purposes. Therefore, the selection of appropriate databases 
should be based on the specific needs and objectives of the research and 
should comprehensively consider factors such as data source, volume, 
quality, and annotation information of the database. In addition, these 
databases provide many features, including comprehensive piRNA- 
related data, experimental piRNA–disease association, piRNA 
sequence and location information, disease semantics, and functional 
information. These databases have effectively promoted the computa
tional research on piRNAs. 

3. piRNA-related molecule identification 

Over the past few decades, computational efforts have been made to 
identify unexplored piRNA characteristics and the association between 
piRNAs and diseases using traditional machine learning algorithms, 
most of which are highly dependent on feature engineering methods. To 
this end, the features of piRNA-related tasks have been investigated, 
such as piRNA sequence features (k-mer-based features) [53], piRNA 
cluster features [54,55], physicochemical features [56], thermodynamic 
features, and their combinations [35]. These features contribute to the 
performance of machine learning algorithms, but they require hand
crafted labeling. To alleviate the manual work, the research community 
has turned to deep learning technologies to automatically learn feature 
representations based on neural network models [57]. For example, 
deep feedforward neural networks (DFNN) [30] and CNN [19] have 
been employed to learn feature representations of piRNA sequences, 
whereas GAT [23] has been built to learn the structural topology of 
piRNA–disease association networks for piRNA identification. Mean
while, some studies also retained handcrafted features, which helped 
alleviate the problem of data sparsity [56,58,59]. Fig. 1 shows the 
general computational framework for piRNA-related identification. 

This section summarizes the computational methods for piRNA- 
related identification tasks, which are further divided into five cate
gories: piRNA identification, transposon-derived piRNA identification, 
functional piRNA identification, piRNA target prediction, and piRNA 
cluster identification. All tasks have different goals; however, some of 
them may share the same features and algorithms. Table 2 lists the 
computational methods used for these tasks. 

3.1. piRNA identification 

Computational piRNA identification can be treated as a classification 
task, and it always includes two steps: 1) constructing experimental 
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Table 1 
piRNA database resources.  

Type Name Collection 
methods 

Species Description Advantages Disadvantages URL 

piRNA 
comprehensive 
annotation 
database 

piRNAdb [39] sequencing 
and literature 

Homo sapiens, Mus 
musculus, Rattus 
norvegicus, Cricetulus 
griseus, C. elegans, and 
Drosophila 
melanogaster 

This database contains piRNA database 
resources of 16 data sets of 6 species. 

User-friendly, provides powerful 
storage and search functions, 
contains information on various 
species, and updates frequently. 

There is no strict definition and 
annotation of piRNA, which may lead to 
false positives or false negatives. The 
quality and consistency of the data need 
to be improved, and the information on 
piRNA function and disease relevance is 
lacking. 

https://www.pir 
nadb.org/  

piRNABank [26] sequencing 
and literature 

Humans, mice, rats piRNABank contains 23,439 human-, 
39,986 mouse-, and 38,549 rat-specific 
piRNA sequences. 

Contains the most piRNA sequences 
and datasets and provides various 
search and download options. 

There is no strict definition and 
annotation of piRNA. 

http://pirnab 
ank.ibab.ac.in/  

piRBase [27–29] sequencing 
and literature 

44 species including 
humans 

PiRBase is currently the largest piRNA 
sequence data repository. 

Contains the most comprehensive 
piRNA information, provides rich 
annotations and visualization 
functions, contains piRNA-related 
epigenetic data and disease 
information, and updates frequently. 

The web interface and operation are 
somewhat complex, and the information 
on piRNA function and disease relevance 
is lacking. 

http://bigdata. 
ibp.ac.cn/piRBa 
se/ 

piRNA cluster 
database 

piRNAclusterDB  
[41] 

sequencing 
and literature 

12 species including 
humans 

The first database resource regards the 
piRNA genome cluster as a biological source 
of piRNA. 

Provides detailed information and 
classification of piRNA clusters, 
contains information on various 
species, and updates frequently. 

The database has a small amount of data 
and a narrow coverage. 

http://www.sma 
llrnagroup-ma 
inz.de/p 
iRNAclusterDB.ht 
ml  

piRNAQuest [2] sequencing 
and literature 

Humans, mice, rats The database contains piRNA sequences 
from 41,749 humans, 890,078 mice, and 
66,758 rats. 

Provides prediction and analysis 
tools for piRNA sequences and 
clusters. 

The data quality is uneven and the 
annotation information is lacking. 

http://bicresour 
ces.jcbose.ac. 
in/zhumur/pir 
naquest 

piRNA target 
database 

piRNAtarget  
[43] 

sequencing 
and literature 

Humans This database is mainly used to study the 
functions of human piRNA and its targets. 

Provides prediction and analysis 
tools for piRNA targets. 

The database has a small amount of data 
and a narrow coverage. 

http://120.108.1 
02.11/sophia/pi 
RNAtarget  

piRTarBase [44] experiment 
and literature 

C. elegans The database will use the pirScan tool for 
prediction and experimental methods to 
discover new piRNA targets. 

Provides experimental verification 
information on piRNA targets and 
contains information on various 
species. 

The database has a small amount of data 
and a narrow coverage. 

http://cosbi6.ee. 
ncku.edu.tw/p 
iRTarBase 

piRNA isoform 
database 

IsopiRBank [47] sequencing 
and literature 

Homo sapiens, Mus 
musculus, Danio rerio, 
and Drosophila 
melanogaster 

This database is the first data resource to 
focus on the piRNA isoforms. 

Provides annotation and analysis 
functions for isomiR piRNA, data is 
professional and focused. 

The database has a small amount of data 
and a narrow coverage. 

http://mcg.ustc. 
edu.cn/bsc/isopi 
r/index.html 

PIWI-bound 
piRNA database 

piRNA-IPdb [50] experiment 
and 
sequencing 

23 species including 
mice and rats 

piRNA-IPdb database contains 23 datasets 
screened from piRBase. It collects about 
18.9 million unique sequences of piRNA 
that are bound to PIWI proteins, covering 
different developmental stages, biological 
samples, and PIWI protein types. 

Provides interaction information on 
piRNA and PIWI proteins, contains 
information on various species, and 
updates frequently. 

There is no strict definition and 
annotation of piRNA, which may lead to 
false positives or false negatives. The 
quality and consistency of the data need 
to be improved, and the information on 
piRNA clusters, transposons, targets, 
function, and disease relevance is 
lacking. 

https://ipdb2.sh 
inyapps.io/ip 
db2/ 

piRNA–disease 
association 
database 

piRDisease [51] literature Humans, mice, rats The number of piRNAs:4796, diseases: 28, 
associations:7939 

Provides association data of piRNA 
and disease, data is reliable and 
accurate. 

The data volume is small, and the current 
data website is inaccessible. 

http://www.piwi 
rna2disease.org/i 
ndex.php  

piRPheno [52] Literature Humans The number of piRNAs:474, diseases: 204, 
associations:9057 

Provides association data of piRNA 
and disease, data is reliable and 
accurate. 

The data volume is small but updated in 
time. 

http://www. 
biomedical-web. 
com/pirpheno  
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datasets in which positive samples are from piRNA database resources 
and negative ones are from homologous databases of non-piRNAs [19]; 
2) employing computational models to identify piRNAs based on the 
experimental datasets. 

The initial work on traditional machine learning was conducted by 
Betel et al.[3], who proposed a position-specific scoring matrix (PSSM) 
algorithm to identify mouse piRNAs. The experimental results of PSSM 
demonstrated the effectiveness of the SVM-based model for piRNA 
identification, and further studies were conducted to improve its per
formance. Zhang et al. [53] extracted piRNA sequence features using the 
k-mer algorithm [60] and employed an SVM classifier to identify piRNAs 
in the NONCODE database 2.0 [37]. Brayet et al. [54] built a 
multiple-kernel-based SVM algorithm called piRPred, in which the 
kernels were built to represent heterogeneous features. Pian et al. [61] 

proposed a two-stage approach by first clustering piRNAs of homologous 
families via n-gram models and then identifying potential piRNAs using 
SVM-based classifiers. In addition, other statistical methods were used to 
identify piRNAs. For example, Liu et al. [62] applied the computational 
biology tool Teiresias [63] to identify motifs of variable lengths in 
mouse piRNA and non-piRNA sequences and built features for classifi
cation based on them. Menor et al. [64] utilized an empirical Bayesian 
kernel method to predict mature miRNAs and piRNAs, thereby avoiding 
the need for a direct genome reference. Rahiman et al. [65] developed a 
method based on feature calculations to identify secondary and tertiary 
piRNA structures. 

Traditional machine learning methods rely on effective feature en
gineering [35]. To this end, researchers have continuously focused on 
building appropriate features for task-specific modeling. For example, 

Fig. 1. The general calculation flow of Piwi-interacting RNA-related identification tasks.  
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Table 2 
Methods of piRNA-related identification.  

