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Substance use disorders (SUDs) are defined by obsessive and uncontrolled consumption, 
which is related to neurobiological changes. Based on previous work, this study investigated 
potential alterations in brain structure in poly-drug use disordered (PUD) patients in 
comparison to controls from the normal population. This study involved a sample of 153 
right-handed men aged between 18 and 41 years, comprising a clinical group of 78 PUD and 
a group of 75 healthy controls. Group differences in gray matter (GM) and white matter (WM), 
as well as cortical thickness (CT), were investigated by means of diffusion tensor imaging 
using automated fiber quantification (AFQ) and voxel-based morphometry. We observed 
significant WM impairments in PUD, especially in the bilateral corticospinal tracts and the 
inferior longitudinal fasciculi. Furthermore, we found reduced CT in the PUD group especially 
in the left insular and left lateral orbitofrontal cortex. There were no group differences in GM. In 
addition, PUD exhibited a higher amount of psychiatric symptoms (Brief Symptom Inventory) 
and impairments in cognitive functions (Wonderlic Personnel Test). In line with previous 
research, this study revealed substantial impairments in brain structure in the PUD group 
in areas linked with affective, cognitive, and motor functions. We therefore hypothesize a 
neurologically informed treatment approach for SUD. Future studies should consequently 
explore a potential positive neuroplasticity in relation to a better therapeutic outcome.
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INTRODUCTION

Within the European Union, a lifetime prevalence of up to 3% for substance use disorders (SUDs) has 
been shown for the general population (1, 2). Correspondingly, SUD represent a significant burden 
on society and healthcare systems. In addition to this, the treatment of SUD has been reported to be 
extremely difficult due to a high proportion of therapy dropouts (3). SUD have been most prominently 
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described as a chronic, relapsing brain disorder characterized by 
compulsive drug use, which produces long-term changes in the 
reward circuitry of the brain (4–6). Therefore, it is now widely 
accepted that many drugs may “hijack” the reward centers of the 
brain, setting in motion a downward spiral towards SUD (7). 
Notably, some authors have challenged this view by arguing that 
the complex mechanisms underlying SUD cannot be explained by 
neural dysfunction alone (8). In that sense, SUD have also been 
widely discussed in relation to dysfunctional attempts of self-
medication (9) and misled attachment needs (10). Furthermore, 
it should be noted that premorbid brain abnormalities might also 
lead to severe psychiatric disturbances such as SUD (11, 12).

From a developmental perspective, childhood and 
adolescence represent critical periods of cortical development 
related to lifelong adult characteristics. This development is likely 
interrupted by drug misuse since most people usually start abusing 
drugs in puberty (13). Although acute drug intake increases 
dopamine neurotransmission, chronic drug consumption results 
in a significant decline of dopamine activity, associated with, 
among other things, dysregulation of the orbitofrontal cortex and 
the cingulate gyrus (14), which in turn is linked to maladaptive 
decision making (15) and increased drug craving (16) in SUD. 
However, because SUD patients usually show a more or less 
haphazard kind of poly-drug use, it is as yet largely unclear which 
detrimental effects are caused by the abuse of which drug (17, 
18). In addition, all drugs have similar direct or indirect effects 
on the mesolimbic reward system. This system extends from the 
ventral tegmentum to the nucleus accumbens and projects to 
areas such as the limbic system and the orbitofrontal cortex (6).

Furthermore, different kinds of drugs have been observed as 
being associated with impairments of white matter (WM) (19) 
as well as gray matter (GM) (20, 21) in the brain. Here, a special 
focus has been placed on the detrimental effects of drug use 
(especially cannabis) on brain structure and functioning in adults 
and adolescents (22, 23). There is substantial evidence that heavy 
substance abuse might be particularly harmful to the development 
of WM during adolescence (19, 24–27). Correspondingly, cognitive 
deficits were reported in a group of methamphetamine users, 
which in turn were related to lower whole-brain cortical thickness 
(CT) (12). Therefore, chronic drug use might cause deficits in and/
or a failure to develop normative cognitive abilities (12).

