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In this report, we compare the outcomes and limitations of two methods of transcriptomic
inquiry on adult zebrafish testes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
during sexual differentiation: conventional or bulk RNA-seq (bulk-seq) and single cell RNA
sequencing (scRNA-seq) data. scRNA-seq has emerged as a valuable tool for uncovering
cell type-specific transcriptome dynamics which exist in heterogeneous tissue. Our lab
previously showed the toxicological value of the scRNA-seq pipeline to characterize the
sequelae of TCDD exposure in testes, demonstrating that loss of spermatids and
spermatozoa, but not other cell types, contributed to the pathology of infertility in adult
male zebrafish exposed during sexual differentiation. To investigate the potential for
technical artifacts in scRNA-seq such as cell dissociation effects and reduced
transcriptome coverage, we compared bulk-sequenced and scRNA-seq-paired
samples from control and TCDD-exposed samples to understand what is gained and
lost in scRNA-seq vs bulk-seq, both transcriptomically and toxicologically. We
hypothesized that the testes may be sensitive to tissue disruption as they contain
multiple cell types under constant division and/or maturation, and that TCDD exposure
may mediate the extent of sensitivity. Thus, we sought to understand the extent to which
this dissociation impacts the toxicological value of data returned from scRNA-seq. We
confirm that the required dissociation of individual cells from intact tissue has a significant
impact on gene expression, affecting gene pathways with the potential to confound
toxicogenomics studies on exposures if findings are not well-controlled and well-situated
in context. Additionally, a common scRNA-seq method using cDNA amplified from the 3’
end of mRNA under-detects low-expressing transcripts including transcription factors. We
confirm this, and show TCDD-related genes may be overlooked by scRNA-seq, however,
this under-detection effect is not mediated by TCDD exposure. Even so, scRNA-seq
generally extracted toxicologically relevant information better than the bulk-seq method in
the present study. This report aims to inform future experimental design for transcriptomic
investigation in the growing field of toxicogenomics by demonstrating the differential
information extracted from sequencing cells—despite being from the same tissue and
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exposure scheme—is influenced by the specific protocol used, with implications for the
interpretation of exposure-induced risk.
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INTRODUCTION

The transcriptome is the complete picture of all expressed genes
in a cell and in what quantity, during a specific developmental
stage and/or experimental condition. The field of transcriptomic
research has expanded at a rapid rate since the first attempts in
the 1990s, gaining granularity and precision with each new
advance. What could first only tell us limited transcript
abundance in a tissue (SAGE), can now impart entire
transcriptomes in high-throughput studies with single-cell
resolution. Transcriptome analysis is the most widely used tool
in the field of toxicogenomics (TGx) to study gene (dys)
regulation in a biological system following chemical exposure
(Federico et al., 2020). Due to its importance, there has been a
worldwide call for standardization of “omics” data from the TGx
community, as guidelines for analysis have not been formally
established (Federico et al., 2020). Successful TGx requires best
practices in experimental design, data processing techniques, and
validation assays in order to produce reliable transcriptomic data
which can be efficiently interpreted to serve downstream analyses,
such as safety assessments used in regulatory decisions.

With each new method of exploring the gene expression
landscape at an increasingly granular level, there are
advantages and disadvantages to take into account when
planning an experiment. Some methods are more accessible
and therefore quite common in labs, such as microarray and
RNA-seq. The concept behind microarray is that RNA molecules
in a sample can be reversed transcribed to cDNA, and these
cDNA sequences can be captured, if present, by oligo probes on
the microarray chip. This method certainly advanced the field as
microarrays became quite detailed, encompassing entire
genomes; gene batteries specifically for toxicology are even
available (Lettieri, 2006). RNA sequencing (RNA-seq) uses the
same concept of cDNA sequencing as microarray, but allows
untargeted exploration of the transcriptomic landscape in a
sample of any species for which the genome is annotated.
Thus, the advent of RNA-seq revolutionized the field,
heralding the next-generation sequencing (NGS) era of
“discovery-driven” research. The more complete picture
offered by RNA-seq allowed for more in-depth analysis of
mechanism of action (MOA), pathway enrichment analysis,
and, when combined with phenotypic endpoints, phenotypic
anchoring such as biomarkers of disease or prognosis.
Together, these valuable insights can inform chemical toxicity
and risk assessments. However, despite the broadened
opportunities RNA-seq allows, a major limitation to precisely
identifying biological relevance with RNA-seq has been the
processing of heterogeneous tissues as homogeneous entities,
which produces a gene expression signature that is essentially
a composite of the responses of the different cell types comprising
the tissue. Science is well aware that various cells in a tissue can be

highly differentiated and exhibit markedly different expression
profiles. Toxicology can benefit from this more precise
information as various cell types in diverse tissue can respond
quite differently to the same toxicant (Hsu et al., 2020; Wang
et al., 2021).

The newer transcriptomic analysis method of single cell RNA-
Seq (scRNA-seq) (Tang et al., 2009) mitigates this issue by
capturing the complex profiles of the singular cells
constituting a tissue. There are various specific scRNA-seq
methods, depending on the specific knowledge (Chen et al.,
2019), but the overarching goal is acquiring the transcriptome
of each cell in a tissue. scRNA-seq builds upon conventional
RNA-seq (referred to as bulk-seq; representing the homogeneous,
intact state of the tissue) research and is comparable in the basic
concept. The sequencing that occurs at the single cell level is
essentially the same process cells undergo in bulk-seq; the
difference lies in the ability to computationally extricate the
results for each cell rather than an averaged output of the
entire sample. The advantageous difference of increased
granularity is tantamount—scRNA-seq faithfully represents
cellular heterogeneity by distinguishing gene expression
profiles between different cell types, and even between the
same cell type in different cellular states (Lähnemann et al.,
2020). The advances in medicine made possible by scRNA-seq
are invaluable, e.g., scRNA-seq enabled Zou et al. (2021) to
develop a prognostic signature in gastric adenocarcinoma,
Deng et al. (2020) identified characteristics predicting CAR
T cell therapy efficacy. Toxicology can follow suit to develop
targeted therapies for the myriad of multi-cell-type health
problems associated with environmental exposure to
chemicals, including cancer (Snyder, 2012), asthma (Sachdeva
et al., 2019), and infertility (Canipari et al., 2020; Selvaraju et al.,
2020).