Type Category Method Algorithm Description Advantage Disadvantage Date 

piRNA 
molecule 
identification 

Classical 
machine 
learning 
methods 

Betel et al. [3] SVM Identifying piRNA uses 
specific score matrix 
algorithm (PSSM) based on 
specific position only mice 
datdset 

Based on the position-specific 
scoring matrix, it can capture 
the conservation and variation 
of piRNA sequences 

Only applicable to mouse 
piRNA, without 
considering piRNA of 
other species 

2007   

piRNAPredictor  
[53] 

Fisher Identifying piRNA based on 
k-MER sequence features 

Based on the k-mer algorithm, 
it can extract the global 
features of piRNA sequences 

Ignore the local features 
and structural 
information of piRNA 
sequences 

2011   

piRPred [54] Multi-kernels SVM Combining the four features 
of piRNA to identify piRNA 

Based on the multi-kernel 
SVM algorithm, it can use 
different types of 
heterogeneous features to 
improve the classification 
performance 

Need to adjust the 
parameters of multiple 
kernel functions, which 
increases the 
computational 
complexity 

2014   

Pibomd [62] SVM Identifying piRNA based on 
motif feature and SVM 
algorithm 

Based on the Teiresias tool, it 
can identify variable-length 
motifs in piRNA and non- 
piRNA sequences and 
construct classification 
features 

Need to set the minimum 
and maximum lengths of 
the motifs, which may 
cause feature 
redundancy or missing 

2014   

McRUM [64] Bayesian method Relying on the nucleotide 
composition of the read to 
classify miRNA and piRNA 

Based on the empirical 
Bayesian kernel method, it 
avoids the need for direct 
genome reference 

Need to rely on known 
data, which may not be 
able to discover new 
piRNA 

2015   

Rahiman et al.  
[65] 

SVM based on L1 
Gaussian kernel 

Identifying piRNA by 
parameter-based method 
only on human datdaset 

Developed a feature 
calculation-based method to 
improve the diversity of 
features 

Need to predict the 
structure of piRNA, 
which increases the 
computation time 

2015   

Liu et al. [18] SVM Identifying piRNA based on 
sequence feature and SVM 
algorithm 

Based on weighted k-mer and 
wildcard-weighted k-mer, and 
considering the relative 
importance of nucleotides 

It does not consider the 
structural features of 
piRNA, which may lose 
some information 

2016   

Seyeddokht et al. 
[66] 

SVM A method for identifying 
human piRNA based on 
SVM algorithm 

Using 48 heterogeneous 
features to encode piRNA, 
improving the 
comprehensiveness of features 

Need to normalize and 
select features, which 
may introduce noise 

2016   

piRNAdetect  
[116] 

SVM N-gram model was used to 
extract the features of 
prediction sequence 

Based on the n-gram model, it 
can cluster piRNA molecules 
of the same homologous 
family, reducing the 
classification difficulty 

Need to determine the 
length of the n-gram 
first, which may affect 
the feature selection 

2017   

IpiRId [55] multi-kernel fusion 
SVM 

This method uses a large 
number of heterogeneity 
features 

Using 12 different types of 
features to improve the 
accuracy and robustness of 
classification 

Need to adjust the 
parameters of the twelve 
kernel functions, which 
increases the 
computational 
complexity 

2017   

piRNAPred [67] SVM The algorithm the 
secondary structure, 
thermodynamic and 
physicochemical properties 
of RNA and other 
hybridization features 

Based on hybrid features, it 
can consider the k-mer 
nucleotide composition, 
secondary structure, 
thermodynamics and 
physicochemical properties of 
piRNA 

Need to normalize and 
select features, which 
may introduce noise 

2019  

Deep 
learning 
methods 

V- 
ELMpiRNAPred  
[61] 

V-ELM This method integrates 
short sequence motif 
features and K-mer features 

Based on the extreme learning 
machine (ELM), it can provide 
generalization performance 
and fast learning speed 

Need to merge multiple 
independent ELMs and 
make decisions through 
voting methods, which 
increases the 
computational 
complexity 

2017   

piRNN [19] CNN The first used deep learning 
to identify piRNA 

Based on CNN and FCNN, it 
can obtain the feature 
representation of piRNA, 
improving the classification 
accuracy 

Needs a lot of 
parameters, resulting in 
high computational cost 

2018   

Khan et al. [71] parallel DNN The model is highly 
extensible, ault tolerance 
and scalability 

Based on parallel multi-layer 
DNN model, it can identify 
piRNA sequences, improving 
the computational efficiency 

Need to use the Spark 
framework to parallelize 
the computation of large- 
scale DNN nodes, which 
increases the system 
complexity 

2020 

(continued on next page) 
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Table 2 (continued ) 

Type Category Method Algorithm Description Advantage Disadvantage Date   

LSTM4piRNA  
[74] 

LSTM A piRNA identification 
method suitable for the 
analysis of large-scale 
databases. 

It does not require manual 
feature selection and can 
automatically learn sequence 
features. 

It cannot fully predict all 
piRNAs and needs to 
integrate biological prior 
information to overcome 
this limitation. 

2023 

piRNA cluster 
identification  

proTRAC [117] probability 
analysis 

The first tool for piRNA 
cluster identification, 
visualization and analysis. 

Based on statistical learning, it 
comprehensively considers 
the features of cluster 
candidates 

Need to assume that non- 
piRNA follows a uniform 
distribution, which may 
not conform to the actual 
situation 

2012  

piClust [118] DBSCAN The tool prevides web 
server, and inputs a small 
RNA-seq data, and outputs 
piRNA clusters. 

Based on clustering algorithm, 
it does not need to assume the 
uniform distribution of non- 
piRNA 

Need to determine the 
threshold, which may 
affect the clustering 
results 

2014  

PILFER [119] probability 
analysis 

The tool is state-of-the-art 
(SOTA) on piRNA cluster 
identification task. 

Based on sliding window, it 
has higher accuracy, less 
memory and time 
consumption 

Need to determine the 
size of the sliding 
window 

2017 

transposon- 
related piRNA 
identification 

Classical 
machine 
learning 
methods 

Piano [77] SVM The tool is a piRNA 
annotation program using 
piRNA-transposon 
interaction information 

Based on the structural 
information of piRNA- 
transposon sequences, 
discriminant features are 
constructed 

Expert feature selection 
is required 

2014 

piPipes [120] MACS2 A pipeline analysis method 
is provided for piRNA and 
transposon analysis 

Based on the ensemble 
learning method, multiple 
features of transposon-derived 
piRNA are integrated to 
improve the classification 
performance 

The parameters of the 
ensemble learning need 
to be adjusted, which 
increases the 
computational 
complexity 

2015 

Li et al. [87] GA-WE Six sequence derived 
features were extracted to 
represent piRNA sequence 

Based on the genetic 
algorithm weighted ensemble 
method, 23 features are used 
to identify transposon-derived 
piRNA, improving the 
diversity of features 

The fitness function of 
the genetic algorithm 
needs to be determined, 
which may affect the 
weight of the features 

2016 

Deep 
learning 
methods 

piRNet [30] DFNN A deep learning model for 
human piRNA classification 

Based on the deep learning 
model, the feature expression 
ability is improved 

A large number of 
parameters are required, 
resulting in high 
computational cost 

2021 

piRNA target 
prediction 

Classical 
machine 
learning 
methods 

Chan et al.  
[107] 

frequency 
distribution 

A kind of frequency 
distribution method is 
proposed to identify piRNA 
molecules of multiple 
species 

Usually refer to miRNA target 
site prediction tools to find 
potential piRNA target sites 

A large number of 
experimentally validated 
datasets and task-specific 
feature selection are 
required 

2016 

pirnaPre [104] SVM A SVM classifier was used to 
identify piRNA targets on 
mRNA at the genome-wide 
level 

Using CLIP-Seq features and 
position-derived features, the 
accuracy of the model is 
improved 

Insufficient 
generalization ability for 
other species, and 
contains unverified 
negative samples, which 
may lead to an increase 
in false positive rate 

2016 

Deep 
learning 
methods 

Yang et al. [115] CNN&Muti-head 
attention&MLP 

A deep learning model 
based on multi‑head 
attention and MLP by using 
piRNA sequences one-hot 
encoded to predict piRNA 
target sites. 

Based on the multi-head 
attention network to extract 
the binding rules of piRNA- 
mRNA 

A large number of 
parameters are required, 
resulting in high 
computational cost 

2021 

Singh and 
Mallick [121] 

- In this article, the authors 
used a combination of 
miRanda algorithm and 
MFOLD program to analyze 
the sequence and structural 
features of piRNA target 
sites based on CLIP-Seq 
data. 

