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Abstract

Avian influenza viruses can cause economically devastating diseases in poultry and have

the potential for zoonotic transmission. To mitigate the consequences of avian influenza,

disease prediction systems have become increasingly important. In this study, we have pro-

posed a framework for the prediction of the occurrence and spread of avian influenza events

in a geographical area. The application of the proposed framework was examined in an

Indonesian case study. An extensive list of historical data sources containing disease pre-

dictors and target variables was used to build spatiotemporal and transactional datasets. To

combine disparate sources, data rows were scaled to a temporal scale of 1-week and a spa-

tial scale of 1-degree × 1-degree cells. Given the constructed datasets, underlying patterns

in the form of rules explaining the risk of occurrence and spread of avian influenza were dis-

covered. The created rules were combined and ordered based on their importance and then

stored in a knowledge base. The results suggested that the proposed framework could act

as a tool to gain a broad understanding of the drivers of avian influenza epidemics and may

facilitate the prediction of future disease events.

Introduction

Avian Influenza (AI) disease is caused by influenza type A viruses, which can infect domestic

poultry, wild birds and mammalian species, including humans. Despite researchers’ efforts to

eradicate and control this disease, it has continuously caused significant losses to poultry and

has threatened human lives. To mitigate the impact of AI outbreaks, it is necessary to under-

stand the extent to which different risk factors and their interactions contribute to the intro-

duction and spread of outbreaks. To date, an extensive array of studies have reported on

spatiotemporal surveillance and control of AI using approaches, including logistic regression,

boosted regression tree, cluster analysis and maximum entropy in different geographical

scales. Studies have mapped the distribution of risk [1, 2] and identified important risk factors

for disease occurrence [3, 4]. Some studies have performed spatiotemporal surveillance on a

country scale such as those in Bangladesh [5], China [6], Indonesia [7], India [8], Thailand [1]
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and Vietnam [3] while others have focused on regional [9] or global [10] scales. Such disease

risk-profiling approaches could assist in understanding the predictors of disease occurrence

and preparing for future events.

Environmental conditions [11, 12], waterfowl [10, 13, 14], poultry farming and trading

activities [15, 16], agricultural activities [17] and land cover [10, 18] are identified as major fac-

tors of introduction and dispersion of AI occurrence.

The impact of environmental factors and climate change on the spread and geographical

distribution of AI outbreaks is documented in the literature [9, 19, 20]. For example, annual

precipitation is introduced as an important predictive variable for the risk of highly pathogenic

avian influenza (HPAI) in China [19]. Also, in the Middle East, the precipitation in the warm-

est quarter of a year is positively connected with HPAI H5N1 outbreaks [9]. In contrast, in

Europe [20] and Bangladesh [4, 5], precipitation is negatively associated with H5N1 outbreaks

in wild birds and poultry. Another important factor is the temperature that is positively associ-

ated with H5N1 outbreaks in wild birds in Europe [20] while an opposite pattern is found for

poultry in Bangladesh [4, 5].

Moreover, the role of waterfowl density in the distribution of AI outbreaks is highlighted in

a number of studies. In Asia [2, 21], domestic waterfowl density appears to be an important

risk factor for H5N1 occurrence in poultry. Moreover, a positive association between duck

density and H5N1 occurrence is found in Vietnam, Thailand [1, 22], India [8] and global scale

[15].

Similarly, poultry density is considered as one of the factors associated with AI outbreaks. A

strong association between HPAI outbreaks and densities of chickens was found in California

[16], the Middle East [9] and globally [15]. Also, poultry market density in China is considered

an important predictor of the risk of AI H7N9. In another study, Henning et al. [3] found that

medium poultry density is associated with the risk of H5N1 outbreaks in Vietnam. Contrary

to aforementioned studies, Yupiana et al. [7] found a negative association between H5N1 out-

breaks and poultry density.

The spatial distribution of H5N1 outbreaks and its transmission to various regions have

been associated with wild bird flyways [10, 23]. Moreover, the introduction of H5N1 to poultry

in Europe, Asia and Africa may be partly through wild bird migration [24]. However, in a

number of studies [25–27], a limited or a negative association has been found between migra-

tory waterfowl sites and outbreaks of H5N1.

Despite the efforts that have been made to determine the essential predictor variables and

suitable areas of AI presence, there are still some research gaps that need to be filled.

Motivation

The present paper is aimed to obtain insights on the prediction of AI events using an extensive

spatiotemporal dataset. For this, we identified gaps in the existing research concerning applied

predictor variables and methodologies.