Numerous studies on SUD have observed positive as well as 
negative neuroplasticity, which generally means the alteration of 
the brain’s structure, as the result of various learning templates 
(28–30). This is consistent with the assumption that SUD represent 
a pathological but powerful form of learning and memory (31). 
Notably, numerous studies on structural neural parameters in 
SUD has shown impairments in various networks of the brain 
(Hiebler-Ragger et al., submitted, 32–34), in particular those 
linked with frontal volitional control and the reward-salience 
centers (35). In correspondence to this, recovery from SUD was 
observed to correlate with positive neuroplasticity, such as the 
return to more gyral volumes (36) and enlargement of GM after 
mindfulness therapy (37). Taken together, a broad knowledge of the 
neurobiological alterations linked with SUD, along with the brain 
networks associated with successful abstinence, can hence improve 
our understanding of SUD and its treatment in general (17).

To date, most of the research in this area has investigated the 
role of WM, GM, or CT and their relation to SUD independently 
from one another, resulting in a rather isolated picture of findings 
on structural brain deficits in poly-drug use disorder (PUD). 
Therefore, the goal of the present study was a comprehensive 
investigation of potential differences in WM, GM, and CT in 
a large sample of PUD patients compared to healthy controls. 
Following recent developments in the field of WM analysis, we 
used automated fiber quantification (AFQ) for a more detailed 
assessment of WM differences between PUD patients and 
controls. The particular strength of this study could be seen in the 
application of a multimodal imaging approach, assessing different 
characteristics of brain structure and related functions within 
one and the same sample of participants. Such an approach is 
particularly motivated by the fact that different characteristics of 
GM or WM morphology (such as CT, GM volume, or myelination), 
each of them subserving different cognitive, affective, and motor 
functions, may be affected in PUD in different ways. On the 
basis of previous work indicating that heavy substance abuse 
might be particularly harmful to the development of WM during 
adolescence (19, 24–27), and on the basis of our previous studies 
with PUD patients (33, 34), we expected substantial differences 
especially in WM integrity between PUD patients and the control 
group from the normal population. Available evidence (12, 20, 21) 
leads us to assume that different parameters of GM morphology 
(volume and CT) are affected as well.

METHODS AND MATERIALS

Participants
A total sample of 153 right-handed men between 18 and 41 years 
of age, composed of one clinical and one nonclinical group, was 
investigated. This sample integrated data from three different 
studies related to other research questions regarding PUD 
(Hiebler-Ragger et al., submitted, 33, 34). In detail, 45 participants 
(PUD patients: n = 29) were included from the first study (34) 
that focused on WM integrity in relation to attachment and 
personality. Sixty-five participants (PUD patients: n = 25) were 
included from the second study (33) that focused on WM integrity 
in relation to negative affective states, and 43 participants (PUD 
patients: n = 24) were included from the second study (Hiebler-
Ragger et al., submitted) that focused on neural activation 
during emotion regulation efforts. Data acquisition took place 
over a time span of 4 years, starting in January 2014 and ending 
in November 2016. The clinical group (n = 78) was diagnosed 
for PUD (F19.2) by a licensed psychiatrist (a medical doctor 
specialized in psychiatry with 20 years of experience of treating 
SUD patients) according to the International Classification of 
Diseases version 10 (38). The nonclinical comparison group 
was comprised of students from various faculties (CG; n = 75). 
Students were included in the nonclinical groups if they were free 
from any past or present psychiatric disorder or chronic disease. 
With regards to the use of psychotropic substances, CG included 
47 nonsmoking students who reported either no experience with 
illegal substances or to have tried them just a few times in their 
life, as well as 28 nicotine smoking students who reported using 
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illegal substances primarily for recreation at least once a week 
during the last month. Psychometric assessment of the clinical 
participants took place in two therapeutic facilities of the “Grüner 
Kreis” society, where these participants were undergoing long-
term SUD treatment based on the “Therapeutic Community” 
concept (39). The “Grüner Kreis” society (founded in 1983) is 
Austria’s biggest institution for long-term drug therapy. Usually, 
the patients stay from 6 to 18 months within the Therapeutic 
Community. All behavioral assessments were conducted via 
group testing. Participants’ consent was obtained according to 
the Declaration of Helsinki. Individuals were only included in 
the study if they did not report general MRI contraindications 
(e.g., head injuries, metal implants), major physical disorders, or 
severe cognitive impairments including acute psychotic episodes. 
The study was approved by the authorized ethics committee. See 
Table 1 for detailed demographic information.