With this exciting opportunity come inevitable challenges.
While scRNA-seq data is structurally similar to bulk-seq data,
differences in the tissue- and data preprocessing steps affect
replicability, with scRNA-seq more prone to artifacts (e.g.,
technical or other non-biological sources of variation)
(Federico et al., 2020). Contributing to artifacts are tissue
dissociation, dropout, and complex quality control measures.
The fact that scRNA-seq requires, by definition, single cells
that must be individuated from the intact tissue of an
organism potentially confounds results. This requirement
impacts not only the number of cells available for analysis
(those that survive dissociation), but also the physical
separation of cells from their network can have an unwanted
biological impact on surviving cells. While in situ sequencing (the
act of sequencing RNA on, for example, a slide of tissue preserved
in its natural environment) is possible, the throughput limitations
render it undesirable. A more commonly used method for
singularizing cells is enzymatic digestion, such as used in the
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present study. The act of disruption from the native environment
and the digestion process (which changes cellular shape among
other facets) can potentially result in an altered cellular state, e.g.,
stress response, and thus findings unrepresentative of the actual
cellular mechanisms in vivo. However, other methods of tissue
dissociation that may prevent such microenvironmental shifts,
such as laser capture microscopy and microdissection capillary
pipette, are much lower-throughput (Hwang et al., 2018).
Dropout events (failure to detect part or all of a
transcriptome) and high (Ramsköld et al., 2012; Brennecke
et al., 2013; Lun et al., 2016), can permeate due to low capture
efficiency, the general stochastic nature of gene expression, and
the very low input available (pg-ng) compared to bulk-seq (ng-g).
Additionally, workflow pipelines for scRNA-seq and bulk-seq
diverge in the complex QC measures required for scRNA-seq
data that are not required in bulk-seq analysis. For example,
“doublets” and poor quality cells (abnormally low read counts,
high mitochondrial mRNA content) must be removed from
analysis.

One way to parse artifacts from biological relevance is to
validate scRNA-seq data by comparing it to bulk-seq data. In
order to make scRNA-seq data comparable to bulk-seq data, a
pseudo bulk-seq dataset can be derived from collapsing the reads
counts from the various identified clusters (cell types) of scRNA-
seq data to mimic in silico an average expression profile, such as
that produced by bulk-seq on intact tissue (Lähnemann et al.,

2020). Theoretically, the results from a pseudo bulk-seq dataset
would resemble those from a bulk-seq dataset. However,
technical artifacts are introduced by the act of sequencing cells
on a microfluidic device rather than at once from a suspension of
dissociated cells. A common 3′-end counting droplet-based
method of scRNA-seq, 10x Genomics Chromium, is used here.
With the expanding field of TGx and increased use of scRNA-seq,
we were interested in determining what information was gained
and lost compared to the more common, accessible bulk-seq
method, in terms of transcriptome coverage, data analysis, and
conclusions that can be drawn from both methods.

The field can benefit from seeing these data from different
perspectives; apparent inconsistencies are not necessarily
misleading and in fact can be quite informative (Qiu, 2020).
However, understanding the sources of divergent information
and their implications is critical. Our previous toxicological work
with scRNA-seq in zebrafish (Danio rerio) testes revealed
differential cell type population alterations in response to
exposure to the classic environmental contaminant 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) (Haimbaugh et al.,
2022), which is known to induce male fertility defects in both
fish and humans (King Heiden et al., 2009; Baker et al., 2013;
Baker et al., 2016; Eskenazi et al., 2018; Bruner-Tran et al., 2019).
One marked difference was a loss of spermatids and spermatozoa;
in these cells, pathways of apoptosis and sperm disorder were
upregulated. We show that these intriguing pathway

FIGURE 1 | Schematic of the comparative transcriptomic analyses from each method and associated tissue preparation. To determine baseline effects of
dissociation, paired samples of intact and dissociated testes were taken for bulk-seq. Bulk-seq of control (CB) and TCDD-exposed dissociated testes (TB) (middle panel)
were compared to pseudo bulk-seq of paired dissociated samples that underwent scRNA-seq (CP, TB) (lower panel, middle images). Pseudo bulk-seq samples were
compared to their scRNA-seq cluster complement (lower panel, outer images).
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upregulations resulting from sequencing at the single cell level are
not detected with bulk-seq. scRNA-seq detected the change in
sperm proportion from about 20% in controls to around 4% in
TCDD-exposed cells. In bulk-seq, sperm suffer a similarly
reduced physical representation in the sample, but the
resulting low signal from these populations may be occluded
by competing signals from the overwhelming majority of other
cell types. Under bulk-seq conditions, certain aspects of the
toxicological profile may be lost to noise, such as toxic effects
to relatively few cells. However, we demonstrate that bulk-seq
detected immune system modulation that scRNA-seq did not,
likely due to cell dropout of immune cells in scRNA-seq. The
immune cell population in testes is quite small. We did not detect
any immune cells in our scRNA-seq data, and in other scRNA-
seq datasets, they comprise just 3% of the overall cell population
on average in controls. The required cell dissociation step to
perform scRNA-seq can cause cell death, further reducing the
number of detected immune cells. scRNA-seq loses about a third
of the cell input (10x Genomics Inc., 2021a). Further, by standard
bioinformatic processing of scRNA-seq data, cell type
populations under 30 cells will not be registered. Minor or
unstable cell types such as immune cells may not survive the
sample preparation and data processing of scRNA-seq. Early-life
exposure to TCDD does not appear to affect adult sperm
vulnerability to dissociation, but this potential limitation could
apply for other toxicants or other, more acute exposure schemes.

In this study we seek to characterize and compare the TGx
profile(s) of early-life TCDD exposure, via two complementary
methods: pseudo bulk-seq of scRNA-seq data, and bulk-seq of
dissociated cells. Abbreviations for the various analyses are
provided in Figure 1 as reference (i.e., pseudo bulk-seq

comparison of TCDD-exposed and control samples is
abbreviated TPxCP, while the same comparison in bulk-seq is
TBxCB). We first confirm the known fact that indeed,
dissociation causes transcriptomic disruption (CDxCI);
however, this disruption does not appear to significantly affect
TCDD-exposed cells more so than controls (CDxCI vs. TBxCB).
Single cell sequencing does have a differential effect on TCDD
samples compared to the bulk-seq method (TPxTB vs. CPxCB),
despite identical tissue preparation of controls. The
toxicotranscriptomic testicular profiles of TCDD exposure
delivered by bulk-seq (TBxCB) do differ from that of pseudo
bulk-seq (TPxCP), presenting significantly better transcriptome
coverage, and especially that of low-expressing transcripts and
from cell types of smaller populations; at the same time, giving
more global information and potentially less toxicologically
relevant information. This report provides perspective to
inform methodological design in TGx by demonstrating that
differential information extracted from sequencing cells—despite
being from the same tissue and exposure scheme—is influenced
by the specific protocol used, with implications for the
interpretation of exposure-induced risk.