Despite the highlighted importance of risk predictor variables mentioned earlier, the preci-

sion and completeness of explanatory data have received limited attention in the literature. For

example, a global climate system [28] has been frequently used in AI surveillance studies [9,

11, 29, 30]. The WorldClim website provides monthly average amount of climatic variables for

various spatial resolutions. Clearly, the system only provides historical information and the

monthly average of climatic variables is a low temporal resolution. Moreover, the geographic

distribution of wild migratory birds has not been included in some existing work [15, 21, 31].

The existing approaches for determining how AI events occur in a region usually rely on

regression [2, 6, 8, 19, 32] or boosted regression tree models [8, 15, 17, 18, 25]. The existing
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work has aimed to find the most important predictors of disease and then profile the risk of

outbreaks. In the aforementioned studies, the average impact of individual risk factors on the

output is assessed. However, the identification of subgroups with different risk profiles is over-

looked. This can consequently, ignore important information and produce biased results [17,

33]. Analysis relying on only one or a few numbers of risk factors could ignore important

information and produce biased results.

The application of rule-based prediction models has been limited to a few studies for Den-

gue [12], Depression [34] and Diabetes [35, 36]. We are aware of only one study which used

rule-based models aimed at analyzing AI outbreaks [37]. Xu et al. [37] constructed a data cube

model with OLAP (Online Analytical Processing) actions. Then, geographical and temporal

insights into disease spread with various abstraction levels were extracted. Moreover, sequen-

tial pattern mining and association rule mining were applied to provide understandings of

potential serial spread routes and linkage between outbreak sites [37]. The researchers in this

study Xu et al. [37] used the disease occurrence data regardless of the importance of explana-

tory variables.

The present study exploits historical data sources to extract predictive patterns of AI. The

approach used here is complementary to prior research with three main contributions: (1) It

uses several data sources with high temporal and spatial resolutions. (2) It employs rule-dis-

covery models rather than focusing on predictive regression models commonly used in the

relevant existing studies. Rule-discovery models generate patterns that can link the risk of

disease presence with subsets of risk factors. (3) It contributes to automation and transpar-

ency of predictions. Although transparency of predictions is essential in application areas of

epidemiology [38], the transparency of surveillance systems and their outcomes has received

less attention in the literature. Since the proposed framework used a collection of rules as a

high-level description of data, the explanation capability of predictions can be enhanced.

This means public health officials can find the reasons behind the predictions made by the

system.

The proposed framework was implemented and tested for an Indonesian case study. Indo-

nesia was selected as a case study as this country has had a high number of reporoted AI out-

breaks over the years and, importantly, it provides accessible explanatory data sources. This

framework can form a basic model for risk prediction of AI events.

Methodology

The main goal here is to extract prediction patterns of AI occurrence from a set of disparate

data sources. We designed, implemented and tested a framework with four main parts includ-

ing data collection, data aggregation and pre-processing, data analysis, and prediction. An

overview of the main framework is presented in Fig 1.

In the first step (Data Collection), independent variables were identified and their respec-

tive data sources were collected. These variables were identified by the help of subject matter

experts and from relevant literature. In the next step (Data Aggregation and Pre-processing), a

relational database containing time and geographic information along with several covariates

and outcome variables was designed. In the third step (Data Analysis), we applied rule discov-

ery algorithms to the labelled dataset (training dataset) and extracted hidden patterns. These

patterns indicated which combination of risk factors had led to high or low risk of disease

occurrence and what linkage between event sites had been observed. Moreover, an experiment

was conducted to evaluate the performance of predictions. In the last step (Prediction), end-

users can communicate with the system through a user interface. Here, the user interface can

include mapping and monitoring of the risk, given a current spatiotemporal dataset.
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Data collection

A number of data sources have been downloaded and stored in their respective tables in a rela-

tional database that is visualized in Fig 2. Table 1 presents a summary of data sources used in

the database construction. These data sources included climatic variables, geographical distri-

bution of migratory bird species, distribution of poultry and AI historical records. More detail

information on data tables is given in S1–S3 Tables in S1 File.

The risk factors obtained from these sources have been shown in the previous studies to

correlate with AI outbreaks [12, 15, 16]. A list of risk factors used in the study along with their

Fig 1. Overall framework.

https://doi.org/10.1371/journal.pone.0245116.g001
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Fig 2. Database schematic.

https://doi.org/10.1371/journal.pone.0245116.g002

Table 1. Sources of data.