MRI Acquisition
Imaging data were acquired on a 3T Siemens Skyra (Siemens 
Healtheneers, Erlangen, Germany) with a 32-channel head coil. 
Since the sample of this study consists of three different studies, 
two different sequence protocols were used, with slight variations 

in sequencing parameters. For all participants, T1-weighted 
images as well as diffusion-weighted images were acquired. 
Details of imaging parameters are itemized in Table 2.

MRI Data Preprocessing and Analysis
Diffusion
Data preprocessing was performed using the software package 
MRtrix (40) and FSL (41). First, data were visually inspected 
for artifacts and then denoised with the MRtrix command 
“dwidenoise” (42). Estimation and correction of geometric 
distortion was carried out with FSL’s “top up” and “eddy” using 
the nondiffusion-weighted images (b value = 0) collected with 
reverse-phase encoding direction (43). Datasets with no reverse 
encoding direction image available were corrected with eddy_
correct. Next, individual B0 images were coregistered to the 
structural image using SPM12 (v7219; Wellcome Trust Centre 
for Neuroimaging). The coregistered T1-images were then 
segmented into five tissues using the “5ttgen” algorithm (44). 
This step is necessary to allow the estimation of the response 
function for each tissue-class separately. The response 
function was estimated for GM, WM, and cerebrospinal 
fluid. Fiber orientation distributions (FODs) were computed 

TABLE 1 | Group differences (ANOVAs) in demographics and behavioral measures.

Measure α CG (n = 75) PUD (n = 78) F(1,34) η²

M SD M SD

Age – 25.28 3.37 28.71 5.15 23.48** 0.14
Education (years) – 13.92 2.82 11.51 2.58 30.39** 0.17
Treatment (weeks) – – – 24.88 18.46 – –
WPT – 28.95 6.02 17.51 7.16 113.89** 0.43
BSI
 GSI 0.88 10.32 7.66 15.47 11.01 11.22** 0.07
 Anxiety 0.73 4.67 3.56 5.85 3.92 3.79 0.02
 Depression 0.78 3.45 3.67 6.08 4.67 15.79** 0.10
 Somatization 0.72 2.22 2.77 3.55 3.94 5.79* 0.04

*p < 0.05, ** p < 0.01, CG , control group; PUD , poly-drug users; BIS, Brief Symptom Inventory; GSI, Global Severity Index; WPT, Wonderlic Personnel Test.

TABLE 2 | Details of imaging parameters.

T1 Diffusion tensor imaging (DTI)

Study 1 & 2 Study 3 Study 1 & 2 Study 3

44 100 44 100
TR (repetition time, ms) 2,300 1,680 8,500 3,036
TE (echo time, ms) 2.96 1.89 83 104.6
TI (inversion time, ms) 900 1,000 – –
FoV (field of view, mm) 256 224 256 240
Slices (#) 176 192 64 66
Slice—thickness (mm) 1.2 0.88 2 2.5
Gap (mm) 0.5 0.44 0 0
Matr.size 256 256 128 96
Flip angle (°) 9 8 90 86
Voxel (mm) 1 iso 0.88 iso 2 iso 2.5 iso
Directions – – 64 64
PAT (Parallel Acquisition Techniques) 0 0 Grappa Multiband factor = 3
b value – – 1,000 2,000
Reverse b0 – – No Yes
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using these multitissue-constrained spherical deconvolutions 
(45). FODs were then used to compute whole-brain fiber 
tractography with 5 million tracks. As a last preprocessing 
step, the scale-invariant feature transform algorithm was 
used to reduce tractogram biases (46) reducing the number of 
tracks to 1 million.