Using the CLIP-Seq-based 
dataset, the sequence and 
structural features of piRNA 
target sites were analyzed, and 
some features that can 
improve the accuracy of 
piRNA target prediction were 
proposed 

No prediction model was 
built, only feature 
analysis was performed 

2021 

Functional 
piRNA 
identification 

Classical 
machine 
learning 
methods 

2L-piRNA [91] two-layer SVM Further identifying whether 
the piRNA sequence has the 
role of instructing target 
mRNA deadenylation 

Using a two-layer ensemble 
classification model, the 
accuracy and robustness of the 
classification are improved 

The feature extraction 
method is relatively 
simple, without 
considering the 
structural information of 
the sequence 

2017 

2L-piRNAPred  
[93] 

two-layer SVM The optimized feature 
vectors are used for 
prediction 

Based on 2 L-piRNA, more 
features are added, further 
improving the accuracy of the 
classification 

The dimension of the 
feature space increases, 
resulting in high 
computational cost 

2018 

(continued on next page) 
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Liu et al. [18] proposed a piRNA identification method based on 
sequence features, including weighted k-mer, weighted k-mer with 
wildcards, location-specific value, and piRNA length feature. Seyed
dokht et al. [66] used 48 heterogeneous features to encode piRNAs, 
including sequence and structural features. Boucheham et al. [55] pro
posed a machine learning model with 12 kernels, each of which 
employed a different feature type. Monga et al. [67] introduced a clas
sification model, piRNAPred, which considered the hybrid features of 
piRNAs, including k-mer nucleotide composition, secondary structure, 
and thermodynamic and physicochemical properties. 

With the development of deep learning technologies [68], the 
research community has turned to deep neural network (DNN) models 
to explore more effective feature learning methods for piRNA identifi
cation. For example, Cao et al. [69] proposed a classification model 
called V-ELM to identify piRNAs. This model is based on an extreme 
learning machine (ELM) [70], which is a single-hidden layer feedfor
ward network that offers generalization performance and fast learning 
speed. The V-ELM model improves it by merging multiple independent 
ELMs and making decisions using a voting method. Pian et al. [61] 
proposed an optimized version of V-ELM by employing multiple short 
sequence motif features. These features indicate the typical character
istics of piRNA sequences that are helpful for identification. Wang et al. 
[19] proposed a method called piRNN using a CNN to obtain feature 
representations of piRNAs and a fully connected neural network for 
classification. This method achieved > 90 % accuracy in identifying 

piRNAs in Caenorhabditis elegans, Drosophila melanogaster, rats, and 
humans. However, deep learning-based models always have a large 
number of parameters, which may lead to high computational costs. To 
address this problem, Khan et al. [71] proposed a parallel multilayer 
DNN model [72] to identify piRNA sequences, where the Spark frame
work [73] was used to calculate the number of nodes of a large-scale 
DNN in parallel. To suit the analysis of large-scale databases, Chen 
et al. [74] proposed a novel deep learning-based method for piRNA 
identification, named LSTM4piRNA. The method utilizes compact LSTM 
networks to effectively analyze RNA sequences from massive datasets to 
identify piRNA. The method achieved excellent performance on the 
piRBase database. 

3.2. Transposon-derived piRNA identification 

piRNAs play key roles in transposon silencing in the germline by 
protecting the germline genome from transposon expression [75]. 
Transposon-derived piRNAs are produced during transposon silencing, 
and identifying transposon-derived piRNAs helps to better understand 
their functions [76]. 

Transposon-derived piRNAs contain structural information about the 
piRNA transposon sequence, which can be leveraged to build discrimi
native features. Based on this, Wang et al. [77] proposed a classification 
algorithm called Piano to identify transposon-derived piRNAs based on 
RNAplex [78], a tool used to find RNA-binding sites. However, it always 

Table 2 (continued ) 

Type Category Method Algorithm Description Advantage Disadvantage Date 

2lpiRNApred  
[58] 

SRC&SVMMDRBF Feature selection algorithm 
based on LFE-GM is used to 
optimize features 

A feature selection algorithm 
is proposed, which can reduce 
the dimension of the feature 
space and reduce the 
computational cost 

The effect of feature 
selection may be affected 
by the dataset, and it 
does not have 
universality 

2020 

Deep 
learning 
methods 

2L-piRNADNN  
[31] 

Multilayer 
Perceptron 

Using two layers of deep 
neural networks model 

Using deep neural network to 
build a classification model, 
improving the accuracy 

Using dinucleotide 
autocovariance (DAC) to 
represent the sequence, 
ignoring the global 
sequence information, 
and deep neural network 
is prone to overfitting 

2020 

2S-piRCNN [98] CNN Using two layers of CNN 
model 

Using convolutional neural 
network (CNN) to build a 
classification model, which 
can effectively capture the 
local features of the sequence 
and avoid overfitting 

CNN has more 
parameters and requires 
a larger dataset to train 

2020 

piRNA (2L)- 
PseKNC [56] 

Multilayer 
Perceptron 

Using two layers of deep 
neural networks model 

Based on the neural network 
model, using structural 
information and global 
sequence information to 
represent the sequence, 
improving the sequence 
expression ability 

Using deep neural 
network as the 
classification model, 
there is a risk of 
overfitting 

2020 

Deep-piRNA  
[95] 

Multilayer 
Perceptron 

improving the prediction 
accuracy of piRNA 
molecules and their 
functions using a multi- 
layer deep neural network 
model. 

Using four feature extraction 
methods to represent the 
sequence, improving the 
diversity and richness of the 
sequence 

Using deep neural 
networ as the 
classification model, 
there is a risk of 
overfitting 

2022 

piRNA-CNN  
[99] 

CNN Identifying piRNA based on 
Word2vec and CNN is the 
best method at present 

Based on Word2Vec to obtain 
the interpretable 
representation of piRNA, 
which can capture the 
semantic information of the 
sequence 

Word2Vec training 
requires a lot of data, and 
CNN has more 
parameters, increasing 
the computational 
complexity 

2021 

Liu et al. [101] GloVe Using a deep learning 
model based on natural 
language processing 
techniques for sequence 
embedding with attention 
mechanism to predict 
exosomal piRNAs. 

Based on the GloVe algorithm 
to pre-train subsequence 
vectors, and using self- 
attention mechanism to build 
a sequence embedding model, 
improving the accuracy and 
interpretability 

GloVe algorithm training 
requires a lot of data, and 
self-attention 
mechanism has high 
computational 
complexity 

2022  
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requires elaborate feature selection. In contrast, ensemble learning helps 
mitigate the effect of inappropriate modeling and feature combinations 
[79–81]. Luo et al. [82] utilized an ensemble learning method to identify 
piRNAs by integrating six features of transposon-derived piRNAs: the 
spectrum profile [83,84], mismatch profile [85], subsequence profile 
[85], PSSM [86], pseudo-dinucleotide composition [83,84] and local 
structure sequence triplet elements [77]. Luo et al. [87] proposed a 
genetic algorithm-based weighted ensemble method to identify 
transposon-derived piRNAs with 23 features. Table 3 shows the per
formance of current machine learning methods for transposon-derived 
piRNA identification. 

Deep learning-based methods help mitigate human effort in feature 
selection for transposon-derived piRNA identification. For example, 
Costa et al. [30] proposed a deep learning model called piRNet, which 
included eight DFNNs, each of which had different hyperparameter 
configurations. The best configuration was investigated during the 
training stage and utilized in test one. The experimental results showed 
that piRNet outperformed two traditional machine learning models, 
SVM and RF, and the neural network model, piRNN. 

3.3. Functional piRNA identification 

Functional piRNAs are a class of small ncRNAs that form RNA–pro
tein complexes by interacting with the piwi-subfamily of Argonaute 
proteins. They are mainly involved in the epigenetic and post- 
transcriptional silencing of transposable elements and other spurious 
or repeat-derived transcripts in germ cells, but they can also regulate 
other genetic elements [88]. Unlike nonfunctional piRNAs, functional 
piRNAs target mRNA deadenylation, which promotes mRNA stability 
and translation efficiency [89,90]. Predicting functional piRNAs can 
facilitate an in-depth understanding and research of piRNA systems. 
Other piRNAs may have unknown roles or associations with diseases. 
Therefore, predicting them can also help reveal their true functions and 
potential applications in living organisms. 

Computational efforts have been made to identify functional piRNAs. 
Formally, determining whether an RNA molecule is functional piRNA or 
other piRNA, non-piRNA is a tri-classification task. However, it is 
practically treated as a two-stage process, that is, to first determine 
whether an RNA molecule is a piRNA and then judge whether it is a 
functional molecule. For example, Liu et al. [91] proposed a two-layer 
ensemble classification model, 2L-piRNA [92] which achieved accu
racies of 86.1 % and 77.6 % at the first and second stages, respectively. 
Li et al. [93] built an improved version named 2 L-piRNAPred with more 
features and achieved 89.0 % and 84.0 % accuracy in the first and 
second stages, respectively. However, the abundance of features results 
in increased computational costs. To address this, Zuo et al. [58] pro
posed a feature selection algorithm, Luca Fuzzy Entropy and Gaussian 
Membership function, to reduce the dimensions of the feature space. 

