
 International Journal of 

Molecular Sciences

Communication

PTEN, A Target of Microrna-374b, Contributes to the
Radiosensitivity of Canine Oral Melanoma Cells

Shunsuke Noguchi 1,* , Ryo Ogusu 1, Yusuke Wada 2, Satoshi Matsuyama 1 and Takashi Mori 3

1 Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture
University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan;
ryo.hand.2148.ro.ev@gmail.com (R.O.); matuyama@vet.osakafu-u.ac.jp (S.M.)

2 Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi,
Osaka 598-8531, Japan; y-wada@vet.osakafu-u.ac.jp

3 Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied
Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1112, Japan; tmori@gifu-u.ac.jp

* Correspondence: snoguchi@vet.osakafu-u.ac.jp; Tel.: +81-72-463-5484

Received: 31 August 2019; Accepted: 16 September 2019; Published: 18 September 2019
����������
�������

Abstract: Canine oral malignant melanoma (CoMM) is often treated by radiation therapy in veterinary
medicine. However, not all cases are successfully managed by this treatment. For improved efficacy
of radiation therapy, biomarkers predicting the radiosensitivity of melanoma cells need to be explored.
Here, we, first, developed the radioresistant CoMM cell line, KMeC/R. We found that the expression
level of phosphatase and tensin homolog (PTEN) of KMeC/R cells was significantly downregulated
compared with KMeC cells. Overexpression of PTEN successfully restored the radiosensitivity of
KMeC/R cells, and silencing of PTEN significantly increased the radioresistance of the CoMM cells
tested. Next, we focused on microRNAs (miRNAs) to explore the mechanisms of downregulation of
PTEN in KMeC/R cells. miR-374b was upregulated in KMeC/R cells compared with that in KMeC cells
and in the irradiated CoMM cells tested. Furthermore, miR-374b directly targeted PTEN based on the
luciferase activity assay. Moreover, the extrinsic miR-374b significantly increased the radioresistance
of KMeC cells. In addition, the expression level of PTEN was significantly downregulated and that of
miR-374b tended to be upregulated in recurrent CoMM tissues after radiation therapy compared
with the pre-treatment tissues. Thus, the current study suggested that the miR-374b/PTEN signaling
pathway possibly plays an important role in CoMM radiosensitivity.
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1. Introduction

Melanoma is the most common malignant tumor of the canine oral cavity [1]. Canine melanoma
has been considered to be important as a preclinical model of human melanoma based on the molecular
analysis [2,3]. Radiation therapy (RT) is often applied to canine oral malignant melanoma (CoMM),
although human melanoma is rarely so treated by RT as a first-line therapy due to radioresistance.
In their recent study, Kawabe et al. suggested that the therapeutic efficacy of RT is almost equivalent
to that of surgical treatment for CoMM [4]. However, local control of it is sometimes unsuccessful
due to no response to RT or to early recurrence. Therefore, biomarkers predictive of the efficacy of RT
or effective radiosensitizers need to be explored to improve the therapeutic efficiency in veterinary
medicine, as well as in human medicine.

PTEN, the acronym for phosphatase and tensin homolog, is well known to function as a tumor
suppressor gene by negatively modulating the phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma
viral oncogene homolog (Akt)/mammalian target of the rapamycin (mTOR) signaling pathway [5].
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It has been reported that downregulation of PTEN, which is targeted by miR-222 and -29b, is associated
with radioresistance in human nasopharyngeal carcinoma and cervical cancer [6,7]. In addition,
PTEN is epigenetically silenced in human melanoma [8]. On the other hand, the differential expression
and role of PTEN remains unclear in CoMM, although loss or downregulation of PTEN has been
reported in several kinds of canine cancer such as mammary tumor and prostate carcinoma [9,10].

microRNAs (miRNAs) are functional non-coding RNAs and are known to contribute to cancer
development and progression in both humans and canines, as numerous studies have clarified [11,12].
Moreover, miRNAs have been reported to contribute to radiosensitivity or radioresistance in several
kinds of human cancer [6,13,14]. More recently, we reported that miR-205, which is downregulated and
functions as an anti-oncomir in CoMM cells, affects radiosensitivity in CoMM cells [15]. Thus, it seems
to be valuable to identify the miRNAs involved in radiosensitivity or radioresistance, which may lead
to improving the therapeutic efficacy of RT for CoMM.