Data Source Description

Dark Sky API The API offers several climatic variables including temperature, humidity and wind

speed. We automatically collected the variables that have been frequently used as

risk factors of AI. The ‘Time Machine Requests’ API offered by Dark Sky [39] was

used to retrieve weather information given latitude, longitude and time parameters.

BirdLife-species The data provides geographic extents of species distribution ranges and is available

in the Environmental Systems Research Institute (ESRI) Geodatabase formats [40].

Gridded Livestock of the

World (GLW3)

Food and Agriculture Organization (FAO) has developed the GLW3, in which the

global distribution of chickens and ducks in 2010 is expressed by the total number

of birds per pixel (5 minutes of arc) [41].

EMPRES-i FAO’s Emergency Prevention System (EMPRES) offers a web-based application in

order to facilitate the organization and access to disease data in various

geographical scales which supports veterinary services [42].

https://doi.org/10.1371/journal.pone.0245116.t001
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type, unit and resolution is shown in Table 2. These attributes are also visualized in ‘indone-

sia_training’ and ‘indonesia_testset’ data tables in Fig 2.

Data aggregation and pre-processing

To build the basis of the model, we divided Indonesia land mass into rectangle cells, each with

size 1-degree × 1-degree (equal to 60-minutes arc). A visualization of sample cell centres is

provided in Fig 3. In addition, the temporal resolution of 1-week was considered. This resolu-

tion was selected as it offers a good balance between the precision of decision-making and the

time required for data processing. The response variable for each cell (i.e. each row of dataset)

was classified as zero if there were no AI events within the cell and during the specified

Table 2. Attributes.

Attribute Type Unit Resolution

temperature numerical Fahrenheit point

precipitation numerical millimetre point

relative humidity numerical between 0 and 1 point

wind speed numerical miles per hour point

pressure numerical sea-level air pressure in millibars point

chicken density numerical density 5-minute arc

duck density numerical density 5-minute arc

waterfowl numerical Boolean point

https://doi.org/10.1371/journal.pone.0245116.t002

Fig 3. Sample spatio scale (Indonesia). Base map and data from OpenStreetMap and OpenStreetMap Foundation.

https://doi.org/10.1371/journal.pone.0245116.g003
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temporal scale. Conversely, if there was at least one disease event within the spatiotemporal

scale, the response variable was classified as one. The response variable is demonstrated by

‘has_event’ field in the database schema (Fig 2).

The data aggregation was performed in a Structured Query Language table. The response

variable describes a disease event that occurred within a certain time interval (week number t)

and a spatial compartment with a center of (x,y), where x represents longitude and y represents

latitude. The spatiotemporal information in “Indonesia” data tables in Fig 2 are demonstrated

by “week”, “cell_longitude” and “cell_latitude” attributes. Similarly, for other covariates, pre-

processing techniques were applied to transform the records into the defined grid-based table.

Since the table included coordinate information for each record, a weekly timeline of informa-

tion could be visualized in maps using GIS software. Moreover, extracted patterns from the

grid-based data could be simple and easy to understand.

The information on AI events in Indonesia was obtained from the Emergency Prevention

System for Animal Health (EMPRES) [42, 43]. The reporting date and geographical coordi-

nates of events in the EMPRES-i platform was used to scale the disease events to specified cells.

To make a classifier that could predict the response variable based on predictor variables,

we divided the data into training and testing sets. The data from 2009 to 2016 was used for

training and the data containing 2006, 2007, 2008 and 2017 was used for testing purposes.

Overall, the number of observations in the training dataset was 61,152 (147 [number of cells] ×
8 [number of years] × 52 [number of weeks per year]) and in the testing dataset was 30,576.

In total, the training dataset contained 1,860 rows with target variable of one and 59,292 of

zero while the testing dataset contained 168 of class one and 30,408 of zero.

In addition, the explanatory variables were obtained for each spatial and temporal dimen-

sion. The “Time Machine Request” type of Darksky API was used to retrieve the climatic infor-

mation. This returns the observed daily weather conditions given a specified date in the past

and a location point. The API responses consist of a JSON-formatted object, from which we

selected a set of predictors that have been previously known as factors contributing to out-

breaks of AI [44–46]. These predictor variables included temperature, precipitation, humidity,

wind speed and pressure.