RESULTS AND DISCUSSION

The Impact of Protocol Choice
(Dissociation) on Gene Expression (CDxCI)
The assumption inmeasuring any experimental variable where all
other factors (i.e., tissue preparation) are held constant is that any
necessary technical manipulation will affect both groups equally
and thus avoid confounding the results. Tissue dissociation is
expected to produce a broad stress response in cells.
Mitochondrial activity (van den Brink et al., 2017), heat shock
response (O’Flanagan et al., 2019), cell death (Adam et al., 2017;
Wu et al., 2018) and their associated gene expression profiles are
known effects of dissociation. Tissue dissociation is a well-
established “necessary evil” ingrained in common scRNA-seq
protocols. Cells must be individuated for sequencing, yet
dissociation of the tissue (whether mechanical, chemical,
enzymatic, etc.) induces myriad transcriptional artifacts due to
the disrupted cell microenvironment. Machado et al. (2021)
found 10–50% of the transcriptome is altered by dissociation
alone, and Wu et al. (2018) scRNA-seq data returned a cluster
consisting primarily of dissociation-induced artifacts. To
characterize the unavoidable impact of dissociation on
zebrafish testes, we compared bulk-seq data from
enzymatically dissociated testes with intact testes. Following
dissociation, 435 differentially expressed genes (DEGs) (p <
0.01, LFC ≥1, ≤-1) were significantly upregulated; 348
downregulated. Figure 2 depicts the PCA plot of dissociated
and intact samples. Pathway analysis of DEGs confirmed
expected differences, such as upregulation of apoptosis,
necrosis, and degeneration pathways; downregulation of
proliferation and growth pathways (Tables 1, 2).

Dissociation is generally expected to affect cell types equally
within an experiment, but exposure to environmental
contaminants can compromise cell health, rendering exposed

FIGURE 2 | PCA plot depicting co-clustering of gene expression in
dissociated replicates (blue) and intact replicates (green). Samples clustered
distinctly along PC1 based on method of preparation (negative and positive,
respectively).
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cells more vulnerable to threats. In our scRNA-seq data, the
contributions of TCDD-exposed sperm population to the overall
dataset were dramatically reduced (about 4%) compared to
controls (about 23%; a 79% reduction in representation). We
previously explored the possibility of this shrinkage being due to
the technical requirement of cell dissociation (Haimbaugh et al.,
2022). Histology of intact tissue confirmed an apoptosis-driven
decrease of 11% in healthy sperm cell representation following
exposure, certainly not to the extent observed in scRNA-seq.
While apoptosis without dissociation is occurring, we assume the
sperm cells that dropped out of scRNA-seq data were
toxicologically impaired to the point where dissociation
induced cell death in a greater swath of the population.
ScRNA-seq has been criticized for its high dropout rate, and
we interpret our results as indicating toxicant-related stress could
increase the dropout rate in TGx studies.

In bulk-seq exposure data (TBxCB) however, dissociation
appears to have minimal impact. The changes evident in
TBxCB most likely represent TCDD exposure, and not the
tissue preparation method. When examining genes in the
Ingenuity Pathway Analysis (IPA) Canonical Pathways of both
CDxCI and TBxCB, only three genes are shared of the 113 total
genes involved. It is worth mentioning expression of those three
overlapping genes (aldh3b1, pklr and sat1), or genes in similar
pathways, may be affected by dissociation. An experimental
model investigating these genes via scRNA-seq may be

confounded by dissociation effects. Future scRNA-seq
exposure studies should include a dissociation reference in
order to parse baseline dissociation effects from
toxicologically-relevant changes. In this same vein, “Aryl
Hydrocarbon Receptor (AhR) Signaling Pathway” and
“Estrogen-mediated S-phase Entry” were upregulated simply
by dissociation (CDxCI). AhR and estrogen signaling are a
canonical signature of TCDD exposure, and have been
thoroughly studied, exclusive of dissociation (Safe et al., 1998;
Wilson and Safe, 1998). These findings in context underscore the
importance of properly controlling for potential method-specific
artifacts in toxicological experiments, which may have to be
adjusted for the specific toxicant under study.

CPxCB: TheDroplet-Based Technical Effect
The benefit of scRNA-seq is that population composition can be
captured since the transcriptome of each cell in a tissue is
represented. At the same time, an established limitation of
scRNA-seq is dropout of certain cells and of mRNA detection.
Cell dropout can have a physical or technical basis, and transcript
dropout has a bioinformatic (QC) basis. The underrepresentation
of smaller or rare cell types in scRNA-seq is hypothesized by
Denisenko et al. (2019) as being due to differing resistance to cell
lysis on the flow cell (thus preempting sequencing) or simply due
to irregular cell size or shape preventing entry to the flow cell.
Once on the flow cell, scRNA-seq preferentially detects more

TABLE 1 | Ingenuity Pathway Analysis table of disease and Biological Functions from CDxCI DEGs (p < 0.01, log fold change >1/<−1). From “Diseases or Functions
Annotations’’ column, after removing any redundancies, functions without a z-score, or a z-score between −1 and 1. Mapped IDs: 9865; unmapped IDs:
4922.459 analysis-ready molecules: 214 upregulated and 245 downregulated. Ranked by z-score. Left: upregulated pathways. Right: downregulated pathways.

Rank Upregulated diseases or
Functions Annotation

p-value Bias-corrected
z-score

Rank Downregulated diseases or
functions annotation

p-value Bias-corrected
z-score

1 Necrosis of epithelial tissue 1.15E-06 3.14 48 Cell proliferation of T lymphocytes 0.00119 −1.00
3 Cell death of epithelial cells 1.46E-05 2.99 54 Invasion of tissue 3.61E-08 −1.13
7 Necrosis 8.51E-07 2.79 56 Activation of cells 0.00341 −1.19
9 Apoptosis of epithelial cells 5.81E-06 2.76 73 Growth of genital organ 3.76E-05 −1.65
13 Organ Degeneration 0.00353 2.18 74 Cell movement of epithelial cells 6.98E-05 −1.70
14 Congenital malformation of 6.46E-07 2.05 75 Migration of epithelial cells 9.97E-05 −1.72
15 Dysgenesis 0.000439 1.96 76 Malignant genitourinary solid 0.00415 −1.74
16 Apoptosis 5.94E-10 1.93 79 Growth of organism 4.66E-05 −1.84
22 Aplasia or hypoplasia 0.000818 1.83 80 Proliferation of gonadal cells 7.97E-05 −1.90
30 Oxidation of fatty acid 0.00444 1.62 88 Vasculogenesis 4.54E-07 −2.71
34 Degeneration of testis 0.00283 1.38 — — — —

39 Steroidogenesis of hormone 1.75E-05 1.15 — — — —

40 Congenital malformation of 0.000175 1.14 — — — —

41 Hypoplasia of genital organ 0.000104 1.13 — — — —

TABLE 2 | Ingenuity Pathway Analysis table of Canonical Pathways from CDxCI DEGs (p < 0.01, log fold change >1/<-1). Redundant pathways, pathways with no z-score or
z-score between -1 and one removed. Mapped IDs: 9865; unmapped IDs: 4922.459 analysis-ready molecules: 245 upregulated and 214 downregulated. Left:
upregulated pathways. Right: Downregulated pathways. Ranked by z-score.