The aim of this study was to explore gene and miRNAs targeting involved in radiosensitivity or
radioresistance in CoMM cells and CoMM tissues.

2. Results

2.1. Development of Radioresistant CoMM Cells

First, we developed the radioresistant cell line (KMeC/R; Figure 1a). Next, we examined the
PTEN expression level of KMeC and KMeC/R cells, because PTEN has been known as one of the
radiosensitivity-associated proteins [6,7]. As a result, expectedly, the expression level of PTEN was
markedly downregulated in KMeC/R cells compared with that in KMeC cells.

Figure 1. Establishment of the radioresistant KMeC cell line and the expression level of PTEN. (a) Results
of colony formation assay using KMeC cells and their radioresistant ones. The assay was performed
14 days after the irradiation. (b) The protein expression level of PTEN in KMeC and KMeC/R cells.
** p < 0.01, for differences between KMeC and KMeC/R cells. Data are expressed as the mean + SD (n
= 3).

2.2. Overexpression of PTEN Canceled the Radioresistance of KMeC/R Cells and Silencing of PTEN Enhanced
that of KMeC Cells

To validate that downregulation of PTEN was associated with the radioresistance of KMeC/R
cells, we constructed a PTEN expression plasmid vector and developed siRNA for PTEN. Expectedly,
overexpression of PTEN by the transfection with the PTEN expression vector completely canceled
the radioresistance of KMeC/R cells (Figure 2a,b). Inversely, the knockdown of PTEN significantly
promoted the radioresistance of CMM1 and KMeC cells (Figure 2c,d).
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Figure 2. The effects of overexpression or silencing of PTEN on the radiosensitivity. (a) Successful
overexpression of PTEN in KMeC/R cells. (b) Cell count analysis of the cells indicated after 8 Gy of
irradiation. The cell count was performed 72 h after the irradiation. The data are given as a % of the
number of the cells without irradiation. (c) Evaluation of the effects of silencing of PTEN by Western
blotting analysis at 48 h after the transfection with siR-PTEN at indicated doses. (d) Cell count analysis
of the cells transfected with siR-PTEN after 8 Gy of irradiation. The cell count was performed at 72 h
after the irradiation. The data are shown as a % of the number of the cells without irradiation. **
p < 0.01, for differences between the samples indicated by the horizontal line or between the cells
transfected with the negative control and siR-PTEN. Data are expressed as the mean + SD (n = 3).

2.3. Differential Expression of miRNAs Associated with Irradiation

To evaluate the miRNAs showing differential expression between pre- and post-irradiation,
we performed microRNA microarray using human melanoma A2058 cells. We used human melanoma
cells for this experiment, because the number of mounted miRNA probes on the array was much
greater for human than for canine. After irradiation at a dose of 2 Gy, which dose was almost LD50

of A2058 cells (data not shown), 28 miRNAs were upregulated and 27 downregulated in A2058 cells
(Figure 3a). Of those miRNAs, we focused on miR-374b-5p, which was upregulated after irradiation,
because miR-374b-5p potentially targets PTEN based on TargetScan (http://www.targetscan.org/vert_
72/). Similar to the results of the microarray, miR-374b-5p (termed miR-374b in Canis familiaris) was
significantly upregulated after irradiation in all of the canine melanoma cell lines tested (Figure 3b).
In addition, the expression level of PTEN was consistently downregulated (Figure 3b). Moreover,
the expression level of miR-374b was significantly upregulated in KMeC/R cells compared with in
KMeC cells (Figure 3c). While the data indicated that the expression of miR-374b was increased in
response to irradiation, the role of miR-374b was unclear. Therefore, the function of miR-374b was
subsequently evaluated.

