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ABSTRACT The draft genome sequences of four Salmonella enterica serovar Enterit-
idis and Kentucky isolates were evaluated for biofilm formation and antibiotic resis-
tance. The Salmonella serovar Kentucky strains CFS84 and CFS85 and Salmonella se-
rovar Enteritidis strains CFS86 and CFS87 were isolated from retail poultry sources in
Arkansas.

Salmonella enterica remains one of the most common foodborne pathogens causing
illnesses leading to numerous hospitalizations and causing millions of dollars in

health care costs and productivity losses (1, 2). Within the food industry, Salmonella spp.
have been shown to possess the ability to form biofilms on processing equipment (3,
4). This ability can confer resistance to disinfection and allow bacteria to persist over
time and serve as a reservoir for future contamination (5). Salmonella enterica serovar
Enteritidis is one of the primary serovars associated with human illnesses in the United
States and is often associated with the consumption of contaminated poultry products
(6). S. enterica serovar Kentucky has been identified as one of the more commonly
isolated serovars from poultry production and often possesses a multidrug resistance
phenotype (6). Although S. Kentucky has been affiliated with fewer hospitalizations
than other Salmonella serovars, it has demonstrated the ability to obtain and spread
plasmids that contribute to increased virulence and colonization in poultry (7). These
abilities could become problematic if the strains are allowed to persist in processing
and storage environments.

Four strains of S. enterica isolated from retail poultry carcasses from Arkansas were
sequenced (Table 1) (8). Of these, two (CFS84 and CFS85) belonged to serovar Kentucky
and two to serovar Enteritidis (CFS86 and CFS87). Phenotypic testing of the S. Enteritidis
strains showed wild-type morphologies and biofilm growth, while the S. Kentucky
strains exhibited morphologies and growth associated with increased extracellular
matrix component production (our unpublished data). All strains were previously found
to exhibit resistance to multiple antimicrobial agents, with each strain showing resis-
tance to sulfisoxazole and novobiocin. Strain CFS84 demonstrated additional resistance
to neomycin, and CFS86 encoded resistance to ampicillin and nalidixic acid as well.
Both S. Kentucky strains were detected to carry plasmids identified as incompatibility
type I1 (IncI1), while both S. Enteritidis strains carried IncFIIA plasmids (8). Analysis of
the genome sequences may be useful in identifying mitigation strategies to control
Salmonella spp. found in retail environments.

To carry out whole-genome sequencing, total bacterial DNA was extracted using a
DNeasy blood and tissue kit (Qiagen, Valencia, CA, USA). DNA libraries were constructed
using the Nextera XT DNA sample kits (Illumina, San Diego, CA, USA). Sequencing
reactions were carried out on an Illumina MiSeq instrument to generate 2 � 300
paired-end reads (9). Trimming and de novo assembly were performed using CLC
Genomics Workbench version 9 (Qiagen, Germantown, MD, USA). Annotation of the
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draft genomes was done using Rapid Annotations using Subsystems Technology (RAST)
(10), Pathosystems Resource Integration Center (PATRIC) (11), and the NCBI Prokaryotic
Genome Automatic Annotation Pipeline (PGAAP) (12) (Table 1). Table 1 lists the
numbers of contigs, predicted coding sequences, and functional proteins, as well as
the G�C content for each of the sequenced strains.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession numbers listed in Table 1.
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TABLE 1 Summary of the genome sequence analyses of Salmonella enterica strains from poultry in Arkansas

Strain Serovar
No. of
contigs

Assembly
size (bp)

G�C
content (%)

No. of
CDSsa

No. of functional
proteins GenBank accession no.

CFS84 Kentucky 232 4,935,761 51.99 5,081 4,293 PHUN00000000
CFS85 Kentucky 151 4,908,583 51.98 4,987 4,230 PHUO00000000
CFS86 Enteritidis 128 4,665,166 52.13 4,724 4,159 PHUP00000000
CFS87 Enteritidis 95 4,656,278 52.14 4,705 4,136 PIJU00000000
aCDSs, coding sequences.
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