Recent studies on functional piRNA identification have turned to 
deep learning technologies, although most still follow a two-stage 
strategy. For example, Khan et al. [31] proposed a model named 
2 L-piRNADNN, where a DNN was first employed to classify each RNA 
sequence into two classes, piRNA and non-piRNA, and the other was 
then employed to determine whether it was functional or non-functional 
if it was a piRNA. The experimental results indicated that the two models 

achieved accuracies of 91.81 % and 84.52 %, respectively. However, this 
model adopts a simple double nucleotide autocovariance for sequence 
representation [84], ignoring global sequence information [94]. Khan 
et al. [56] proposed an improvement by leveraging structure informa
tion and global sequence-order information for sequence representation; 
the experimental results showed that the two models achieved accu
racies of 94.73 % and 85.21 %, respectively. They also built Deep-piRNA 
[95] using four feature extraction methods, namely normalized 
Moreau-Broto autocorrelation, Z-curve-12-bit, single nucleotide 
composition, and dinucleotide composition, to represent RNA sequences 
and achieved accuracies of 96.13 % and 85.54 % in each stage, 
respectively. However, DNNs are prone to overfitting during the training 
process [96,97]; hence, researchers tend to utilize more reliable neural 
network models. For example, Ali et al. [98] proposed a two-layer model 
named 2S-piRCNN to identify functional piRNAs based on a CNN and 
achieved accuracies of 93.60 % and 90.10 % in the first and second 
layers, respectively. Tahir et al. [99] employed Word2Vec [100], a 
distributed feature representation method, to obtain an interpretable 
representation of piRNA, and proposed a two-layer model piRNA-CNN 
that was also based on CNN. 

Some studies have leveraged the advantages of natural language 
processing technologies to model functional piRNA sequences. For 
example, Liu et al. [101] developed an end-to-end model in which a 
piRNA sequence is treated as a sentence and each k-mer subsequence is 
treated as a word in the sentence. They pre-trained subsequence vectors 
using the GloVe algorithm and built a sequence-embedding model with 
a self-attention mechanism to extract different aspects of multiple vector 
representations from piRNA sequences. The model achieved an accuracy 
of 82.0 % in identifying exosomal piRNAs. They also revealed the key 
subsequences of exosomal piRNAs via an attention mechanism. 

3.4. piRNA target identification 

piRNAs can identify and silence their targets through complemen
tary pairing with mRNAs, thereby participating in important biological 
processes, such as transposon suppression, germline development, and 
genome stability [89,102,103]. Therefore, the accurate identification of 
piRNA target sites is of great value for revealing the functional mecha
nisms and biological significance of piRNAs. However, owing to the 
complexity and diversity of piRNA targeting rules as well as the lack of 
large-scale experimental validation datasets, the prediction of piRNA 
target sites still faces huge challenges [44,45,104]. 

Computational methods for piRNA target site prediction are mainly 
divided into two categories: rule-based and machine learning-based 
methods [105]. Rule-based methods follow the principle of sequence 
complementarity, namely the base pairing between piRNAs and mRNAs 
[44,45,106], to screen potential target sites, and usually draw on miRNA 
target site prediction tools [89,107–111]. However, these methods 
ignore factors that may affect the efficiency and specificity of piRNA 
targeting, such as the sequence and structural features around the target 
site, location of the target site on the mRNA, and interaction between the 
target site and the PIWI protein [112,113]. Computational methods 
utilize the biological features of piRNAs to train models to identify po
tential piRNA target sites [89,107–111]. For example, Yuan et al. [104] 
built an SVM-based prediction model using CLIP-seq and 

Table 3 
The performance of current machine learning methods on transposon-derived piRNA identification.  

Dataset Method AUC (H/M/D) ACC (H/M/D)   

Human Mouse Drosophila Human Mouse Drosophila 
Balanced Piano [77] 0.592 0.445 0.741 0.560 0.537 0.692 

Ensemble Learning [82] 0.920 0.924 0.994 0.807 0.810 0.958 
GA-WE [87] 0.932 0.937 0.995 0.839 0.838 0.959 

Imbalanced Piano [77] 0.449 0.441 0.804 0.747 0.744 0.712 
Ensemble Learning [82] 0.922 0.928 0.995 0.836 0.849 0.965 
GA-WE [87] 0.935 0.939 0.996 0.869 0.889 0.964  
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position-derived features. However, such models have insufficient 
generalization capabilities for other species owing to their task-specific 
biological features. It is trained on experiment datasets [114] with 
unverified negative samples, which may lead to an increased false alarm 
rate. To solve this problem, Yang et al. [115] proposed a deep learning 
method. 

The method automatically learned the motif features of piRNAs 
using convolutional filtering and squeezing-and-excitation blocks and 
extracted piRNA-mRNA binding rules via multihead attention networks. 
Additionally, they proposed acquiring a validated negative set by 
leveraging experimentally validated positive sets. The experimental re
sults showed that the method achieved state-of-the-art performance on a 
task with an AUC of 95.7 %. Singh and Mallick [121] analyzed the 
sequence and structural features of piRNA target sites using 
CLIP-Seq-based datasets. They investigated the distribution, folding free 
energy, miRanda score, and nucleotide composition of piRNA target 
sites in the 30 UTR, CDS, and 50 UTR regions and found significant 
differences between the IP+ set (true targets) and the IP− set (hypo
thetical targets). Based on this, they proposed features that could 
improve the accuracy of piRNA target prediction. 

3.5. piRNA cluster identification 

The majority of piRNA sequences are located in a small number of 
genomic regions known as clusters [122,123], which was first defined 
by Aravin et al. [102] in 2006. The length of a piRNA cluster generally 
ranges from 1 to 100 kilobase (kb), encoding 10–4500 piRNAs [124]. 
Identifying piRNA clusters helps to better understand the biological 
production mechanisms and functions of piRNAs [123,125]. 

Current methods and tools for piRNA cluster identification are pri
marily based on statistical learning. Rosenkranz et al. [117] developed 
the proTRAC software to identify piRNA clusters, where the character
istics of cluster candidates, including the number of normalized hits to 
total hit ratio and extent of strand bias, were considered synthetically. 
However, this method assumes that the non-piRNAs follow a uniform 
distribution. Jung et al. [118] proposed a piClust model by leveraging 
the clustering algorithm DBSCAN [126] to identify piRNA clusters via 
k-dist analysis without assuming a uniform distribution for non-piRNAs. 
PILFER [119] is a state-of-the-art piRNA cluster identification tool that 
uses sliding windows to observe sequences, such as proTRAC. It iden
tifies piRNA clusters by integrating the expression of reads with spatial 
information. Compared with proTRAC and piClust, PILFER runs with 
higher accuracy and consumes less memory and time. 

3.6. Limitation 

However, computational methods based on machine and deep 
learning can discover, identify, analyze, and predict piRNAs and their 
related molecules in a fast, accurate, flexible, and innovative manner, 
thus promoting the functional research and application of piRNAs. 
However, current machine learning and deep learning algorithms have 
the following limitations: 

The main limitations of machine learning methods are as follows: (1) 
the need to manually design and extract effective features, which re
quires significant domain knowledge and annotation work, and the se
lection and combination of features may affect the generalization ability 
and interpretability of the model; (2) the need to choose appropriate 
classifiers and parameters, which requires an adjustment and optimi
zation process, and different classifiers may have different performances 
on different datasets and tasks; and (3) the need to deal with the data 
imbalance and sparsity problem, which may lead to model bias and 
variance, and reduce the accuracy and robustness of the model. For 
example, in a piRNA identification task, Betel et al. [3] used the PSSM 
algorithm, which requires manual selection of the piRNA length and 
position specificity, and the performance of PSSM was affected by the 
noise and variation of the sequence. In the functional piRNA 

identification task, Liu et al. [18] used weighted k-mers and other fea
tures that required manual determination of k values and weights, and 
these features may not capture the structural information of piRNAs. In 
the piRNA target identification task, Yuan et al. [104] used an SVM 
classifier, which required manual selection of the kernel function and 
regularization parameters, and the performance of the SVM was limited 
by the data scale and dimension. 

Although deep learning methods have significantly improved the 
prediction and identification performance, their limitations are as fol
lows: (1) the need for a large amount of annotated data and computing 
resources, which may lead to the difficulty and cost of data acquisition 
and processing, as well as the time and space consumption of model 
training and testing; (2) the need to design a reasonable network 
structure and loss function, which requires a deep understanding of the 
model principle and mechanism, and different network structures and 
loss functions may have different adaptabilities to different datasets and 
tasks; and (3) the need to solve model overfitting and underfitting 
problems, which may lead to a decrease in model generalization ability 
and robustness, as well as the lack of model interpretability and credi
bility. For example, in the piRNA identification task, Wang et al. [19] 
used a CNN model that required a large number of piRNA and 
non-piRNA sequences as training data and the structure and parameters 
of the CNN needed to be adjusted according to the dataset and task. In a 
transposon-derived piRNA identification task, Costa et al. [30] used the 
piRNet model, which requires a large amount of computing resources to 
train and test, and the performance of piRNet was affected by data 
quality and distribution. In a functional piRNA identification task, Liu 
et al. [101] used the self-attention mechanism, which is required to 
design a reasonable loss function and attention weight. However, the 
principle and mechanism of the self-attention mechanism may be diffi
cult to explain. 

4. piRNA–disease association prediction 

Identifying disease-related piRNAs and their relevance to patho
genesis are important issues in biomedical and clinical research. The 
academic community has continuously focused on the automatic pre
diction of piRNA–disease associations, and some studies have summa
rized related literature from biological and computational perspectives 
[35,36]. However, a few studies have focused on reviewing the archi
tecture and algorithms of these computational models for piR
NA–disease association prediction. This section provides a summary of 
the computational models for piRNA–disease association prediction, 
which could provide a reference for model construction and perfor
mance evaluation in future studies. 