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
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Figure 3. miR-374b upregulated in irradiated CoMM cells and radioresistant CoMM cells. (a) Results
of microRNA microarray using human melanoma A2058 cells, showing numbers of upregulated and
downregulated miRNAs. Total RNA was extracted before and 6 h after 2-Gy irradiation. (b) Expression
level of miR-374b (upper graph) and PTEN (lower panel) in the CoMM cells before and 6 or 12 h after
the 2-Gy irradiation. The values between the panel of PTEN and β-actin were the intensities of PTEN
normalized to that of β-actin. (c) Expression level of miR-374b in KMeC cells and their radioresistant
ones. * p < 0.05 and ** p < 0.01, for differences between the samples indicated by the horizontal lines.
Data are expressed as the mean + SD (n = 3).

2.4. miR-374b-5p Reduced the Expression Level of PTEN and Conferred the Radioresistance

Next, to validate the function of miR-374b, we transfected canine melanoma cells with
a miR-374b-5p mimic. As shown in Figure 4a, treatment with extrinsic miR-374b-5p decreased
the expression level of PTEN in CMM1 and KMeC cells, and the effect in KMeC cells was more marked
than that in CMM1 cells. Moreover, the miRNA significantly increased the resistance of KMeC cells to
irradiation but not that of CMM1 cells (Figure 4b). The reason why the effect of miR-374b-5p was weak
in CMM1 cells was considered to be that the decreased expression level of PTEN by transfection with
miR-374b-5p in CMM1 cells was too high to attenuate the radiosensitivity.

On the contrary, transfection with miR-374b-5pi increased the expression level of PTEN in
CMM1 and KMeC cells and decreased that of miR-374b in the cells tested (Figure 4c,d). Furthermore,
miR-374b-5pi significantly increased the sensitivity of KMeC and KMeC/R cells to irradiation (Figure 4e).
However, miR-374b-5pi did not have any effect on the radiosensitivity of CMM1 cells (Figure 4e).
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Figure 4. Ectopic expression of miR-374b-5p decreased the expression level of PTEN and conferred
radioresistance on KMeC cells. (a) Western blot analysis of PTEN in the CMM1 and KMeC cells
transfected with miR-374b-5p at the indicated doses. The assay was performed 48 h after the transfection.
The values between the panel of PTEN and β-actin were the intensities of PTEN normalized to that of
β-actin. (b) Cell count analysis of the cells transfected with miR-374b-5p (CMM1; 20 nM and KMeC;
10 nM) after 8 Gy of irradiation. The cell count was performed 72 h after the irradiation. Western blot
analysis of PTEN (c) and the expression level of miR-374b (d) in the cells transfected with the negative
control or 20 nM miR-374b-5pi. The assays were performed 72 h after the transfection. The values
between the panel of PTEN and β-actin were the intensities of PTEN normalized to that of β-actin.
(e) Cell count analysis of the cells transfected with miR-374b-5pi at a dose of 20 nM after 8 Gy of
irradiation. The cell count was performed 72 h after the irradiation. The data are shown as a % of the
number of the cells without irradiation. * p < 0.05 and ** p < 0.01, for differences between the samples
indicated by the horizontal lines. Data are expressed as the mean + SD (n = 3).

2.5. miR-374b-5p Directly Targeted PTEN

Because the results shown in Figure 4 indicated that miR-374b targeted PTEN, we performed
a luciferase activity assay by using KMeC cells. We developed the plasmid vectors shown in Figure 5a.
Expectedly, extrinsic miR-374b-5p successfully attenuated the luciferase activity of pMIR/PTEN, and the
effect was significantly decreased in pMIR/mutPTEN (Figure 5b). These results indicated that miR-374b
directly targeted PTEN in CoMM cells.



Int. J. Mol. Sci. 2019, 20, 4631 6 of 11

Figure 5. miR-374b-5p directly targeted PTEN. (a) Binding sites (A and B) of miR-374b in the 3′ UTR
of canine PTEN mRNA. The wild-type binding sites were changed to the mutated ones as indicated.
(b) Results of the luciferase activity assay using the pMIR reporter vector harboring the wild-type or
mutated 3′ UTR of canine PTEN mRNA (the region of 3518 to 3870). The assay was performed 24 h
after co-transfection with the reporter vector and miRNA. ** p < 0.01, for differences between the cells
transfected with the negative control and miR-374b-5p. Data are expressed as the mean + SD (n = 3).