Rank Upregulated ingenuity canonical
pathways

−Log (p-value) z-score Rank Downregulated ingenuity canonical
pathways

−Log (p-value) z-score

1 Cyclins and Cell Cycle Regulation 2.62 2.65 4 Agrin Interactions at Neuromuscular Junction 4.6 −2.65
2 Aryl Hydrocarbon Receptor Signaling 3.27 1.13 5 ILK Signaling 2.04 −3.16
3 Estrogen-mediated S-phase Entry 6.47 1.13 — — — —
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abundant transcripts, overlooking low-expressing genes
(Kharchenko et al., 2014), and has a strong 3′ end bias (Zhang
et al., 2019). As for quality control filters, clusters and the cells
constituting them are pre-defined by parameters set by the
researchers. If these requirements are not met, they are
excluded from analysis. The standard definition of a cluster is
that it consists of >30 cells. A small cell population’s presence may
be grouped into a similar cluster, erasing its unique identity and
dropping out of the dataset. A cell is defined as having >500
features (genes) detected. Transcriptome coverage is known to be
less extensive in scRNA-seq, with a bias towards detecting longer
and more highly expressed transcripts (Macosko et al., 2015;
Phipson et al., 2017; Davies et al., 2021). A low-expressing cell or
one expressing short transcripts such as transcription factors
(TFs), then, could be erroneously removed from analysis as an
artifact. Any of these factors could result in artifactual gene
expression differences between pseudo bulk-seq and bulk-seq.
At least a third of cells are expected to escape capture in the 10x
pipeline (10x Genomics, Inc., 2021a). Dropout is assumed
proportional across cell types, thus a collapsed scRNA-seq
dataset (pseudo bulk-seq) is expected to resemble the bulk-seq
dataset from its biological and technical counterpart. Comparing
pseudo bulk-seq to bulk-seq data can be used to account for the
scRNA-seq cell and transcript dropout rate. The only difference
between pseudo bulk-seq on dissociated cells, and bulk-seq on
dissociated cells from the same sample, is the technical influence
from the introduction of the 10x microfluidic system, where cell
lysis and cDNA synthesis occur in oil droplets containing
individual cells, rather than as a traditional cell suspension of
all cell types at once.We call this technical effect the droplet effect,
after the multiple scRNA-seq technologies of encapsulating the
cells along with reagents and barcodes in an oil droplet. The
assumption is that any differences between the resulting datasets
of each method would thus be attributed to the droplet effect. We
characterized how the transcriptome profiles of each differ in
terms of DEGs and low-expressor coverage.

Of note, the scRNA-seq pipeline appears to have a significant
impact on differential gene expression. When comparing control
pseudo bulk-seq datasets to control bulk-seq datasets from
identical samples, we observed 1,102 significantly upregulated
DEGs; 1,029 significantly downregulated. These genes were

involved in upregulating pathways of oxidative
phosphorylation, cholesterol biosynthesis and cell cycle
regulation (Table 3). The most highly upregulated pathway
was of oxidative phosphorylation (OXPHOS). One known
drawback of scRNA-seq is the cellular stress the required
tissue dissociation induces, which is routinely quantified
during QC as % mitochondrial content, including OXPHOS
genes. The mitochondria release mtRNA under duress, and
thus signals an unhealthy, unrepresentative cell. The
recommendation is that <10% mitochondrial transcriptional
content is required to move forward with a scRNA-seq
dataset. Cholesterol biosynthesis can be increased by cell
dissociation (Volpe et al., 1985). Both pseudo bulk-seq and
bulk-seq samples were dissociated in the same way at the
same time, however, there is a short but unquantifiable
amount of time between loading cells onto the flow cell and
transcriptome capture. Bulk-seq cells were immediately placed in
lysis reagent. During this short period between dissociation of
both samples and the act of single cell sequencing, there is
additional time for these cells to respond to dissociation,
which could explain the pathway upregulation in identically-
prepared samples. Cell cycle dysregulation is a known, non-
biologically relevant source of variation in scRNA-seq data. It
is often regressed out of scRNA-seq datasets (Luecken and Theis,
2019; Hérault et al., 2021).

As expected, transcriptome coverage was decreased in pseudo
bulk-seq, detecting only 6,847 RefSeq mRNA Accession IDs to
bulk-seq’s 14,160. We next tested the idea that scRNA-seq data
underrepresents shorter and/or less abundant mRNAs. First, we
surveyed control transcriptomes for low expressor coverage by
defining a low expressing transcript as possessing between one
read count and ≤1% of the maximum normalized read count sum
within a dataset, and then calculated the percent transcriptome
coverage of these low expressors for each method. By setting a
filter for bulk-seq data to match the pseudo bulk-seq read count
sum lower limit, we investigated how bulk-seq datasets would be
hypothetically diminished by the higher read count threshold.
The average coverage by bulk-seq then fell by about 30% (p =
0.003522, 1-tailed t-test) (Table 4). Thus, if the bulk-seq
transcript detection sensitivity matched pseudo bulk-seq
sensitivity, a sizable population of bulk-seq transcripts would

TABLE 3 | Ingenuity Pathway Analysis table of Canonical Pathways from CPxCB DEGs (p < 0.01, log fold change >1/<-1). Redundant pathways, pathways with no z-score
or z-score between -1 and one removed. Mapped: 2374; unmapped: 594.1,465 analysis-ready molecules: 735 upregulated and 730 downregulated. Ranked by
z-score. Left: upregulated pathways. Right: Downregulated pathways. Ranked by z-score.

Rank Upregulated ingenuity canonical
pathways

-Log (p-value) z-score Rank Downregulated ingenuity canonical
pathways

-Log (p- value) z-score

1 Oxidative Phosphorylation 3.62 2.24 34 Coronavirus Pathogenesis Pathway 3.62 −1.06
2 Kinetochore metaphase 4.71 2.06 35 BAG2 Signaling Pathway 2.86 −1.26
3 Assembly of RNA 3.52 1.73 36 Aldosterone Signaling in Epithelial 3.75 −1.26
4 Spliceosomal Cycle 2.34 1.67 37 3-phosphoinositide Biosynthesis 2.03 −1.278
5 Cyclins and Cell Cycle 2.16 1.51 38 Androgen Signaling 2.72 −1.34
6 Superpathway of Cholesterol 2.74 1.41 39 Estrogen Receptor Signaling 5.14 −1.54
7 Pyrimidine 3.8 1.41 40 Cysteine Biosynthesis III 2.23 −1.63
8 Cholesterol Biosynthesis I 2.33 1.34 41 RAN Signaling 2.82 −2.45
9 Cholesterol Biosynthesis II 2.33 1.34 42 Unfolded protein response 2.74 −2.71
10 Cholesterol Biosynthesis III 2.33 1.34 42 Unfolded protein response 2.74 −2.71

Frontiers in Toxicology | www.frontiersin.org May 2022 | Volume 4 | Article 8211166

Haimbaugh et al. Comparative Toxicotranscriptomics of Environmental Contaminants

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


remain undetected. This difference is more important when
dealing with only significant DEGs. While the pseudo bulk-seq
dataset does not contain low expressors (as defined as 1% of the
maximum count sum), about 25% of low expressors are
significant DEGs in the bulk-seq dataset. When the filter was
applied to match the pseudo bulk-seq sensitivity, this dropped to
around 7% (p = 0.045294, 1-tailed t-test). The presumed absence
of these genes in single cell datasets could affect interpretation of
the results.