The chicken and duck distribution data for Indonesia were computed using The Gridded

Livestock of the World (GLW) [47]. The data offered GeoTIFF format files that were con-

verted to longitude-latitude-value format using the Rasterio library in Python [48] and then

imported to a designed database. The spatial resolution of GLW data (a pixel) was higher than

the defined spatial resolution of the present study. Thus, the density points inside a cell have

been averaged. However, GLW provides low temporal resolution (2010 only) and therefore

the densities have been replicated for all data points with a particular spatial resolution.

Birdlife species data included shapefiles that could be visualized by geographical informa-

tion system (GIS) software such as ArcGIS. We filtered polygons related to 133 duck species.

In addition, due to the very large size of the data, we simplified the polygons. This enabled us

to decrease the processing time. Finally, in the field called ‘bird_existence’ in the database, we

specified whether each cell was inside a bird polygon or not.

In addition to the aforementioned explanatory variables, we defined winter, spring, sum-

mer, fall seasons by dividing weeks into 48-12, 12-24, 24-36 and 36-48, respectively. Indonesia

is passed by the equator and the weather can be split into dry (May-September) and rainy

(October-April) seasons. In the present study, fall and winter divisions represent the rainy sea-

son while spring and summer represent the dry season.

Predictor variables coming from disparate data sources had different spatial and temporal

resolutions. Therefore, the variables were arranged with respect to the defined spatial and tem-

poral resolution. When the spatial resolution was higher than a cell or temporal resolution was
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higher than a week, we averaged the values. Conversely, when the resolution was lower than a

cell or a week, we repeated the same values for all the cells that fit into that resolution. Finally,

various data sources were assembled into a database with a uniform spatiotemporal resolution.

Data analysis

Given the created dataset, we employed RuleFit, Frequent Pattern Growth (FP-Growth) and

Prefix-projected Sequential Pattern Mining (PrefixSpan) models to discover hidden rules that

might be predictive or indicate dispersion paths of the risk of AI occurrence.

Patterns were extracted in the form of “IF-THEN” rules. The general form of “IF-THEN”

rules is demonstrated as follows (Eq 1). Where X is called an antecedent and Y is called a con-

sequent of the rule. The outcome variable (Y) is true if the condition variable (X) is satisfied.

IF ðX is AÞ THEN ðY is BÞ ð1Þ

A rule consists of several interacting risk factors and their ranges. A combination of the

extracted rules was used to build the final rule-based classifier.

Given the prepared training set, a supervised ensemble rule learner (RuleFit) was trained to

induce rules. RuleFit [49] is a computational algorithm for rule discovery from a large number

of candidate risk factors [36]. It generates rules by first exhaustively searching for candidate

rules over the potential risk factors in the “rule generation” phase. Rules are generated auto-

matically by traversing each path through a decision tree. Subsequently, the redundant and

irrelevant rules are pruned out in the “rule pruning” phase [49, 50].

Among the advantages of the RuleFit algorithm, several points are of note: 1) This algo-

rithm can rank features by their importance. 2) It outputs interpretable rules. 3) RuleFit relies

on a non-parametric model, i.e. Gradient Boosting, with fewer modelling assumptions. More-

over, studies comparing rule extraction methods have shown a competitive accuracy of RuleFit

[51, 52].

To address the disparity of explanatory variables, these variables were discretized. The cate-

gories of very low (VL), low (L), medium (M), high (H) and very high (VH) were calculated

based on the histograms of explanatory variables. Moreover, since the dataset was imbalanced,

i.e. the number of negative classes was 30 times more than positive classes in the training set,

we under-sampled instances of the majority class (one-to-zero ratio of 0.2). Additionally, some

data points were discarded due to the high number of missing values. Subsequently, the model

was trained with a 5-fold cross-validation. For each subset, the training set was used to learn

the rules and the remaining part to evaluate the model.

In each round, we calculated sensitivity, specificity, precision and F-score metrics. Specific-

ity (Eq 3) measures the proportion of actual negatives that have been correctly identified while

sensitivity represents the proportion of actual positives that have been accurately identified

(Eqs 4 and 2). Precision represents how many selected cases are relevant and the F-score (Eq

5) is a weighted average of the precision and recall. For two-class classifications, there are four

possible cases: For a positive class, if the prediction is positive, this is a called true positive (TP)

and if negative, it is a false negative (FN). For a negative example, if the prediction is negative,

it is called true negative (TN) and if positive, it is a false positive (FP).

Next, we used the unsupervised FP-Growth algorithm for mining the rules from the train-

ing set. The algorithm was first proposed by Han et al. [53] and it mines the frequent itemsets

without candidate generation [54]. The algorithm first compresses the database into a fre-

quent-pattern tree (FP-tree). Then, FP-tree is divided into a set of conditional databases [54].