2.6. PTEN was Downregulated and miR-374b Upregulated in Recurrent Melanoma

To validate whether the results of the in vitro experiments reflected those of clinical samples,
we examined the expression levels of PTEN and miR-374b in CoMM tissues obtained before radiation
therapy and in the paired recurrent tissues after radiation therapy. All dogs achieved a partial response
based on the response evaluation criteria for solid tumors in dogs (v1.0) [16] after radiation therapy.
As shown in Figure 6a, the expression level of PTEN was significantly decreased (0.493 ± 0.296 vs.
0.358 ± 0.189 as the mean ± SD). On the other hand, that of miR-374b tended to be increased in the
recurrent tissues compared with that in the primary tissues (0.218 ± 0.146 vs. 0.609 ± 0.396 as the mean
± SD; Figure 6b).

Figure 6. Expression levels of PTEN protein (a) and miR-374b (b) in the melanoma tissues that had
spontaneously developed in the oral cavity of dogs. The tissues were harvested before radiation therapy
and at recurrence. * p < 0.05, for differences between the bracketed samples.
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3. Discussion

In this study, we validated the role of the miR-374b/PTEN signaling pathway in the radioresistance
of CoMM cells. Our data showed that PTEN played a pivotal role in the radiosensitivity of CoMM cells
and that its expression level was directly and negatively regulated by miR-374b. In addition, our data
indicated that the expression levels of miR-374b and PTEN might be associated with radioresistance
in a clinical specimen of CoMM, because these levels tended to differ between the samples obtained
before radiation therapy and those taken after it.

The radioresistant CoMM cell line, KMeC/R, that we developed in this study had much less
expression level of PTEN compared with the parental cell line. Moreover, the overexpression of PTEN
restored the radiosensitivity of KMeC/R cells (Figure 2d). Furthermore, PTEN silencing successfully
promoted the radioresistance of both CMM1 and KMeC cells (Figure 2d), although the ectopic
expression of miR-374b affected the radiosensitivity of KMeC cells alone (Figure 4b). These data
suggested that the role of PTEN is more critical than that of miR-374b in the radiosensitivity of
CoMM cells.

The functions of miR-374b-5p in human cancer have been reported to be both oncogenic and
anti-oncogenic [17–19]. In particular, miR-374b was shown to function as an oncogene by targeting
PTEN, resulting in activation of the PI3K/Akt signaling cascade in human gastrointestinal stromal
tumor cells [18]. In this study, it was indicated that miR-374b-5p directly targeted PTEN, which is one
of the representative anti-oncogenes, in CoMM cells. While the ectopic expression of miR-374b-5p
did not exhibit any effects on the cell growth of CoMM cells (data not shown), it was considered that
miR-374b-5p possibly acted as an oncogene in CoMM cells due to the above reason.

The effects of miR-374b-5p on the radioresistance of CMM1 cells were smaller than those of KMeC
cells. We considered that the higher expression level of PTEN in CMM1 cells was associated with it.
The inhibition of PTEN expression by the ectopic expression of miR-374b-5p might not be enough to
promote the radioresistance of CMM1 cells. Transfection with miR-374b-5pi significantly promoted
the radiosensitivity of KMeC/R cells without upregulating PTEN expression (Figure 4c). This result
indicated that the mechanisms of downregulation of PTEN in KMeC/R cells may have been also
associated with other causes such as deletion of or epigenetic changes in PTEN, in addition to miR-374b
upregulation. Furthermore, it is also indicated that the mechanisms of radioresistance conferred by
miR-374b include other target molecules. In cells originating from canine sources, the anti-oncogenic
function of PTEN has been unclear. In a future study, more details about the function of PTEN
and its differential expression need to be made and evaluated to validate its comprehensive roles in
canine cancer.

The results shown in Figure 6 indicated that the expression level of PTEN was significantly
decreased and that of miR-374b tended to be increased in recurrent melanoma tissues. These data
indicated that the function of PTEN has a greater clinical impact for radiosensitivity of CoMM than
that of miR-374b. We considered that these results correlated with the data obtained from the in vitro
experiments, because the cancer cells included in the regrowth tissues after RT had possibly acquired
the ability of radioresistance. However, unfortunately, the small sample set was a limitation in the
current study, especially in analysis of miR-374b expression. Future analysis of the expression levels of
PTEN and miR-374b by using a larger sample set would be desirable to validate the clinical impact
of these levels associated with radioresistance. Furthermore, to validate the utility of the expression
level of PTEN or miR-374b as a biomarker that predicts the efficacy of RT, correlation between the
expression level of them and the degree of response to RT needs to be evaluated.