Tract Quantification
Whole-brain tractography data were imported into the 
AFQ software package (https://github.jyeatman/AFQ) (47) 
running on MATLAB (2017b, The Mathworks, Natick, 
MA, USA), which identifies 20 major fiber tracts, including 
the right and left thalamic radiations, forceps major and 
minor of corpus callosum, right and left inferior fronto-
occipital, inferior longitudinal, arcuate and uncinate fasciculi, 
corticospinal tract, and cingulum. To assess differences 
in tensor-based indices along each pathway, whole-brain 
tractography was normalized into the MNI space, and each 
fiber pathway was evenly spaced into 100 cross-sectional 
nodes. The mean fractional anisotropy (FA) in each node 
was calculated, and group differences were analyzed for each 
node within each pathway. Multiple comparison corrections 
were conducted using the AFQ software package script AFQ_
MultiCompCorrection.m, which is based on Nichols and Holmes 
(48). Using this script, the family wise error corrected alpha value 
for pointwise comparison was computed for each tract to correct 
for multiple comparison. As a result, p values below a threshold 
of <0.0025 (0.05/20 tracts) were considered significant.

Voxel-Based Morphometry
Structural scans were analyzed using the Computational Anatomy 
Toolbox (CAT12; r 1274) implemented in SPM12, running under 
Matlab 2017b, to assess voxel-wise comparison of GM volume 
(GMV) differences. Data were visually checked and the segmented, 
modulated, and normalized into the MNI space (1.5mm). The 
sample homogeneity was checked, and the total intracranial 
volume (TIV) was estimated. Finally, data were smoothed with a 
Gaussian kernel with a full width at half maximum of 8 mm.

Cortical Thickness
The CAT12 toolbox was again used to extract CT. This fully 
automated method uses tissue segmentation as already done 
in the voxel-based morphometry (VBM) analysis and uses a 
projection-based algorithm to compute CT (49). Finally, surface 
data were smoothed with a Gaussian kernel with a full width at 
half maximum of 15 mm.

For statistical analysis of GMV and CT parametric-free 
permutation tests (TFCE toolbox, number of permutations = 
10,000) were used. Age and TIV (only VBM) were included in 
the statistical model as regressors of no interest. Results were 
considered statistically significant with p < 0.05 corrected for 
family-wise error.

Behavioral Measures
Psychiatric Symptoms
The Brief Symptom Inventory-18 (BSI-18) (German adaptation 
by (50) is a short version of the highly established Symptom 

Checklist SCL-90-R (51). The amount of psychiatric burden 
for the preceding 7 days for three dimensions of psychiatric 
symptoms (Somatization, Depressiveness, and Anxiety) is 
assessed by means of 18 items (6 items for each subscale). 
The BSI-18 employs a 5-point rating form ranging from 1 
(absolutely not) to 5 (very strong). It is also possible to sum up 
the 18 items into a total score: The Global Severity Index (GSI) 
of psychiatric symptoms. In previous research, Cronbach’s 
alpha was observed to be at least 0.79 for all the subdimensions 
(33). See Table 1 for details.

Cognitive Ability
Participants also completed the Wonderlic Personnel Test (WPT), 
a rough screening instrument for the assessment of intelligence 
(52). This test requires the processing of disordered sentences, 
analogies, number series, word and sentence comparisons, and 
geometrical figures within a given time period of 12 min. The 
WPT contains 50 items with increasing difficulty. The total score 
is generated from the number of correct responses. See Table 1 
for details.

Behavioral Data Analysis
For group comparisons, one-way analyses of variance were 
conducted. Post hoc comparisons were conducted with Tukey’s 
honest significant difference test. Pearson`s correlations were 
calculated to investigate the relationship between neural and 
behavioral parameters. Alpha was set to p < 0.05. Eta squared 
(η2) is given as estimate of effect sizes.