The FP-Growth algorithm has proven to be time efficient and to consume less memory than

the Apriori Algorithm for mining frequent itemset [12, 55].

PLOS ONE A framework for risk prediction of avian influenza occurrence

PLOS ONE | https://doi.org/10.1371/journal.pone.0245116 January 15, 2021 8 / 20

https://doi.org/10.1371/journal.pone.0245116


Extracted rules can be representative of relations between variables in the dataset. The rules

indicating a relationship between predictor and response variables were obtained from the

FP-Growth algorithm applied to the training set. Similar to the RuleFit, we discretized explan-

atory variables and additionally, assigned high risk (HR) and low risk (LR) to the response var-

iable for values one and zero, respectively. Following that, the support and confidence criteria

were used to select the most important rules. The support of a rule is the number of instances

in the dataset that endorses that rule and the confidence indicates the number of times the

“IF-THEN” statements are found true.

Recall or Sensitivity ¼
TP

ðTP þ FNÞ
ð2Þ

Specificity ¼
TN

TN þ FP
ð3Þ

Precision or Positive Predictive Value ðPPVÞ ¼
TP

ðTP þ FPÞ
ð4Þ

F1 � score ¼
2 � Precision � Recall
Precisionþ Recall

ð5Þ

Fb � score ¼
ð1þ b

2
Þ � Precision � Recall

ðb
2
� PrecisionÞ þ Recall

ð6Þ

Mining sequential rules: Event linkage sites. We performed an additional analysis to

understand paths by which disease could be transmitted. Such findings could contribute to

gaining a better understanding of the risk of AI occurrence. For this, we prepared transactional

datasets for each year from 2010 to 2016. Given a year, the sequence of cells containing events

along with ranges of their associated risk factors were calculated for each month of the year.

An example of the transactional dataset of 2011 prepared for this analysis is provided in

Table 3. For example, in January, a time-line of cells with events starting with cell number 253

Table 3. A sample of transactional dataset (2011).

Month Sequence of Cells with disease presence

Jan 253: dCH, dDL, tH, hH, wsL, pcH, prL!
376: dCH, dDH, tH, hM, wsH, pcH, prL!
294: dCH, DkH, tH, hM, wsH, pcH, prM!
355: dCH, dDH, tH, hM, wsH, pcH, prL!

. . .

Feb 232: dCL, dDL, tH, hH, wsL, pcM, prM!
210: dCM, dDL, tH, hM, wsH, pcM, prM!
231: dCM, dDL, tH, hL, wsL, pcM, prL!
415: dCM, dDH, tL, hH, wsL, pcM, prM!

. . .

Mar 210: dCM, dDL, tH, hH, wsL, pcM, prM!
167: dCM, dDL, tH, hH, wsL, pcM, prM!
253: dCH, dDL, tH, hH, wsH, pcM, prM!
376: dCH, dDH, tH, hM, wsH, pcH, prM!

. . .

https://doi.org/10.1371/journal.pone.0245116.t003
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is produced. In the Table, symbols of ‘dC’, ‘dD’, ‘t’, ‘h’, ‘pc’ and ‘pr’ denote ‘density of chickens’,

‘density of ducks’, ‘temperature’, ‘humidity’, ‘precipitation’ and ‘pressure’, respectively. More-

over, the subscripts ‘L’, ‘M’, ‘H’ denote ‘very low or low’, ‘medium’, ‘high or very high’,

respectively.

These datasets were then fed to the PrefixSpan algorithm. PrefixSpan is a well-known

sequential pattern mining algorithm [56]. Studies have shown that PrefixSpan, in most cases,

outperforms the Apriori-based algorithms such as the GSP (generalized sequential pattern

algorithm), FreeSpan (frequent pattern-projected sequential pattern mining), and SPADE

(sequential pattern discovery using equivalence classes) [56, 57]. This is because it finds the fre-

quent items after scanning the sequence data for a single time.

The outcome of the analysis, i.e. serial paths of disease spread, can be added to the final

knowledge base and contribute to calculating the risk of AI occurrence.

The discovered patterns of this part of the framework were then used in the prediction part

as illustrated in Fig 1 to predict the risk of AI presence and evaluate these predictions.