In conclusion, PTEN was found to be an important factor in the radiosensitivity of CoMM
cells; and its expression was negatively controlled by miR-374b, whose effects on the radioresistance
might vary according to cell types. Altogether, these factors are possibly promising markers of the
radiosensitivity of CoMM. Canine melanoma has been considered as an important preclinical model of
human melanoma [3,20]. Thus, the current study will possibly contribute to improved efficacy of RT
for human melanoma.
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4. Materials and Methods

4.1. Cell Culture and Cell Viability

CoMM cell lines CMM1 and KMeC were gifts from The University of Tokyo (Nakagawa),
and cultured in RPMI1640 medium (Nacalai tesque, Kyoto, Japan), supplemented with 10% fetal
bovine serum (Gibco, Waltham, MA, USA). Radioresistant KMeC/R cells, which were derived from
KMeC cells, were developed by irradiation with a 4 MV linear accelerator (Primus mid energy,
Canon medical systems, Tochigi, Japan) at a dose of 2 Gy every other day for 2 weeks. The human
melanoma cell line A2058 was purchased from Health Science Research Resources Bank (Osaka, Japan).
The cells were maintained in Dulbecco’s modified Eagle’s medium (Nacalai tesque, Kyoto, Japan).
The number of viable cells was determined by performing the trypan blue dye exclusion test.

4.2. Cell Count and Clonogenic Assay

To evaluate the number of viable cells, we seeded cells at 0.5 × 105/well into 6-well plate the
day before irradiation. At 72 h after irradiation, cell counts were performed. For the clonogenic
assay, 500 cells were also introduced into 6-well plate. After 24 h, the cells were treated with
a single dose of radiation (0, 1, 2 or 4 Gy). For the cells transfected with miRNA mimic or siRNA,
the transfection was performed on the day after seeding and the cells were irradiated after 24 h of
transfection. For irradiation, we used a 4 MV linear accelerator. The cells were incubated for 10 days
after irradiation. Colonies were stained with crystal violet. Colonies containing >50 cells were counted
under a microscope. The survival fraction was calculated as [number of colonies/number of cells
plated] irradiated divided by [number of colonies/number of cells plated] non-irradiated.

4.3. Development of the PTEN Overexpressed CoMM Cells

The eukaryote pIRES-PTEN expression vector was generated by inserting the open reading
frame of PTEN cDNA (accession number: XM_0225441428.1) into the EcoRI/BamHI site of the
pIRESpuro3 vector (Clontech Laboratories, Inc., Mountain View, CA, USA). KMeC/R cells were seeded
into a 25-cm2 flask and transfected with 1.0 µg/well of pIRESpuro3 as a control vector (mock) or
pIRES-PTEN expression vector by using Lipofectamine 3000 (ThermoFisher Scientific, Waltham, MA,
USA). Establishment of a PTEN stably expressed KMeC/R cell line (KMeCR/PTEN) and a control cell
line (KMeCR/Mock) was achieved by selection using puromycin.

4.4. Reagents and Antibodies

Short-interfering RNA (siRNA) for canine PTEN (5′-UAU AGG UCA AGU CCA AGU CGA ACC
C -3′; siR-PTEN, Invitrogen, Carlsbad, CA, USA) was used for knockdown of PTEN. A miR-374b-5p
mimic and a miR-374b-5p inhibitor (miR-374b-5pi) were purchased from ThermoFisher Scientific.
Based on a database (miRBase; http://www.mirbase.org/) search, the sequence of canine miR-374b
was the same as that of human miR-374b-5p. Transfection was achieved by using cationic liposomes,
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s Lipofection
protocol. Pre-miR miRNA Precursor Molecules-Negative Control #2 (Applied Biosystems, Foster City,
CA, USA) was used as a non-specific control miRNA.