Data Availability
The datasets generated during and/or analyzed during the 
current study are available from the corresponding author on 
reasonable request.

RESULTS

Demographics and Clinical Characteristics
As shown in Table 1, PUD patients were older than the 
controls (PUD: M = 28.71, SD = 5.15; CG: M = 25.28, SD = 
3.37; p < 0.001; η² = 0.14). Analyses also revealed significant 
differences in education, with the CG reporting an average of 
14 years (SD = 2.82) of education, whereas the PUD patients’ 
average was 12 years (SD = 2.58) of education (p < 0.001; η² = 
0.17). At the time of data acquisition, the PUD patients were 
undergoing inpatient SUD treatment within a therapeutic 
community for a mean time of 25 weeks (SD = 18.46). They 
reported a history of drug abuse over an average period of 12 
years (SD = 5.57; range, 2–27 years; missing values, 24). Forty-
eight PUD patients were undergoing maintenance therapy, 
while 30 PUD participants reported living in abstinence. 
Fifty-three PUD patients received psychopharmacological 
medication (antidepressant: n = 20; antipsychotic: n = 23; 
anxiolytic: n = 5; other: n = 20).

PUD exhibited a significantly higher amount of 
Depressiveness (p < 0.01; η² = 0.10), Somatization (p < 0.05; 
η² = 0.04) as well as a higher score for the total Global Severity 
Index in the BSI-18 (p < 0.01; η² = 0.07). Accordingly, PUD 
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patients showed no differences when compared to normative 
data for psychiatric inpatients (50), while CG participants 
exhibited less Depressiveness and a lower score in the Global 
Severity Index (for both p < 0.01). The intercorrelations 
between demographic and behavioral parameters in PUD 
can be retrieved from Table 3. Age was positively related to 
cognitive abilities (p < 0.01) as well as depression (p < 0.05) 
and the duration of treatment (p < 0.05).

Differences in White Matter, Gray Matter, 
and Cortical Thickness Between PUD 
and Controls
White Matter Fiber Tracts
As shown in Figure 1, PUD patients exhibited significant 
reductions in FA relative to controls across the entire left and the 
majority of nodes of the right corticospinal tract. In addition, 
there were significant FA reductions in posterior portions of the 
bilateral inferior longitudinal fasciculi and in smaller portions 
of the left thalamic radiation, the right inferior fronto-occipital 
fasciculus, and the right arcuate fasciculus.

Gray Matter Volume
Voxel-based morphometry analyses revealed no significant 
differences in GMV between PUD and controls.

Cortical Thickness
Analyses revealed brain regions with significant reductions of CT 
in PUD relative to controls, while there were no brain regions with 
higher CT in the patient group (see Figure 2). The largest cluster 
comprised the left insular and the left lateral orbitofrontal cortex. 
There were also significant CT reductions in the right orbitofrontal 
cortex. Generally, as is the case for the lateral orbitofrontal cortex, 
CT reductions were bilateral. This particularly applies to regions of 
the inferior frontal gyri (pars opercularis) and the precentral gyri. 
In addition, analyses revealed CT reductions in a cluster involving 
the left postcentral gyrus and small portions of the supramarginal 
gyrus in addition to a cluster in the right inferior temporal lobe.

DISCUSSION

This study investigated alterations in brain structure in an 
unprecedented large sample of PUD patients compared to 

controls from the general population. Analyses revealed 
impaired WM integrity along with reduced CT in the PUD 
sample but no alterations in GM. These findings were mirrored 
by significant differences between PUD and healthy controls 
regarding behavioral measures, such as a higher amount of 
psychiatric symptom burden as well as lower cognitive abilities. 
Furthermore, our results confirm previous research indicating 
substantial deficits especially in WM circuitry in PUD patients 
(25, 26, 33, 34, 53).