Second, using transcription factors (TFs) as a proxy for both
short and low-expressing transcripts, we searched the pseudo
bulk-seq and bulk-seq dataset for the available list of 3,068 Danio
rerio TFs (ATFDBv3.0) (AnimalTFDB3, 2021). Fewer TFs were
detected in the pseudo bulk-seq dataset compared to bulk-seq,
and this slight trend is exaggerated for significant DEGs
(Table 5). Further, none of these significant TFs are shared
between the two methods. In fact, the entire population of TFs
detected by pseudo bulk-seq is a significantly different population
than the significant bulk-seq DEGs (p = 2.175e-05, chi-squared
test), with only seven genes overlapping. Thus, a study using
solely one method would receive a one-dimensional
representation of the data, and may not cover TFs of interest.
“Missing” genes in either dataset, by virtue of their absence, could
influence the toxicological interpretation of experimental
findings.

While scRNA-seq pipleine itself is not assumed to affect
unexposed, healthy cells any differently than cells exposed to
environmental contaminants, it is important to determine if
the established baseline changes in DEGs, gene ontology, and
low expressor coverage resulting from the droplet effect in
controls (CPxCB) would remain in TCDD-exposed samples
(TPxTB). If TCDD exposure exerted no influence on scRNA-
seq processing, a high overlap would be expected among each
aspect of CPxCB and TPxTB. The number and fold change
direction of significant DEGs held steady in TPxTB

comparisons (1,239 up-; 917 downregulated) as
compared to CPxCB (Figure 3), with considerable overlap
(about 60%).

The core pathways associated with these DEGs (Table 6)
were also similar to pathways of CPxCB. About 40% of CPxCB
and TPxTB pathways overlap, including oxidative
phosphorylation, cholesterol biosynthesis, and cell cycle
regulation upregulation. These overlapping main pathways
demonstrate the general influence of the droplet effect on
gene expression from otherwise identically prepared samples
and are not toxicologically relevant to TCDD exposure. In fact,
cholesterol biosynthesis has been thoroughly shown to
decrease following TCDD exposure (Fletcher et al., 2005;
Sato et al., 2008; Tanos et al., 2012; Fader et al., 2017).
However, it is important to note that 60% of pathways were
unique to TCDD; other chemicals may have more or less of an
effect. Bulk-seq detection of low-expressing transcripts and

TABLE 4 | Coverage of low expressors is reduced in bulk-seq when scRNA-seq filters apply. Low expressor reads counts are an average across all control samples (CD,
CI, CB).

Detected transcripts Detected transcripts (significant
DEGs)

No filter Low expressor reads count range 1–823,127 1–178,033
Low expressor coverage 51.81% 24.45%

Filter Low expressor reads count range 106–823,127 106–178,033
Low expressor coverage 36.62% 7.20%

— p-value 0.003522 0.045294

TABLE 5 | Detection of transcription factors is reduced in pseudo bulk-seq. TBxCB: TCDD bulk-seq vs control bulk-seq. TPxCP: TCDD pseudo bulk-seq vs control pseudo
bulk-seq. Cells pertaining to significant DEGs are shaded. Chi-squared test.

Detected transcripts Detected
transcription factors

Detected transcripts (significant
DEGs)

Detected transcription factors
(significant DEGs)

TBxCB 14,160 1,393 (9.8%) 310 63 (20.3%)
TPxCP 6,847 487 (7.1%) 1,099 44 (4%)
p-value NA 6.84e-10 NA 3.14e-21

FIGURE 3 | Significant DEGs (p < 0.01, LFC ≥1 or ≤ −1) in each
comparison. Upregulated: LFC ≥1; downregulated: LFC ≤ −1. CDxCI: paired
control samples of dissociated and intact testes used for bulk-seq. CPxCB:
paired control samples of dissociated testes used for pseudo bulk-seq
and bulk-seq. TPxTB: paired TCDD-exposed samples of dissociated testes
used for pseudo bulk-seq and bulk-seq. TPxCP: pseudo bulk-seq analysis of
paired dissociated control and TCDD-exposed testes. TBxCB: bulk-seq
analysis of paired dissociated control and TCDD-exposed testes.
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TFs is not affected by TCDD exposure, before or after filters
were applied to match pseudo bulk-seq coverage. Coverage
reduction is simply a result of the pseudo bulk-seq method and
is not mediated by exposure. By these three measures, TCDD
exposed testes cells do not appear differentially susceptible to
the technical effects of the scRNA-seq pipeline.

Clustering Reveals Differential
Susceptibility to scRNA-Seq Dropout
(TPxCP)
Despite no differences in technical dropout between exposed
cells and control cells, clustering of the TCDD sample by
scRNA-seq revealed near-total physical dropout of
spermatids and sperm, beyond what is attributed to
exposure. We have shown in intact tissue that a significant
percent of sperm and spermatid populations apoptose in
response to TCDD exposure (Haimbaugh et al., 2022), but
the remaining healthy sperm and spermatids contribute
similarly to the overall population as control sperm and
spermatids. In scRNA-seq clusters, these two populations
are diminished by about 80%. Other cell types are not
affected as drastically, in fact, the proportion of
spermatogonial stem cells did not change. Dropout in
scRNA-seq is assumed to be distributed proportionally
across all cell types in a sample. However, in testes cells
with a history of TCDD exposure, dropout is differentially
experienced by late germ cells. These late germ cells are known
to be under strain, as many are undergoing apoptosis. The
stress background of a tissue may influence cell dropout in the
scRNA-seq pipeline as the added mitochondrial duress and
increased latency to lysis on the flow cell could be an
insurmountable affront to already-unstable cells from both
exposure and the combination of exposure and dissociation
mentioned above.

Toxicotranscriptomic Profile
Representation in Bulk-Seq vs. Psuedo
Bulk-Seq (TBxCB vs. TPxCP)
Given the ways dissociation and individual sequencing can affect
control and exposed cells (CPxCB, TPxTB), and the growing

TABLE 6 | Ingenuity Pathway Analysis table of Canonical Pathways from TPxTB DEGs (p < 0.01, log fold change >1/<-1). Redundant pathways, pathways with no z-score or
z-score between -1 and one removed. Mapped IDs: 3550; unmapped IDs: 838.184 analysis-ready molecules: 103 upregulated and 81 downregulated. Ranked by
z-score. Left: upregulated pathways. Right: Downregulated pathways.