The following rabbit monoclonal antibody was used: Anti-PTEN (1:1000, Cell Signaling Technology,
Denver, CO, USA). Horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained
from Cell Signaling. The loading control was prepared by re-incubating the same membrane with
anti-β-actin antibody (Sigma, St. Louis, MO, USA).

4.5. Western Blotting

Total protein was extracted from whole of the cells by the procedure described previously [21].
Protein contents were measured with a DC Protein Assay Kit (Bio-Rad, Hercules, CA, USA).

http://www.mirbase.org/
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Ten micrograms of lysate protein for Western blotting was separated by SDS-PAGE using polyacrylamide
gels and electroblotted onto a PVDF membrane (PerkinElmer Life Sciences, Boston, MA, USA). Details of
the method used after blotting were described earlier [21]. The antibodies were properly diluted with
TBS-T containing 2% bovine serum albumin and 0.01% sodium azide.

4.6. MicroRNA Microarray and Quantitative RT-PCR (qRT-PCR) Using Real-Time PCR

Total RNA was isolated from cells by the phenol/guanidium thiocyanate method with DNase
I treatment. microRNA microarray analysis was performed by using the GeneChipTM miRNA
Array (Filgen, Aichi, Japan). To determine the expression of miRNAs, we used TaqMan MicroRNA
Assays (hsa-miR-374b-5p and RNU44; Thermo Fisher Scientific, Waltham, MA, USA). Real-time
PCR was then performed by using a THUNDERBIRD® Probe qPCR Mix (TOYOBO, Osaka, Japan).
The relative expression level of miR-374b-5p was calculated by the ∆∆Ct method. RNU44 was used as
an internal control.

4.7. Luciferase Activity Assay

We constructed the sensor vector by joining the regions with a possible binding site from the
3′-UTR of canine PTEN to a luciferase reporter pMIR-control vector (Ambion, Foster City, CA, USA) to
examine the target sequence recognized by miR-374b. Moreover, to generate the sensor vectors with
mutations in the binding site for miR-374b, we mutated seed regions from TATTATA to GCAAGCT in
region A and CGCATGT in region B (Figure 3A) by using a PrimeSTAR®Mutagenesis Basal Kit (TaKaRa,
Otsu, Japan). The sensor vector with mutations was submitted to Fasmac (Atsugi, Japan) for DNA
sequencing. The cells were seeded in 12-well plates at a concentration of 0.5 × 105/well the day before
the transfection. The sensor vector (concentration; 1.0 µg/well) and 40 nM miR-374b-5p or non-specific
control miRNA was used for the co-transfection of the cells by using cationic liposomes Lipofectamine
RNAiMAX. Forty-eight hours after the co-transfection, luciferase activities were measured by using
a Dual-Glo™ Luciferase Assay System (Promega, Madison, WI, USA) according to the manufacturer’s
protocol. Firefly luciferase activity was normalized to Renilla luciferase activity.

4.8. Clinical Specimens

Fourteen CoMM tissues were obtained from 7 client-owned dogs with spontaneous oral melanoma,
which animals had been biopsied for histological diagnosis before radiation therapy and cytoreductive
surgery at recurrence after radiation therapy at the Veterinary Medical Center of Osaka Prefecture
University. All tissues were pathologically diagnosed as malignant melanoma based on World Health
Organization (WHO) criteria. In addition, of those, 6 dogs were classified stage III, and 1 dog was stage
IV based on WHO staging scheme for dogs with oral melanoma [1]. Radiation therapy was performed
by using a 4 MV linear accelerator (PRIMUS MID ENERGY, Canon Medical Systems, Tochigi, Japan).
All dogs received the same radiation therapy protocol (8-Gy fractions administered once weekly for
4 weeks). The obtained tissues were used for protein and total RNA extraction. Informed consent in
writing was obtained from each owner. Collection and distribution of the samples were approved by
the appropriate institutional review board (admission number; R01-001).

4.9. Statistics

Each examination was performed in triplicate. All calculated data were compared by using the
unpaired 2-tailed Student’s t-test, the paired 2-tailed Student’s t-test or one-way anova following Tukey
methods. A p-value of less than 0.05 was considered to be statistically significant.
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