Non-coding RNAs with similar biological functions are often asso
ciated with similar diseases [22,127]. In other words, the association 
between an unexplored non-coding RNA and diseases can be legiti
mately speculated based on the association between diseases and RNAs 
that are similar to it. This issue can be decomposed into two computa
tional tasks: finding relations between RNA and disease and modeling 
such known relations to predict unknown ones. The former can be 
viewed as the construction of association networks, where nodes are 
RNA molecules and diseases, while edges represent relations between 
them; the latter is a machine learning procedure leveraging knowledge 
from association networks. Fig. 2 shows a pipeline of the piRNA–disease 
association prediction models, where a piRNA–disease association 
network via diverse similarity measures based on piRNA and disease 
datasets is built first, then a feature learning procedure is conducted to 
obtain the semantic representation of piRNA and disease, and finally, a 
classifier is built to predict the association between them. 

Recently, some studies have employed multi-omics data integration 
methods to explore the role of piRNAs in cancer subtype identification 
[128,129]. These studies have revealed the differential expression pat
terns of piRNAs between tumor and normal tissues, as well as among 
different subtypes of tumors. Therefore, the expression profiles of 
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piRNAs can be used to identify cancer subtypes. Moreover, some studies 
have identified SNPs that may affect the biogenesis or binding of piRNAs 
or their targets, and have shown their association with cancer risk or 
prognosis [130]. These studies have demonstrated the potential of 
piRNAs as novel biomarkers and therapeutic targets for cancer. How
ever, the role of piRNAs in other diseases, such as neurodegenerative 
diseases, metabolic diseases, cardiovascular diseases, etc., remains 
largely unknown. Therefore, it is necessary to develop computational 

models for piRNA–disease association prediction, which can help to 
uncover the underlying mechanisms of piRNAs in disease pathogenesis 
and provide new insights for diagnosis and treatment. 

4.1. Association network construction 

Association network construction by extracting effective similarity 
features of RNA and disease is an important step in building a reliable 

Fig. 2. The computational flow of the Piwi-interacting RNA (piRNA) and disease association prediction. Step 1: Obtaining experimental data from public databases; 
Step 2: Calculating the similarity and constructing association networks from experimental data; Step 3: Adopting different methods to predict piRNA–disease 
association. 

Table 4 
Similarity calculation of piRNA and disease.  

Similarity Formula Notation Description 

Disease 
semantic 
Similarity  
[156] 

DSsem
(
di, dj

)
=

∑

t∈T(di)∩T(dj)

(
Ddi (t) + Ddj (t)

)

Dsv(di) + Dsv
(
dj
)

Where： 
Dsv(d) =

∑

t∈T(d)
Dd(t) Dd(t) =

{
1， ift = d

max{Δ ∗ D(t′), t′ ∈ children of t ift ∕= d 

Disease semantics can be expressed as DAG(d) =

(d,T(d), E(d) )byDAG.Where T(d) is the set of disease, disease 
t ∈ T(d),Δ is the semantic contribution factor, and the value 
of this factor is usually 0.5. 
Dd(t) is the contribution node of t to d. if t = d, the value of 
Dd(t) is 1, otherwise, the value is Δ ∗ D(t′). 

The formula could be used to calculate the 
semantic values of these two diseases and 
their semantic similarity. 

Disease GIP 
Similarity  
[132] 

DSGIP = exp
(
− λd‖ A(di) − A

(
dj
)
‖2

)

Where: 

λd =
1

Nd

∑Nd

n=1
‖ T(dn) ‖

2 

Where A(di) denotes the association between disease di and 
all piRNA in the sample. 
Where Nd denotes the number of diseases in the sample. 

The disease GIP similarity is calculated by 
the known association matrix between 
piRNA and diseases. 

piRNA 
sequence 
similarity  
[59] 

PSseq =

∑N
i=1(Spi − Kpi )

∑N
j=1(Spj − Kpj )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1(Spi − Kpi )

2 ∑N
j=1(Spj − Kpj )

2
√

Where: 

Spi =
(k − mer count in Pseq)

length(Pseq) − k + 1 

Where Pseq denotes the sequence of piRNA, and Spi denotes 
the frequency score for each k-mer in i-th Pseq. 
Where Kp is the mean of Spi of each piRNA sequence. 

The piRNA of related function often have 
related k-mer content[157]. Through the 
sequence similarity of piRNA, it can be 
inferred that piRNA has similar functions. 

piRNA GIP 
similarity  
[132] 

PSGIP = exp
(

− λp‖ A(pi) − A
(

pj

)
‖2

)

Where: 

λp =
1

Np

∑Np

m=1
‖ T(pm) ‖

2  

Where A(pi) denotes the association between piRNA pi and 
all diseases in the sample. 
Where Np denotes the number of piRNA in the sample. 

The piRNA GIP similarity is calculated by 
the known association matrix between 
piRNA and diseases.  
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RNA-disease association predictor [131]. Such feature-building methods 
depend on piRNA and disease association information, which usually 
comes from RNA similarity, disease similarity, and RNA-disease asso
ciation data sources. In this section, methods used for association 
network construction and fusion are reviewed. 

4.1.1. Network construction 
The main step in constructing an association network of piRNAs and 

diseases is to measure the similarity degrees between them, which are 
generally calculated by an assortment of similarity calculation methods 
for piRNAs and diseases. These methods are summarized in Table 4. 

Two types of similarity knowledge are employed to build a piR
NA–disease association network: piRNA similarity and disease similar
ity. The first employs piRNA sequence similarity [59], which works by 
calculating the similarity of two piRNA sequences via the k-mer algo
rithm and piRNA Gaussian Interaction Profile (GIP) kernel similarity 
[132]. GIP similarity measures the similarity of interaction patterns of 
biological entities [133] by extracting their associated features via 
Gaussian kernel functions and is widely utilized for similarity mea
surements of miRNA [133–135], circular RNA (circRNA) [136] and long 
ncRNA (lncRNA) [137,138]. The second method employs disease se
mantic similarity, which is measured by estimating the ratio of the DAG 
[139] that a disease pair shares and disease GIP similarity, which can be 
used to calculate GIP similarity from a known association matrix be
tween piRNA and disease. 

4.1.2. Network fusion 
The goal of network fusion is to identify additional connections be

tween piRNAs and diseases. As the types of nodes in piRNA and disease 
similarity networks differ, some studies have constructed heterogeneous 
networks to fuse them. Additional knowledge, such as piRDisease [51], 
can be used to bridge piRNAs and diseases in fused networks. Experi
mental results have shown that such fused networks provide more 
associated information regarding piRNAs and diseases, making the 
predictor more accurate [140]. 

4.2. Prediction methods 

Biological experiments for identifying disease-associated piRNAs are 
expensive and time-consuming. Accordingly, the research community 
has turned to computational methods for such tasks in recent years, such 
as automatic miRNA-disease association prediction [133–135], 
lncRNA–disease association prediction [137,138] and circRNA–disease 
association prediction [136]. 

Although most of the methods used for the above tasks can be 
applied to the piRNA–disease association prediction task, the current 
piRNA–disease association prediction methods mostly focus on the 
correlation between piRNA expression changes and diseases without 
delving into the specific roles and mechanisms of piRNAs in the occur
rence and development of diseases. This is because functional research 
on piRNAs is still in its infancy, and there is insufficient experimental 
data and theoretical support to explain the causal relationship between 
piRNAs and diseases. Therefore, we believe that computational methods 
can serve as an auxiliary means to provide valuable candidate piR
NA–disease associations for experimental research but cannot 
completely replace experimental verification. 

Not until the first piRDisease database that annotated piRNA–disease 
associations was released, which provided a benchmark dataset for 
computational methods in the piRNA–disease association prediction 
task, an increasing number of researchers began to use computational 
methods to explore piRNA–disease associations. piRDisease is a manu
ally curated database that collects data on 7939 experimentally sup
ported associations between 4796 piRNAs and 28 diseases. However, the 
database also has some limitations, such as data sparsity, lack of nega
tive samples, inconsistency in piRNA identifiers, and unclear disease 
classification[141]. Therefore, the current computational methods still 

have room for improvement in understanding the role and mechanism of 
piRNAs in diseases. 

In this section, we review the proposed computational models for 
piRNA–disease association prediction, which can be categorized into 
three techniques: traditional machine learning methods, 
recommendation-based methods, and deep learning-based methods. The 
models are summarized in Table 5. 

4.2.1. Traditional machine learning methods 
Zheng et al. [140] proposed a computational model, APDA, to pre

dict the association between piRNAs and diseases using the benchmark 
dataset piRDisease V1.0. They investigated the effect of features on 
prediction performance by employing two groups of features: the former 
obtained feature representation via collaborative filtering, and the latter 
utilized several feature representation methods: a correlation matrix 
between piRNA and diseases, GIP kernel similarity matrix of piRNA and 
disease, piRNA sequence similarity matrix, and disease semantic simi
larity matrix. Experiments showed that the model using the features of 
the latter group achieved better performance, indicating that the inte
gration of multiple features improves the prediction ability of the task. 