Rank Upregulated ingenuity
canonical pathways

z-score Rank Downregulated ingenuity
canonical pathways

z-score

1 Oxidative Phosphorylation 2.52 12 p70S6K Signaling −1.07
2 Cholesterol Biosynthesis I 2 13 mTOR Signaling −1.07
3 Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) 2 14 Insulin Receptor Signaling −1.21
4 Cholesterol Biosynthesis III (via Desmosterol) 2 15 Remodeling of Epithelial Adherens Junctions −1.34
5 Superpathway of Cholesterol Biosynthesis 1.89 16 Gluconeogenesis I −1.41
6 Cell Cycle Control of Chromosomal Replication 1.60 17 D-myo-inositol-5-phosphate Metabolism −1.41
7 Assembly of RNA polymerase II Complex 1.07 18 HIF1α Signaling −1.53
— — — 19 Glycolysis I −1.63
— — — 21 Sirtuin Signaling Pathway −1.71
— — — 22 3-phosphoinositide Biosynthesis −1.79
— — — 23 Superpathway of Inositol Phosphate Compounds −1.96
— — — 24 Androgen Signaling −2
— — — 25 Coronavirus Pathogenesis Pathway −2.04
— — — 26 Estrogen Receptor Signaling −2.14
— — — 27 Autophagy −2.35
— — — 28 IGF-1 Signaling −2.50

FIGURE 4 | PCA plot depicting co-clustering in CBxTB and CPxTP.
Control bulk-seq (CB) replicates: light orange; TCDD-exposed bulk-seq (TB)
replicates: dark orange; control pseudo bulk-seq (CP) replicates: light blue;
TCDD-exposed pseudo bulk-seq (TP) replicates: dark blue. Samples
clustered distinctly along PC1 based on method of preparation (bulk-seq (CB,
TB) or pseudo bulk-seq (CP, TP); negative and positive, respectively),
independently of exposure status. Control and exposed replicates from either
preparation clustered along PC2 (exposed replicates tended to cluster above
the control replicates).
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interest in using scRNA-seq for TGx studies, we next examined
the toxicologically-relevant differences in profiles between bulk-
seq (TBxCB) and pseudo bulk-seq (TPxCP) exposure datasets.
Since pseudo bulk-seq is a collapsed transcriptome of every
individual cell, it is expected to resemble the bulk-seq averaged
transcriptome. Any differences in the two datasets can help
estimate the cell populations undergoing dropout in scRNA-
seq. If the pattern of cell dropout does not meet the expectation
that all cell types will be affected equally, this suggests the
sequencing process itself contributed to the sacrifice of a cell
population. In the bulk-seq comparison, 310 genes were
significantly differentially expressed (171 upregulated and
139 down-; p < 0.01; LFC ≥1 or ≤ −1) between TCDD-
exposed and control; the pseudo bulk-seq comparison
contained 1,099 significant DEGs (134 up- and 965 down-).
The greater number of DEGs in scRNA-seq is likely a product
of noise due to both cell and transcript dropout. Disproportionate
cell-type dropout in scRNA-seq TCDD samples produces a
composition of cells unlike that remaining in the bulk-seq
TCDD samples, where dropout does not apply. The increased
incomparability of cell type populations embeds noise in the
system. Transcript dropout from lower transcriptome coverage in
scRNA-seq results in a decreased signal:noise ratio. Figure 4
shows the differences between the control and TCDD samples for
each method.

Interestingly, only six of these DEGs overlapped between the
two preparations (Figure 5). A common use of scRNA-seq is
identification of cell-type markers of interest for further
experimentation. Populations expressing a particular marker
are then isolated from new tissue, and bulk-seq is performed
to allow for deeper sequencing coverage. The markedly different
DEG profiles between pseudo bulk-seq and bulk-seq could
mislead marker identification and subsequent experiments.
Despite low overlap in DEGs, it is possible the transcriptomic

profiles of each method converged on toxicologically-relevant
pathways, therefore, we compared the overarching functions
represented by each method (Tables 7, 8). The 43 pathways
generated from pseudo bulk-seq data seem to convey more
specific toxicological functions (teratozoospermia, impaired
cilia formation), and it is clear the reproductive system has
been affected. With the 55 bulk-seq pathways, it is clear basic
cellular functions are under distress (ion homeostasis, apoptosis,
ROS production), but without prior knowledge, it would be
difficult to assume the tissue in question, as they range over
less informative pathways. Additionally, the pseudo bulk-seq
results of sperm disorder, oligozoospermia, etc., reflect the
phenotypic infertility and the lowered male-mediated
fertilization rates we have observed following TCDD exposure.
There were three exact overlapping pathway annotations from
pseudo bulk-seq and bulk-seq including cancer of secretory
structure, and two non-specific cancer pathways. The
prominence of sperm-related pathways in pseudo bulk-seq
data and absence of such in the bulk-seq pathway list may be
explained by the observed dropout of sperm cells in scRNA-seq.
The sperm-specific signal may have been overridden by the
abundance of other cell-type signals in bulk-seq, such as from
spermatocytes (45% of all cells, Haimbaugh et al., 2022). In fact,
meiosis-related pathways are well-represented in the pseudo
bulk-seq results but absent from bulk-seq. This lack of focus
could also be due to the relatively low number of IPA-ready
molecules for bulk-seq (206) compared to pseudo bulk-seq (696).
The full list of IPA results is Supplemental File S1.

Bulk-seq pathways included a potential aspect of the exposure
that the pseudo bulk-seq dataset did not: immune system damage
or suppression. The most downregulated pathways in bulk-seq
are immune-related, while in scRNA-seq, there is no indication of
changes in immune function. TCDD is a known immunotoxicant
(Warren, 2000; Marshall and Kerkvliet, 2010). Immune cells,
while serving important functions in the testes, are such a small
population they are often not detected in scRNA-seq
experiments, or at very low representation averaging about 3%
(Green et al., 2018; Guo et al., 2018; Wang et al., 2018; Jung et al.,
2019; Sohni et al., 2019; Shami et al., 2020; Yang et al., 2020). We
did not detect immune clusters in our scRNA-seq dataset. It
follows, then, that without enriching a sample for immune cells
prior to scRNA-seq, immune system information may be lost.
The revelation of this loss between our bulk and single cell data
reiterates the importance of hypothesis-driven research. ScRNA-
seq in general has been rightly touted as a useful tool in discovery-
based research which can be mined for relevant information.
However, with the testes it may be the case that when studying
environmental contaminants known or suspected to be
immunotoxic, the a priori decision to enrich for immune cells
in a scRNA-seq study would produce a more realistic and
meaningful dataset.