Prediction

The extracted rules from the RuleFit and FP-Growth algorithms were ordered using their

scores and then two groups of rules were combined to be used for defining a classifier. The

process of rule extraction and risk prediction is depicted in Fig 4. Due to the highly imbalanced

nature of the data set (a ratio of 1:56 of positives to negatives), unseen data points were under-

sampled with a positive to negative label ratio of 0.2. Subsequently, for each data point, we

searched for up to ten first matching rules. Matching rules are those that their antecedent cov-

ers the given data point. We used a variable called ‘determinant’ to determine the class label of

data points as shown in Fig 4. Each time, if a matching rule was a risk-increasing type, we

added one unit to the defined variable and if it was risk-decreasing type, we subtracted one

unit from the variable. Finally, data points with an amount more than an integer threshold

ranged from minus four to four were determined as ‘at risk of an disease’. Conversely, those

with a value less than the threshold were labelled as ‘not at risk of disease’. Comparing these

labels with actual ones, we evaluated the results with several measures defined in Eqs 2–5.

Results and discussion

Underlying patterns in form of “IF-THEN” rules along with their respective importance were

identified by RuleFit and FP-Growth models. Ordered lists of rules are shown in Tables 4 and

5, respectively.

We used the measures of support, confidence and coefficient to calculate the degree of

importance of the rules. Coefficients represent the change in the response variable for one unit

of change in the predictor variable. The importance measure for RuleFit is calculated by the

multiplication of coefficient and support measures. The rules with positive coefficient are

denoted by “increasing” and negative coefficient by “decreasing” risk types as shown in

Table 5. The evaluation of outcomes of the RuleFit algorithm with 5-fold cross-validation

showed F-score of 64%.

To extract rules using FP-Growth, we separated the dataset based on their target label. For

each group, given generated rules from the FP-Growth algorithm, relevant rules were selected

using a comparative support criterion, in which we took into account the ratio of instances in

high and low risk groups. The rules with the measure greater than a threshold were considered

relevant. The extracted rules of the form “risk factors! event occurrence risk” are given in

Table 5. Low and high risks are denoted by ‘LR’ and ‘HR’ in the table, respectively.
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From the most relevant rules obtained from the RuleFit and FP-Growth, we discovered that

the FP-Growth and RuleFit algorithms agreed on the impact of several predictors such as

chicken density, duck density, season and temperature. Furthermore, these rules were consis-

tent with similar studies [2, 15, 16, 21, 58], which validated our rule-based analysis.

Fig 4. Rule-based prediction.

https://doi.org/10.1371/journal.pone.0245116.g004
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Looking at the extracted rules, it is evident that both algorithms agree on the direct relation-

ship between chicken/duck densities and the risk of AI occurrence. This is consistent with the

previous studies [15, 16], in particular the same results have been obtained for developing

countries [59] and Indonesia [60].

A low or medium amount of precipitation (less than 300 millimetre per month) was associ-

ated with AI occurrence, which was detected by both algorithms. This pattern was aligned

with the findings of other studies [12, 19, 20]. Also, both algorithms agreed with regard to find-

ing a connection between rainy season (September-March) and AI occurrence. This might be

similar to findings by Loth et al. [4] who outlined that wet summers can have a negative associ-

ation with AI occurrence.

Table 4. The top risk rules identified by RuleFit.

Rule Effect Risk Type

not in the fall season 2.4045 decreasing

not in the fall season and chicken density not in [H,VH] 1.5648 decreasing

not in the fall season and duck density not in [H,VH] and temperature is not VH 0.3915 decreasing

VL duck density 0.3011 decreasing

duck density not VL and temperature is not VH 0.2519 increasing

duck density not VL and temperature is not VH and pressure is not in [H,VH] 0.1819 increasing

not in the fall season and duck density is VL 0.1680 decreasing

chicken density in [H,VH] and precipitation not in [H,VH] 0.1371 increasing

duck density not VL and season is not Winter and precipitation not in [H,VH] 0.1222 increasing

Winter season and chicken density not in [H,VH] 0.1187 increasing

M chicken density and precipitation is not VH and pressure not in [H,VH] and temperature is

not VH

0.0923 increasing

https://doi.org/10.1371/journal.pone.0245116.t004

Table 5. Mined rules by FP-Growth algorithm.