Deficits in WM structure might represent a valid predictor 
for negative therapeutic outcome. For instance, Moeller et 
al. (44) reported that deficits in WM integrity are related to 
an increased amount of impulsivity in cocaine-dependent 
patients. A high amount of impulsivity has been widely 
shown as being a risk factor for the development of SUD (54) 
as well as a substantial predictor for a negative SUD therapy 
outcome (55). Furthermore, we observed lower CT in PUD 
patients, which has been linked to higher memory deficits 
(12) as well as reduced effortful attention performance (56). 
CT abnormalities have been observed to be associated with 
SUD such as alcohol dependence (57), marijuana misuse (58), 
and nicotine smoking (59), as well as nonsubstance-related 
disorders such as excessive internet use (60) and online gaming 
(61). Moreover, significant abnormalities in CT were reported 
in individuals with heavy prenatal alcohol exposure. These 
abnormalities were found to be linked with impairments in 
verbal recall and visuospatial dysfunction (62).

Notably, we did not find any significant differences in 
GM between PUD patients and healthy controls. This is in 
clear contrast to previous research, where disrupted GM 
was observed to be related with several SUD, for example 
alcoholism (63), cocaine use (20), and cannabis use (23). 
We interpret our conflicting findings as showing that, in 
our rather young PUD sample, WM paths might be among 
the first to become affected by PUD. In fact, previous work 
suggested that heavy substance abuse might be particularly 
harmful to the development of WM during adolescence (19, 
24–27). In this regard, it is conceivable that, in its earlier 
stages, PUD already compromises more basic “hardware” 
processes, e.g., motor functions as indicated by the substantial 
WM deficits in the bilateral corticospinal tract, while further 
impairments in higher order cognitive functions only result 
after prolonged consumption. Accordingly, at this point, 

TABLE 3 | Correlations between demographic and behavioral characteristics in PUD (n = 78).

1. 2. 3. 4. 5. 6. 7. 8.

1. Age – 0.22 0.30** 0.14 0.24* 0.06 0.17 0.25*
2. Education (years) – 0.20 0.17 0.20 0.04 0.16 0.08
3. WPT – 0.04 0.02 −0.05 0.01 0.19

BSI
4. Anxiety – 0.68** 0.67** 0.88** 0.14
5. Depression – 0.63** 0.89** 0.11
6. Somatization – 0.86** 0.07
7. GSI – 0.12

8. Treatment –

*p < 0.05, **p < 0.01, PUD, poly-drug users; WPT, Wonderlic Personnel Test; BIS, Brief Symptom Inventory; GSI, Global Severity Index; Treatment, treatment duration.
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FIGURE 1 | 3D visualization and tract diffusion profiles for white matter fiber tracts showing significant differences between PUD and controls. Note. Yellow = left 
and right corticospinal tract; green = left and right inferiore longitudinale fasciculus (ILF); red = left thalamic radiation; blue = right inferior fronto-occipital fasciculus 
IFOF; cyan = right arcuate fasciculus; shades of gray in the profiles indicate nodes with significant group differences. PUD, patients with poly-drug use disorder.
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we can only assume that, later in life, GM might become 
damaged, too. For instance, in a study of Qiu et al. (64), the 
mean age of the group of heroin dependents was considerably 
higher (M = 35 years, SD = 4.2). Here, the authors reported 
a progressive deterioration of WM microstructure dependent 
on the duration of heroin use.

From a developmental perspective, the finding of 
diminished CT in PUD fits nicely with the literature. For 
instance, Hilton  Jr (29) described lower CT as a kind of 
premorbid cortical weakness, which leads to poor cognitive 
performance and could pave the way to develop a SUD later 
in life. In support of this notion, we observed a significantly 
lower level of cognitive ability, along with a lower educational 
status in the group of PUD patients. Even more importantly, in 
PUD patients, reduced CT, especially in regions of the insular 
and the orbitofrontal cortex, may suggest that these structural 
alterations mirror difficulties in affective processing, 
specifically emotional awareness (65) and emotional 
regulation (66), which are known to be compromised in 
SUD (67–69). This is further supported by the fact that we 
found pronounced WM impairments in the bilateral inferior 
longitudinal fasciculi and in the right inferior fronto-occipital 