However, the task of piRNA–disease association prediction suffers 
from a lack of high-quality negative samples during training. To address 
this problem, Wei et al. [22] proposed a model called iPiDi-PUL to 
predict the association between piRNAs and diseases based on positive 
unlabeled learning (PUL) [142,143]. Such a method is always employed 
to learn a model from positive and unlabeled samples and is widely used 
in non-coding RNA-disease association prediction [144–146]. In 
iPiDA-PUL, the experimental dataset contains 4350 piRNAs, 21 diseases, 
and 5002 association pairs, and features are extracted by principal 
component analysis. An ensemble learning strategy was adopted to train 
multiple RFs with different depths for prediction. Finally, the model uses 
the average score of all the classifiers to make the final decision. The 
ensemble learning strategy is illustrated in Fig. 3. 

4.2.2. Recommendation-based methods 
Essentially, piRNA–disease association prediction can be viewed as a 

recommendation task, where the associations between piRNAs and 
diseases are regarded as recommendation behaviors between items and 
users, and thus can be solved using principles based on recommenda
tion. For example, Zheng et al. [147] proposed a structural perturbation 
method based on heterogeneous networks to predict associations be
tween piRNAs and diseases. The heterogeneous network consisted of 
three subnetworks: piRNA similarity, disease similarity, and piR
NA–disease association networks. A piRNA similarity network was 
constructed using sequence information and GIP kernel similarity. The 
disease similarity network was derived from functional information and 
GIP kernel similarity based on gene–disease association information. 
The structural perturbation method evaluates the predictability of un
known associations in a heterogeneous network by randomly selecting 
edges and calculating the eigenvalues and eigenvectors of the perturbed 
network. This model does not require negative examples and can 
effectively utilize multisource information. The model exhibits high 
performance and robustness on a benchmark dataset and a new dataset. 
Zhang et al. [33] proposed an approach to identify piRNA–disease as
sociation, following the idea of learning to rank (LTR) [148,149] pro
posed by Wei et al. [150]. Specifically, such an identification or 
classification problem is formalized as a search task, where the target 
piRNA and diseases are viewed as the query and the document candi
dates, respectively, and the association between the piRNA and diseases 
is positively correlated to the ranking position of the disease. The LTR 
strategy for the piRNA–disease association prediction task is shown in  
Fig. 4. In other words, the higher the ranking position of a disease, the 
more relevant the piRNA and disease. To implement the LTR method, 
they utilized LambdMART, a gradient-boosted decision tree, to build the 
learning model, and employed two types of methods, namely machine 
learning-based and collaborative filtering-based methods, to calculate 
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Table 5 
piRNA and disease association prediction models.  

Algorithm Methods Similarity 
computation 

piRNA disease association AUC Advantage Disadvantage Case study # of New 
associations 
predicted 

iPiDA- 
sHN  
[32] 

CNN&SVM Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4350 21 5002 0.8576 Using a two-step 
PUL strategy 
based on SVM, 
high-quality 
negative samples 
are screened 
from random 
negative 
samples, and 
CNN is used to 
capture the 
nonlinear 
relationship 
between piRNA 
and disease. 

The parameters 
of CNN are not 
optimized, 
which may affect 
the 
generalization 
ability and 
robustness of the 
model. 

‘Alzheimer’s 
disease’ and ‘Head 
and neck cancer’            

12 

iPiDA- 
PUL  
[22] 

Random Forest Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4350 21 5002 0.8830 Using PUL 
learning method 
to avoid the 
problem of 
lacking high- 
quality negative 
samples, and 
using ensemble 
learning strategy 
to improve the 
prediction 
ability. 

The feature 
extraction 
method is 
simple, and does 
not consider the 
attribute 
information of 
piRNA and 
disease. 

‘Head and neck 
squamous cell 
carcinoma’,’Breast 
cancer 
‘,’Alzheimer’s 
disease ‘and 
‘Gastric cancer ‘               

15 
DFL-PiDA 

[158] 
CNN&ELM Disease 

semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4350 21 5002 09042 Using 
convolutional 
denoising 
autoencoder to 
extract features, 
eliminate noise 
and redundant 
information, and 
using ELM for 
fast prediction. 

The training of 
convolutional 
denoising 
autoencoder 
may require a lot 
of computational 
resources and 
time, and the 
performance of 
ELM also 
depends on the 
selection and 
initialization of 
hidden layer 
nodes. 

None 0 

piRDA  
[6] 

CNN&SVM One-hot 
features of 
piRNA and 
diseases 

4350 21 5002 0.9510 Using one-hot 
encoding 
method to 
capture the 
hidden 
information of 
piRNA and 
disease. 

The known and 
similar 
association pairs 
of piRNA and 
disease are not 
considered. In 
addition, the 
one-hot 
encoding 
method may lead 
to high- 
dimensional 
sparse feature 
representation, 
which increases 
the 
computational 
complexity. 

Cardiovascular 
disease,Renal cell 
carcinoma and 
Alzheimer’s disease             

13 

iPiDA- 
LTR 
[33] 

SVM&LR&RF&CF Disease 
semantic 
similarity 
and piRNA 
sequence 
similarity 

4350 21 5002 0.9543 Using learning 
ranking method, 
transforming the 
prediction 
problem into a 
search task, and 
modeling the 
piRNA-disease 
association from 

The performance 
of learning 
ranking method 
also depends on 
the selection and 
evaluation of 
ranking metrics. 

piR-hsa-23210 and 
piR-hsa-15023         

9 

(continued on next page) 
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Table 5 (continued ) 

Algorithm Methods Similarity 
computation 

piRNA disease association AUC Advantage Disadvantage Case study # of New 
associations 
predicted 

a global 
perspective. 

ETGPDA Embedding 
transformation 
GCN 

Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4350 21 5002 0.9603 Using 
heterogeneous 
graph 
convolutional 
network and 
multi-source 
attention 
mechanism to 
extract the low- 
dimensional 
embeddings of 
piRNA and 
disease, and 
using embedding 
transformation 
module to solve 
the problem of 
embedding 
space 
inconsistency. 

The performance 
of embedding 
transformation 
module also 
depends on the 
selection and 
optimization of 
transformation 
function, and it 
may introduce 
additional 
parameters and 
complexity. 

‘Alzheimer’s 
disease’ and ‘Head 
and neck cancer’             

13 

APDA  
[140] 

Autoencoder 
&Random Forest 

Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4503 27 5214 0.9088 Using multiple 
feature 
representation 
methods, 
integrating the 
attribute and 
association 
information of 
piRNA and 
disease. 

Simply 
integrating 
different feature 
representation 
methods may 
cause 
inconsistency 
and conflict, 
which affects the 
stability of the 
model. 

None 0 

SPRDA  
[59] 

Matrix 
Completion 

Disease 
semantic 
similarity, 
Disease 
functional 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

501 22 1212 0.9529 Using structural 
perturbation 
method and 
multi-source 
information for 
prediction, 
effectively 
avoiding the 
problem of 
lacking high- 
quality negative 
samples. 

Because the 
structural 
perturbation 
method is based 
on randomly 
selected edges to 
evaluate the 
predictability of 
the network, it 
may cause some 
important edges 
to be ignored or 
some irrelevant 
edges to be 
considered. 

None 0 

GAPDA  
[23] 

GAT Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

501 22 1212 0.9038 Using GAT to 
learn the hidden 
representation of 
nodes in the 
network, which 
can capture the 
complex 
relationship 
between nodes. 

There may be 
data sparsity or 
incompleteness 
problems. And 
GAT has high 
computational 
complexity. 

None 0 

MSRDA  
[155] 

Stacked 
autoencoders 

Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

501 22 1212 0.9184 Using stacked 
autoencoder 
(SAE) to perform 
deep abstract 
representation of 
multi-source 
data, which can 
eliminate noise 
and redundant 
information. 

The network 
structure 
information is 
not considered, 
which may 
ignore some 
potential 
associations. 

None 0 

iPiDA- 
GBNN  
[153] 

GrownNet Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 

5184 33 8002 - Using GrowNet 
to predict 
piRNA-disease 
association, 
which can 
effectively 

The training 
time of GrowNet 
is long, which 
may affect the 
efficiency of the 
model. 

Alzheimer’s disease 
and Parkinson’s 
disease       

(continued on next page) 
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Table 5 (continued ) 

Algorithm Methods Similarity 
computation 

piRNA disease association AUC Advantage Disadvantage Case study # of New 
associations 
predicted 

and GIP 
similarity of 
piRNA and 
diseases 

handle nonlinear 
and high- 
dimensional 
data.        

14 
iPiDA- 

GCN  
[34] 

GCN Disease 
semantic 
similarity 
and piRNA 
sequence 
similarity 

10,149 19 11,981 0.7149 Designing two 
GCN modules 
(Asso-GCN and 
Sim-GCN) to 
extract 
information 
from piRNA- 
disease 
association 
network and two 
similarity 
networks 
respectively, 
which can 
enhance the 
diversity and 
robustness of the 
representation. 

Three different 
networks need to 
be built, which 
may cause data 
sparsity or 
incompleteness 
problems, and 
also increase the 
computational 
complexity of 
the model. 