Rule Comparative Support

no waterfowls! LR 824

L chicken density! LR 634

M pressure and no waterfowls! LR 555

H temperature and no waterfowl! LR 537

L chicken density and no waterfowls! LR 536

L duck density! LR 519

M precipitation and no waterfowls! LR 511

VL wind speed and no waterfowls! LR 467

H chicken density! HR 433

H temperature and M precipitation! LR 427

VH humidity! LR 421

H duck density!HR 410

VL wind speed and M pressure!HR 376

Winter season!HR 367

VH chicken density!HR 359

M humidity!HR 335

H chicken density and M pressure!HR 334

Spring season! HR 330

H chicken density and H temperature!HR 324

https://doi.org/10.1371/journal.pone.0245116.t005
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While the RuleFit algorithm was able to detect the negative association between tempera-

ture and AI presence that has been previously outlined in the literature [5, 58], this association

was not found using the FP-Growth algorithm.

In an additional analysis, we explored frequent sequences of cells with disease occurrence.

A sample of outcome results for 2010 to 2012 is given in Table 6 and also visualized in Fig 5.

Outcomes indicate the path between the regions of Lampung, West Java, Central Java, Yogya-

karta and East Java. The most frequent paths were between the Lampung and Yogyakarta,

West Java and Yogyakarta, East Java to Central Java, Lampung to Central Java, Central Java to

West Java and West Java to Lampung.

Risk prediction

The classifier was parametrized with a range of thresholds as explained earlier and a precision-

recall curve was generated. The curve is visualized in Fig 6 and represents the trade-off

Table 6. Sample extracted sequential rules by PrefixSpan algorithm.

Year Frequent sequences of cells with disease events

2010 356: dCH, dDH, tH, hH, wsL, pcL, prM! 253: dCH, dDL, tH, hH, wsL, pcL, prM
253: dCH, dDL, tH, hH, wsL, pcL, prM! 356: dCH, dDH, tH, hH, wsL, pcL, prM

2011 315: dCH, dDH, tM, hH, wsL, pcH, prM! 356: dCH, dDH, tH, hH, wsL, pcH, prM
335: dCH, dDH, tH, hH, wsL, pcH, prM! 315: dCH, dDH, tM, hH, wsL, pcH, prM
356: dCH, dDH, tH, hH, wsL, pcL, prM! 253: dCH, dDL, tH, hH, wsL, pcL, prM
253: dCH, dDL, tH, hH, wsL, pcL, prM! 356: dCH, dDH, tH, hH, wsL, pcL, prM

2012 315: dCH, dDH, tM, hH, wsL, pcH, prM! 356: dCH, dDH, tH, hH, wsL, pcH, prM
335: dCH, dDH, tH, hH, wsL, pcH, prM! 315: dCH, dDH, tM, hH, wsL, pcH, prM
315: dCH, dDH, tM, hH, wsL, pcM, prM! 356: dCH, dDH, tH, hH, wsL, pcL, prM
356: dCH, dDH, tH, hM, wsM, pcL, prM! 315: dCH, dDH, tM, hH, wsL, pcL, prM
356: dCH, dDH, tH, hH, wsL, pcL, prM! 253: dCH, dDL, tH, hH, wsL, pcL, prM
253: dCH, dDL, tH, hH, wsL, pcL, prM! 356: dCH, dDH, tH, hH, wsL, pcL, prM
253: dCH, dDL, tH, hH, wsL, pcL, prM! 355: dCH, dDH, tH, hM, wsL, pcL, prM

https://doi.org/10.1371/journal.pone.0245116.t006

Fig 5. Linkage sites of disease events.

https://doi.org/10.1371/journal.pone.0245116.g005
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between precision and recall measures of predictions. The blue dot points show the thresholds

starting from minus four at the left and ending to four at the right of the graph. As the thresh-

old is increased, the sensitivity decreases and the precision increases.

Since the goal of the classifier defined here is to predict disease event occurrence, having

a high sensitivity is important. This is because, in such prediction systems, having less false nega-

tives is more desirable than having less false positives. Therefore, a threshold of zero was selected.

The graph visualized in Fig 6 represents the trade-off between precision and recall mea-

sures. Based on Fig 6, at the threshold of zero, the classifier gains a sensitivity of about 88% and

a positive predictive value of 50%. The high sensitivity means that the classifier is strong for

correctly predicting the disease presence. The system also predicts actual disease absent points

with a probability of 82.22%. These results are summarized in the Table 7.

Since the dataset here contains more negative than positive classes, precision and recall are

better metrics to look at. A refined version of F1-score called Fβ-score (Eq 6) is more practical

for imbalanced data since it allows for higher weighting of either precision or recall. Given

the importance of sensitivity over precision in the current study, in addition to traditional F1-

score, Fβ-score with β = 2 was reported.