scRNA-Seq Clusters Deliver Crucial
Toxicological Details (TCxCC)
As we have seen with the comparison of bulk-seq (TBxCB)
to pseudo bulk-seq (TPxCP), the narrowing of focus from a

FIGURE 5 | Venn diagram of DEGs (both up- and downregulated) in
TCDD-exposed pseudo bulk-seq preparation (left), and bulk-seq preparation
(right) as compared to control. Pseudo bulk-seq detected 1,093 DEGs that
were undetected in bulk-seq. Conversely, 304 genes were detected
using bulk-seq, but not pseudo bulk-seq. 6 DEGs were detected by both
methods.
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broad-ranging question of global expression, to a more specific
inquiry that takes into account heterogeneity of a tissue, can
impact the biological or toxicological understanding of the
results. The same appreciation of granularity applies when
comparing a pseudo bulk-seq dataset (TPxCP) to its scRNA-
seq cluster counterparts (TCxCC). Clusters are distinct entities
providing unique information about cell types in a tissue, and
are the main deliverable of scRNA-seq. Two indispensable
advantages of clustering are receiving the both proportions of
cell type (or cellular state) constituting a tissue, and the gene
expression signature of each cluster. Pseudo bulk-seq is not
meant to provide that information. Pseudo bulk-seq data

collapses scRNA-seq datasets to obtain a broad overview of
those extricated clusters. Collapsing the transcriptomic
dimensionality from individual clusters into one generalized
dataset is also useful in checking for dropout as described
above, but will naturally fail to retain all cell-specific changes.
This loss of specificity is greater when comparing clusters to
bulk-seq data, despite bulk-seq containing the same cell types.
This bulk-to-cluster comparison is still important, however, to
estimate dropout, as discussed above. Here we compare
representations of the transcriptome from scRNA-seq
clusters to pseudo bulk-seq and to bulk-seq data following
TCDD exposure.

TABLE 7 | Ingenuity Pathway Analysis table of disease and Biological Functions from TPxCP DEGs (p < 0.01, log fold change >1/<−1). From “Diseases or Functions
Annotation’’ column, after removing any redundancies, functions without a z-score, or a z-score between −1 and 1. Mapped IDs: 4,926; unmapped IDs: 1,921 (raw
data), after settings of logFC >1 or < −1/p < 0.01.696 analysis-ready molecules: 89 upregulated and 607 downregulated. Ranked by z-score. Left: upregulated pathways.
Right: downregulated pathways.

Rank Upregulated diseases or
functions annotation

p-value Activation
z-score

Rank Downregulated diseases or
functions annotation

p-value Activation
z-score

1 Sperm disorder 2.63E-05 3.45 67 Ploidy of cells 1.07E-05 −1.08
2 Carcinoma 2.39E-31 3.30 78 Recombination 1.78E-06 −1.15
7 Nonhematologic malignant

neoplasm
1.74E-34 2.79 79 DNA recombination 1.78E-06 −1.15

8 Extracranial solid tumor 3.88E-31 2.74 80 Recombination of cells 6.22E-05 −1.22
9 Tumorigenesis of epithelial

neoplasm
0.000777 2.71 81 Cell movement of sperm 2.07E-08 −1.34

10 Non-melanoma solid tumor 9.45E-31 2.68 83 Cycling of centrosome 0.000515 −1.45
11 Teratozoospermia 2.81E-05 2.65 84 Formation of cilia 1.12E-26 −1.47
14 Genitourinary tumor 0.000236 2.51 85 Homologous recombination 6.43E-05 −1.53
15 Genitourinary carcinoma 6.42E-05 2.43 87 Meiosis of germ cells 2.81E-05 −1.72
18 Laterality defect 6.43E-08 2.42 88 Smoothened signaling pathway 3.83E-12 −1.73
19 Malignant genitourinary solid tumor 0.00013 2.38 89 Cell surface receptor linked signal

transduction
2.72E-05 −1.73

20 Heterotaxy or ciliopathy 1.31E-33 2.24 90 Formation of cellular protrusions 1.88E-06 −1.76
22 Regional congenital anomaly 4.73E-07 2.22 91 Organization of cytoplasm 1.09E-07 −2.19
24 Oligozoospermia 0.000117 2.14 92 Organization of cytoskeleton 4.15E-06 −2.19
25 Solid tumor 4.03E-31 2.09 93 Microtubule dynamics 5.28E-06 −2.18

TABLE 8 | Ingenuity Pathway Analysis table of disease or Functions from TBxCB DEGs (p < 0.01, log fold change >1/<−1). From “Diseases or Functions Annotations”
column, after removing any redundancies, functions without a z-score, or a z-score between −1 and 1. Mapped IDs: 9,868/unmapped IDs: 4,924 (raw data), after
settings of log fold change >1 or < −1, p < 0.01.206 analysis-ready molecules: 114 upregulated and 92 downregulated. Ranked by z-score. Left: upregulated pathways.
Right: downregulated pathways.

Rank Upregulated diseases or
functions annotation

p-value Activation z-score Rank Downregulated diseases or
functions annotation

p-value Activation z-score

1 Neurotransmission 2.66E-07 2.53 41 Ductal carcinoma 0.00093 −1.67
2 Transport of cation 0.00014 2.20 42 Extraintestinal functional disorder 8.1E-06 −1.74
3 Transport of ion 1.57E-05 2.07 43 Morbidity or mortality 1.52E-05 −1.79
4 Transport of inorganic cation 0.000174 1.96 44 Migration of endothelial cells 0.000904 −1.90
5 Transport of metal ion 0.000314 1.96 45 Cell movement of antigen presenting cells 0.000257 −2.15
6 Transport of molecule 1.77E-06 1.77 46 Cell movement of macrophages 0.000878 −2.56
7 Ion homeostasis of cells 3.39E-06 1.63 47 Cell movement of phagocytes 0.000715 −2.58
8 Growth of organism 0.000509 1.61 48 Cellular infiltration by phagocytes 0.000381 −2.63
9 Colon tumor 0.000743 1.43 49 Cellular infiltration by leukocytes 0.00106 −2.73
10 Transport of metal 0.000106 1.43 50 Cellular infiltration by myeloid cells 0.000528 −2.76
11 Depolarization of cells 9.93E-05 1.39 51 Cell movement of leukocytes 0.000371 −2.76
12 Synthesis of reactive oxygen species 0.000636 1.34 52 Leukocyte migration 0.000582 −2.76
13 Incidence of tumor 7.45E-10 1.32 53 Cellular infiltration by blood cells 0.000574 −2.85
14 Apoptosis 5.7E-10 1.27 54 Cellular infiltration 0.000735 −3.01
15 Genital tumor 7.13E-07 1.27 55 Cell movement of myeloid cells 0.00102 −3.15
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In previous work, we captured ten scRNA-seq clusters
spanning all testicular cell types in control fish testes
(spermatogonial stem cells (SSC), spermatogonia (SPG), four
stages of spermatocytes (SPC), round and elongating
spermatids, and two sperm clusters) (Haimbaugh et al., 2022).
In TCDD-exposed fish testes, only eight clusters remained--
sperm and late spermatid populations were decimated. A total
of 980 genes were significantly differentially expressed among
each of the eight control and TCDD clusters. 574 of these DEGs
were not included in pseudo bulk-seq DEGs; only 243 DEGs
overlapped. These differing representations result from the
collapse of transcriptomic information across all cells in
pseudo bulk-seq. Spermatogenesis is a multi-step process,
where transcriptional programs that are turned on in earlier
stages must be silenced in later stages as the cell’s needs fluctuate.
Each subsequent developmental stage in the male germ cell
trajectory is quite different from the one preceding it. In SSCs,
self-renewal and mitosis occur. Some of those progeny will
remain SSCs, and some will differentiate to SPG. SPG
proliferate and then meiose into SPCs, which undergo a
second meiosis to form round spermatids. These round
spermatids undergo dramatic architectural elongation and
compaction to produce the mature spermatozoa. This can lead
to the effect of some transcript expression levels “cancelling out,”
as one subpopulation expresses, for example, a mitosis program
where DNA must be accessible for synthesis, while another
compacts chromatin quite tightly to shape sperm.