Cardiovascular 
disease,Renal cell 
carcinoma, 
Alzheimer’s disease 
and Parkinson’s 
disease                   

19 
iPiDA- 

SWGCN 
Supplementarily 
Weighted GCN 

Disease 
semantic 
similarity 
and piRNA 
sequence 
similarity 

10,149 19 11,981 0.8178 Proposing a 
complementary 
weighting 
strategy, which 
integrates 
various basic 
predictors to 
supplement the 
potential 
associations in 
the sparse 
piRNA-disease 
network, and 
enriches the 
network 
structure 
information. 

The parameters 
of the 
complementary 
weighting matrix 
need to be 
adjusted, and the 
attribute 
information of 
piRNA and 
disease is not 
considered. 

Cardiovascular 
disease,Renal cell 
carcinoma and 
Parkinson’s disease               

15 

PDA- 
PRGCN 

GCN Disease 
semantic 
similarity, 
piRNA 
sequence 
similarity 
and GIP 
similarity of 
piRNA and 
diseases 

4350 21 4993 0.9630 Proposing a 
subgraph 
projection 
strategy, which 
extracts more 
topological 
information; 
designing a 
residual-based 
node feature 
enhancement 
algorithm, which 
obtains high- 
quality initial 
representation; 
introducing a 
dual-loss 
mechanism, 
which optimizes 
the performance 
of the model by 
cross-entropy 
loss and 
sensitivity- 
specificity loss. 

There may be 
data sparsity or 
incompleteness 
problems; the 
parameters of 
the dual-loss 
mechanism need 
to be adjusted. 

Breast neoplasm, 
Renal cell 
carcinoma,Head 
and neck neoplasms 
and Alzheimer’s 
disease 

0  
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association scores. The advantage of this model is that it models the 
piRNA–disease association from a global perspective, thereby reducing 
the probability of false-positive errors. 

4.2.3. Deep learning-based methods 
Deep learning-based methods focus on feature representation 

learning and achieve significant performance improvements in the 
prediction of disease-related RNAs. Wei et al. [32] adopted a two-step 
PUL method called iPiDA-sHN, in which a classifier was trained with 
positive and random negative samples in the first step, and then another 
classifier was trained with positive and high-quality negative samples 
acquired from the first step. The two-step PUL method is described in  
Fig. 5, and the following piRDA adopts it. A deep learning CNN model 
was utilized to extract high-level features of piRNA–disease associations. 
This study was based on Shrivastava et al. [151]. The unlabeled samples 
were ranked by their prediction scores, and one-third of the samples in 
the intermediate layer were regarded as reliable negative samples. 

Ji et al. [150] proposed a deep feature learning model, DFL-PiDA, 

that utilizes a convolutional denoising autoencoder neural network to 
capture piRNA–disease association features by considering piRNA and 
disease similarity features as the input data. They utilized ELM, a 
feedforward neural network with a single hidden layer, to predict the 
association between piRNAs and diseases. According to comparative 
experiments, such a model is more efficient in predicting latent piR
NA–disease associations. 

Ali et al. [6] proposed a piRDA model based on the two-step strategy 
proposed by Wei et al. [32]. Compared with prior work, they used a 
one-hot encoding method [152] to encode raw piRNA sequences and 
disease semantics. By doing so, the concealed information on piRNAs 
and diseases can be captured by neural network models without losing 
the contextual information between them. To alleviate the class imbal
ance problem, they adopted a bootstrapping method to train the model 
using partitioned sample blocks, each of which contained approximately 
the same number of positive and negative samples. A comparative 
experiment revealed that the piRNA model outperformed the iPiDA-PUL 
and iPiDA-sHN models. 

Fig. 3. Ensemble learning strategy. (a) iPiDA-PUL adopts the Bootstrap AGGregating method to train various random forest classifiers, and the unknown Piwi- 
interacting RNA–disease associations were predicted based on the average of the scores of all classifiers. (b) iPiDA-GBNN utilized Gradient boosting methods to 
build a complex model GrowNet incrementally with a multilayer network. 

Fig. 4. Learning To Rank (LTR) strategy. In iPiDA-LTR, the known Piwi-interacting RNA (piRNA)–disease association feature sets were fed into the Lambda MART 
model for learning, and then the rank score of diseases associated with new query piRNAs was obtained using the ranking system. 

Fig. 5. Two-step positive unlabeled learning strategy. iPiDA-sHN and piRDA both use this method to obtain high-quality negative samples for Piwi-interacting 
RNA–disease association prediction. 
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Qian et al. [153] proposed a prediction model, iPiDA-GBNN, based 
on the algorithm of gradient-boosting neural networks [154]. They 
employed multiple similarity features, such as GIP kernel similarity, 
Jaccard similarity, and sequence similarity. They also utilized a stacked 
autoencoder and multilayer neural network to extract features and 
eliminate noise. For prediction, they utilized GrowNet, a 
gradient-boosting framework based on weak learners, which helped 
achieve a good performance using trivial classifiers. 

Zheng et al. [155] proposed a decision support system based on 
multisource information and stacked autoencoders, called MSRDA, to 
predict potential piRNA–disease associations. MSRDA constructed 
feature descriptors using piRNA sequence information, disease semantic 
information, piRNA GIP kernel similarity, and disease GIP kernel simi
larity. Stacked autoencoders were then used to perform feature 
denoising and abstraction. Finally, an RF model was used for classifi
cation and prediction. In the 5-fold cross-validation, MSRDA achieved 
an average AUC value of 0.9184 ± 0.0015, demonstrating the effec
tiveness of introducing multisource information and stacked autoen
coders for improving the performance of piRNA–disease association 
prediction. 

Zheng et al.[23] proposed a model called GAPDA, which first 
employed GAT [25], a graph-based representation learning model, to 
learn piRNA and disease representations. The model aimed to build a 
graph in which the nodes in a neighborhood were automatically 
weighted via a self-attention mechanism. This method helped capture 
hidden association features between nodes and learned the structural 
features of the piRNA–disease association network at the node level. The 
attention mechanism was implemented using masked attention and a 
multihead attention method. The performance of GAPDA in the 
benchmark dataset showed convincing results in piRNA–disease asso
ciation prediction. The authors also made a comparative experiment 
between GAPDA and the prior model APDA proposed by them, finding 
that the attention-based method achieved better performance than 
collaborative filtering-based and attribute-based methods. 

Hou et al. [34] proposed a model called iPiDA-GCN based on a graph 
convolutional network (GCN), which is a graph-based representation 
learning model. Their idea is similar to that of Zheng et al.[23], who 
attempted to capture the underlying relationship patterns in 
graph-structured data for piRNA–disease association prediction. To this 
end, they built two GCN models: Asso-GCN, which learned the feature 
representation of association information from heterogeneous nodes of 
piRNAs and diseases, and Sim-GCN, which captured similarity features 
from homogeneous nodes among piRNAs or diseases. The two models 
were pipelined to obtain the feature representations of piRNAs and 
diseases. 

* In this table, we list the AUC values of computational methods 
based on same benchmark dataset, and use “_” to represent AUC values 
of methods based on different benchmark dataset. “None” means that 
the computational method did not conduct case study, and could not 
predict new associations.“None” means that the computational method 
did not conduct case studies, and could not predict new associations. 

A comparative experiment showed that the model outperformed 
other state-of-the-art models, including iPiDA-PUL [22], iPiDA-sHN 
[32] and piRDA [6], verifying the viewpoint advocated by authors 
that the GCN model effectively captured nonlinear relation patterns 
from complex association networks between piRNAs and diseases. 

Zhang et al. [159] proposed a computational method called 
PDA-PRGCN, which uses a GCN, subgraph projection, feature augmen
tation, and dual-loss mechanism strategies to transform piRNA–disease 
association prediction into a graph link prediction task. They con
structed a heterogeneous graph consisting of piRNA–piRNA subgraphs, 
disease–disease subgraphs, known piRNA–disease subgraphs, and 
learned node embeddings using GCN layers. They conducted extensive 
experiments on the main and piRDisease datasets and compared them 
with existing methods, demonstrating superior performance and 
robustness. 

Meng et al. [160] proposed the ETGPDA model based on an 
embedded transformation GCN. Compared with previous studies, they 
used an embedding transformation module that can map the embed
dings of piRNAs and diseases to the same space, thus improving the 
accuracy and efficiency of prediction. To utilize multisource informa
tion, they constructed a heterogeneous network based on the similarity 
information of piRNAs and diseases and the known piRNA–disease as
sociations and used a GCN with an attention mechanism to extract the 
low-dimensional embeddings of piRNAs and diseases. Finally, they ob
tained piRNA–disease association scores by calculating the cosine sim
ilarity of piRNA and disease embeddings. In the 5-fold cross-validation, 
ETGPDA achieved an AUC value of 0.9603, which was superior to those 
of the other five selected computational models. Case studies based on 
head and neck squamous cell carcinoma and Alzheimer’s disease have 
also confirmed the superior performance of ETGPDA. The advantage of 
ETGPDA is that it can integrate multisource data information, use a GCN 
to extract embeddings, and use an embedding transformation module to 
solve the problem of an inconsistent embedding space. However, it also 
has some limitations, such as dependence on known piRNA–disease 
associations and sparsity of the original data. In the future, the authors 
will consider introducing more similar information on piRNAs and dis
eases, and further study the different association types and interactions 
of piRNAs and diseases to provide more powerful help for biological 
experiments. 