Fig 6. Precision-recall curve.

https://doi.org/10.1371/journal.pone.0245116.g006

Table 7. Evaluation measures of the rule-based classifier (threshold = 0).

Measure Value

Sensitivity 88.88%

Specificity 82.22%

Positive predictive value 50%

F1-score 64%

Fβ-score 76.92%

https://doi.org/10.1371/journal.pone.0245116.t007
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To compare the performance results with a basic classifier, we applied the Random Forest

algorithm with 10-fold cross-validation on unseen data. The result reported in Table 8 shows

that the performance of the proposed classifier is comparable with Random Forest. Although

both classifiers gained the same F-measure, giving more importance to sensitivity (i.e. β = 2),

the proposed model obtained a higher Fβ-score. It should be noted that different resolutions

and case studies in previous studies impede us to make a direct comparison of performance

with them [61].

Moreover, we generated the cumulative gains curve, which was used to assess the perfor-

mance of the prediction. It shows the percentage of targets reached when considering a certain

percentage of the population. First, all the observations were ordered according to the output

of the model. Therefore, observations with the highest rank were placed on the left-hand side

of the horizontal axis. The vertical axis of the curve indicates which percentage of true positives

included in the curve.

The chart can tell how much the model predicts better compared to a random selection.

According to Fig 7, if we consider the 20% of the observations, the model will ensure that

88.89% of the true positives are in this group, while the random pick would provide only the

20% of the targets.

Conclusion and future work

Here, we have proposed a framework to discover hidden patterns from an extensive list of data

sources using rule-discovery techniques. This framework facilitates the understanding of how

AI predictors and occurrence data can be aggregated and pre-processed as input for rule-dis-

covery techniques. Subsequently, a classifier was built from extracted rules to predict the dis-

ease presence in new circumstances. This approach is complementary to existing AI risk

profiling methods. A rule-set used here can offer easier interpretations of predictions for end-

users. This means that users can understand how predictions are made. Also, it is easy to iden-

tify which factors have contributed to the predictions and whether the predictions are reason-

able. An understanding of risk-increasing factors and their interactions and building risk-

profiling maps, can be useful in emergency preparedness. For instance, authorities may use

such information to prioritize and target areas for interventions.

The outcome patterns in this study were consistent with earlier studies. For example, the

positive association between disease presence and chicken/duck densities, waterfowl density

and the negative association between disease presence and precipitation were aligned with pre-

vious studies. Nevertheless, the impact of temperature on disease occurrence showed contra-

dictory results, which might be due to the tropical climate of Indonesia. In Indonesia, the

temperature is usually high and does not change much during a year.

An important limitation of the present study is that the change in the distribution of data

through the process of under-sampling without considering the impact of imbalanced data on

the classification output might be misleading [62]. This is because the removal of examples

Table 8. Evaluation measures of the a Random Forest classifier (number of trees = 20).

Measure Value

Sensitivity 56.8%

Specificity 82.22%

Positive predictive value 80%

F1-score 63.3%

Fβ-score 58.9%

https://doi.org/10.1371/journal.pone.0245116.t008
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from the majority class could lead to the loss of potentially important information about the

class [63]. Moreover, further work is required to improve the performance of predictions. One

approach is the collection of additional data sources. For example, live bird trades information

could be taken into consideration. Trading of live birds is known to be a major pathway of AI

transmission that can happen through the movements of contaminated traders [64]. To

improve the timeliness of predictions, a continuous pipeline from data collection to analysis is

required. It means that during specified time intervals, data is automatically collected, pre-pro-

cessed, integrated and analysed. The patterns in the rule-base will be updated in each interval,

which ensures real-time predictions.

The proposed framework may provide public health officials and animal health authorities

with warnings that can be used for identifying areas with a high risk of disease presence.

Such information can potentially be used for response in high priority areas and executing

interventions.
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64. Fournié G, Tripodi A, Nguyen TTT, Tran TT, Bisson A, Pfeiffer DU, et al. Investigating poultry trade pat-

terns to guide avian influenza surveillance and control: a case study in Vietnam. Scientific reports.

2016; 6:29463. https://doi.org/10.1038/srep29463 PMID: 27405887

PLOS ONE A framework for risk prediction of avian influenza occurrence

PLOS ONE | https://doi.org/10.1371/journal.pone.0245116 January 15, 2021 20 / 20

https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1038/srep29463
http://www.ncbi.nlm.nih.gov/pubmed/27405887
https://doi.org/10.1371/journal.pone.0245116