fasciculus, which are both known as key components of a face 
processing network (70), with an important role in facilitating 
the ability to discriminate between emotional expressions in 
faces (71). In accordance with the general notion of impaired 
affective processing and emotion regulation in PUD, we 
previously observed a significantly reduced capacity for 
using cognitive reappraisal to regulate anger in PUD patients 
when compared to controls from the normal population  
(Hiebler-Ragger et al., submitted).

According to Kalivas and O’Brien (72), SUD is based on 
pathological changes in brain function, which are produced by 
a repeated pharmacological assault on the brain circuits that 
regulate how a person behaviorally responds to certain stimuli. 
Since recovery from SUD has been correlated with positive 
neuroplastic changes (36), neuroplasticity might therefore 
constitute a highly important indicator for the evaluation of 
therapeutic outcome. Especially for long-term treatment of 
SUD, neurologically informed therapeutic interventions may 
represent an important resource (33). Changes in cognitive 
and affective abilities in SUD patients during long-term 
treatment might be intertwined with neuroplastic effects (5, 
10). Strikingly, (73) reported beneficial effects of transcranial 

FIGURE 2 | Brain regions with significant (red–yellow) group differences in cortical thickness between PUD and controls. Note. PUD, poly-drug users; 
H, hemisphere; L, left; R, right; brain regions are derived from Desikan–Killiany DK40 Atlas. Reported p values are TFCE corrected for family-wise error (p < 0.05).
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stimulation (TMS) for the treatment of SUD, as TMS seems 
to facilitate long-term neurophysiological changes which 
have the potential to affect behaviors relating to drug craving, 
intake and relapse. Accordingly, a respective research focus 
on neuroplasticity in SUD patients may provide additional 
valuable information for the clinical outcome evaluation.

LIMITATIONS AND FUTURE 
PERSPECTIVES

The study of PUD populations has previously been discussed 
as being too unspecific (18). However, as a counter argument, 
from a clinical perspective, it is evident that a high rate of 
SUD patients is diagnosed with PUD because of a completely 
chaotic pattern of consumption (74). In this study, we did 
not further control for maintenance therapy since previous 
research revealed no differences in neural and behavioral 
parameters between PUD patients in maintenance therapy 
and abstinent patients (34). Furthermore, there was no perfect 
age match between the two groups, as the healthy control 
group was significantly younger than the SUD patients [3.43 
years (see Table 1)]. However, we observed age to be weakly 
related with behavioral characteristics, such as Intelligence, 
Depression, and Duration of Treatment (Table 3). In addition, 
in the analysis of GM and CT, age was considered as a regressor 
of no interest in the statistical model. Additionally, in future 
research, potential gender differences might be considered 
another factor of study, as, for instance, Sawyer et al. (75) 
reported sex differences in alcoholism-related abnormalities 
of WM connectivity. Furthermore, in this study, we sought to 
focus primarily on potential differences between PUD patients 
and a nonsubstance use disordered control sample regarding 
the areas of WM and GM as well as CT, based on an enhanced 

sample. In further analysis, we intend to investigate potential 
connections between neural parameters and an extended set 
of behavioral parameters in PUD more in detail, which might 
reveal further insights concerning individual differences in 
PUD. These findings will be published somewhere else. The 
cross-sectional design in this study limits the possibilities 
of interpretation. Thus, we can only speculate on the causal 
relationship between impairments in brain structure and the 
development of PUD as well as on potential neuroplastic effects 
during PUD treatment. While the combined analyses of several 
neural and behavioral parameters in the rather large sample of 
this study reveals important insights into the clinical profile 
of PUD patients, a longitudinal research approach comprised of 
several measurement points is highly warranted in order to be 
able to say more about the clinical relevance of neuroplasticity 
for patient treatment.
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