Hou et al. [161] proposed an iPiDA-SWGCN model based on a GCN 
to predict potential piRNA–disease associations. Compared with previ
ous studies, they used a supplementary weighting strategy to solve the 
problem of high sparsity and Boolean representation of the piR
NA–disease network. They integrated various basic prediction factors, 
supplemented the potential piRNA–disease association in the sparse 
piRNA–disease network, and assigned different confidence levels to the 
original piRNA–disease association to perform feature learning and node 
representation in the GCN. The experimental results showed that 
iPiDA-SWGCN outperformed other state-of-the-art models, such as 
iPiDA-PUL [22], iPiDA-sHN [32], piRDA [6], GAPDA [23], and 
iPiDA-GCN [34] and could predict new piRNA–disease associations. The 
authors also discussed the application of the supplementary weighting 
strategy in other link prediction tasks, as well as the value and chal
lenges of unverified piRNA–disease associations in biological research. 

4.3. Limitation 

In summary, computational methods have achieved remarkable re
sults in piRNA–disease association prediction. However, these compu
tational methods have limitations. The main limitations of traditional 
machine learning methods are as follows: (1) the need to manually 
design and select features that may not fully utilize the multisource in
formation of piRNA and disease, such as sequence, function, and se
mantics, and (2) the need for a large number of positive and negative 
samples to train the model, but the negative samples of piRNA–disease 
associations are difficult to obtain, which may lead to class imbalance 
and overfitting problems. For example, APDA [140] used the features 
obtained by collaborative filtering, but this method may ignore some 
sparse or novel associations, and (3) the need to adjust multiple 
hyperparameters and thresholds, which may affect the generalization 
ability and stability of the model. For example, iPiDA-PUL[22] used the 
PUL method; however, in this method, determining the number and 
quality of unlabeled samples, as well as the integrated learning strategy, 
was required. 

The recommended methods significantly improved the prediction 
and identification performance, but their limitations were as follows: (1) 
complex graph structures need to be constructed, which may increase 
the computational overhead and memory consumption. For example, 
SPRDA [147] uses a heterogeneous network, but the structural pertur
bation method of this network may introduce noise and error; (2) the 
need to consider the association strength between piRNAs and diseases, 
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rather than just binary association, which may require more 
fine-grained evaluation metrics and ranking methods. For example, 
PDA-LTR [33] used a ranking learning method, but determining the 
ranking and loss functions, as well as dealing with the problem of 
different lengths of queries and documents were required in this 
method. 

Deep learning-based methods are currently the best computational 
methods for predicting piRNA–disease associations, but they have the 
following limitations: (1) the need for a large amount of data and 
computing resources to train DNNs, which may lead to overfitting and 
gradient vanishing problems. For example, iPiDA-sHN [32] used a CNN 
model, but determining the number of layers, size and number of con
volutional kernels, activation function, and optimizer was required, and 
(2) the need to reasonably select and combine different deep learning 
models, which may cause model incompatibility and conflict problems. 
For example, iPiDA-GCN [34] uses two GCN models; however, deter
mining the adjacency matrix of the graph, attention mechanism, ag
gregation function, and fusion method was required in this model. 

In addition, the data quality and limitations of piRNA–disease asso
ciation databases exert an important effect on computational models. 
First, the data in the piRNA–disease association databases were collected 
from different studies, and most of the associations in the literature were 
derived from high-throughput sequencing technology and clinical 
experimental verification. Although these associations have been veri
fied relatively and reliably, they may also introduce false-positive or 
false-negative results, leading to noise and data inaccuracy. Second, the 
data in the piRNA–disease association databases can only reflect the 
correlation between piRNAs and disease, but cannot reveal the function 
and mechanism of piRNAs in disease. This requires combining other 
bioinformatics data, such as gene expression, protein interactions, and 
signaling pathways, to construct a more complete piRNA–disease asso
ciation network and perform more in-depth analysis and interpretation. 
Finally, the data in the piRNA–disease association databases also have 
some incompleteness and imbalance; that is, some piRNA or disease 
association information is missing or sparse, whereas some piRNA or 
disease association information is excessive or redundant. This requires 
the use of data augmentation or dimensionality reduction methods to 
improve the coverage and diversity of the data while reducing its 
redundancy and complexity. 

5. Conclusion and perspectives 

5.1. Conclusion 

In this review, we summarize the databases, computational methods, 
and evaluation metrics for piRNA-related tasks to provide useful infor
mation for future work. The main contributions and innovations of this 
study are: (1) We proposed a systematic framework, which divided the 
piRNA computational-related tasks into five identification tasks and one 
prediction task, which helps to clarify the research context and devel
opment trend of computational methods in piRNA-related tasks, (2) We 
introduced the databases for piRNA-related tasks in detail, including the 
data sources, data contents, and data collection methods, which help 
understand the data characteristics and data quality of piRNA-related 
tasks, (3) We introduced the computational methods for piRNA- 
related tasks in detail, which help understand the method principles 
and method performance of piRNA-related tasks, and (4) We paid spe
cial attention to the piRNA–disease association prediction task and 
reviewed the computational methods for the piRNA–disease association 
prediction task in detail, including the association network construction, 
feature representation, and prediction methods, as well as their perfor
mance comparison, which help promote the development and applica
tion of the piRNA–disease association prediction task. This study can 
help researchers understand the current situation and challenges of 
piRNA computational research, as well as future development 
directions. 

However, our study has some limitations, mainly owing to insuffi
cient data and methods for piRNA-related tasks. First, there is still no 
consistent piRNA-naming system in the databases; for example, piR-hsa- 
237 in the piRBase database is called hsa_piR_000001 in the piRNABank 
database and hsa-piR-1 in the piRNAdb database, which makes the 
integration of knowledge difficult. Second, most computational methods 
require manual work to perform feature engineering, which is expensive 
and time-consuming. Third, many databases have imbalanced positive 
and negative samples and lack high-quality negative samples that have 
been verified experimentally. Fourth, the performance of the computa
tional methods in practical tasks is unsatisfactory. These limitations 
should be addressed in future studies. 

5.2. Future development directions 

Based on the above discussion, we propose prospects for future 
research. First, with the advancement in piRNA research, the construc
tion of piRNA databases and tools has faced new challenges and op
portunities. First, a unified piRNA naming system, such as an miRNA 
database, should be established to facilitate the integration of knowl
edge. Second, piRNA databases must be constantly updated and 
expanded to accommodate the growth of piRNA data from different 
species, tissues, and conditions. Simultaneously, piRNA databases also 
need to improve the quality and credibility of the data, as well as provide 
more functional and associative information, such as piRNA modifica
tion, structure, interaction, regulation, and biological function. Third, 
piRNA tools must improve the compatibility and reproducibility of 
datasets so that users can utilize them on different platforms and envi
ronments. In addition, piRNA tools also need to upgrade their algo
rithms to improve performance and accuracy, as well as provide more 
visualization and interactive analysis functions to facilitate users in 
exploring and understanding the complexity and diversity of piRNAs. 
Some existing piRNA tools, such as piRBase, piRNAQuest, and piRTar
Base, have made efforts and contributions to these aspects but still need 
to be further improved and optimized. 

Although this study provided a relatively comprehensive summary of 
the computational methods for piRNA-related tasks, these methods still 
have some shortcomings and limitations that need to be addressed. In 
the future, more biological experimental results, sequencing informa
tion, and literature data will become available, and the rapid identifi
cation of potential piRNAs from massive amounts of data will become a 
focus of tool development. Therefore, we think that future research has 
the following directions: (1) Using parallel deep computing to process 
massive data, using distributed systems and high-performance hardware 
to accelerate the training and inference of models, and reducing the 
computational cost and time; (2) Solving or alleviating the data sparsity 
and imbalance problems in piRNA-related tasks, using some data 
augmentation or data dimensionality reduction methods, improving the 
coverage and diversity of the data, and reducing the redundancy and 
complexity of the data; (3) Improving the interpretability and credibility 
of computational methods, developing some visualization and analysis 
methods, and showing the relationship between the input and output of 
the model, as well as the key parameters and features of the model so as 
to better understand the biological functions and mechanisms of piRNA; 
(4) Using multisource heterogeneous data, including gene expression 
data, protein interaction data, and epigenetic data, to enrich the feature 
representation of piRNA, designing appropriate data fusion and repre
sentation learning methods, extracting and integrating the commonality 
and individuality of the data, and enhancing the generalization ability 
and robustness of the model; (5) Using multitask learning and transfer 
learning, improving the performance of piRNA identification and pre
diction, using the correlation and complementarity between different 
tasks, sharing and transferring knowledge, improving the efficiency and 
effectiveness of the model, using the similarity and difference between 
different domains or species, transferring and adapting knowledge, and 
improving the generalization ability and adaptability of the model. 
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In conclusion, this study provides a new perspective and idea for 
computational research on piRNA-related tasks but also has some limi
tations and challenges that need to be improved and optimized in future 
research. We hope that this study will stimulate more research interest 
and innovation and promote the development and progress of compu
tational research on piRNA-related tasks. 
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