This divergent transcriptional representation in clusters is
exaggerated with bulk-seq. Bulk-seq, being an average
expression profile of all cells in the suspension, has the same
issues as pseudo bulk-seq would in terms of transcriptional
programs “cancelling out,” but with the added noise of the
dropout manifesting in the clusters. The uneven dropout in
scRNA-seq results in a different sample composition than that
of bulk-seq, as described above. Here, 800 DEGs were unique to
clusters, with only 17 DEGs overlapping with bulk-seq DEGs.

Without the cluster information, it would’ve been difficult to
predict the widespread apoptosis from bulk-seq or pseudo bulk-
seq alone, as pathway analysis returned apoptosis pathways with
either weak (<1) z-scores, or only one apoptosis result of 55 total
pathways (1.8%), respectively. From the clusters we could
determine the cell population proportions changed from
sperm and spermatids contributing about 30% of the control
population, to about 4% after exposure. As a result of the
population shift, SPG and early SPC made up about 80% of
the TCDD population, whereas in controls they constituted about
30%. From this population shift we were able to hypothesize
either a failure in spermiogenesis, or cell death of sperm. Cell
death of fully developed sperm was confirmed by
immunohistochemistry (Haimbaugh et al., 2022).

SUMMARY

Acceleration in the field of transcriptomics has brought about
myriad useful, high-powered technologies for investigating every
aspect of gene expression. Deliberately choosing the method to

best understand the specific research question becomes
complicated, yet remains critical. This is pertinent for any
discipline, including the growing field of TGx. The
implications for regulatory toxicology cast a layer of added
urgency to this task. We demonstrate here the nuances
associated with two common transcriptomic assays (bulk-seq
and scRNA-seq), using an early-life TCDD exposure model. Due
to cell and transcript dropout combined with reduced
transcriptome coverage in scRNA-seq, these two assays offer
incomparable DEG profiles. As scRNA-seq is often used for
cell-type marker discovery for future deeper sequencing with
bulk-seq, the opposing DEG profiles could complicate marker
enrichment and subsequent interpretation of the results. Despite
originating from the same tissue and same exposure, the
pathways these DEGs contribute to were also divergent, with
scRNA-seq pathways offering insight into biological mechanisms
of sperm loss following TCDD, while bulk-seq presented a profile
of general immune dysregulation. Both pieces of evidence,
however, are true. These different perspectives reinforce the
need for validation efforts using other methods including
phenotypes, histology, and behavior analysis, to supplement
transcriptomic findings from different analytical tools.

There are efforts to make bulk-seq and scRNA-seq more
cohesive. Spatial transcriptomics, while suffering from low
throughput, addresses the question of dropout: no
dissociation, microfluidic droplet or complex data analysis are
required (10x Genomics, Inc., 2021b). Deconvolution techniques
are actively being developed, where scRNA-seq data is used to
estimate proportions of cell type populations in homogeneous
bulk-seq samples (Hunt et al., 2018; Newman et al., 2019; Wang
et al., 2019). A potential limitation to this approach is that all cell
populations may not be present in the scRNA-seq matrix; we
have shown this in testes. The ability to extract information from
bulk-seq with scRNA-seq-level specificity would preempt
scRNA-seq-specific artifacts and reduce experimental costs
dramatically.

Exposure-induced risk is notoriously difficult to determine.
The “exposome,” or the multiple exposures each individual ever
encounters over their lifetime (Wild, 2005), to-date represents an
epistemic limit of toxicology, and a profound caveat in
epidemiological studies. Total environmental control can be
accomplished only in model organisms. Even with this level of
control, the toxicotranscriptomic outcomes of exposure can be
differentially represented according to the investigational
protocol. With this evident variability, it is critical for
researchers to produce reliable, replicable data for toxicological
risk interpretation in humans. Zebrafish in particular are
uniquely positioned to investigate questions of both aquatic
and human toxicology, due to their high potential for
translatability. We show the transcriptome of adult zebrafish
testes is susceptible to early-life TCDD exposure, which can
differentially present as sperm death or immunotoxicity,
depending on the assay and its associated strengths and
artifacts. Future toxicotranscriptomic studies in other tissues,
species, toxicants, or exposure schemes may also find
differential results between bulk-seq and scRNA-seq. These
differential results are not necessarily misleading, and can in
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fact enhance the TGx field’s understanding of the cellular and
transcriptional states complexly affected by exposure.

METHODS

Fish Husbandry
Zebrafish (AB strain) were maintained as described inMeyer et al.
(2018). Briefly, fish were fed twice daily and kept on a 14:10 h
light/dark cycle (Westerfield, 2000) in buffered, recirculating,
reverse osmosis water with temperatures maintained at 27–30 °C.
Animal use protocols were approved by the Institutional Animal
Care and Use Committees at Wayne State University and the
University of Wisconsin-Madison, according to the National
Institutes of Health Guide to the Care and Use of Laboratory
Animals (Protocol No. M00489).

TCDD Exposure
TCDD (>99% purity) (Chemsyn, Concord, ON, Canada) was
used as a 0.4 ng/ml stock solution in dimethyl sulfoxide (DMSO)
Zebrafish were exposed as previously described (Henry et al.,
1997; Baker et al., 2013). Briefly, fish were exposed at three wpf
and again at seven wpf to water-borne TCDD (50 pg/ml) or
vehicle (0.1%DMSO) for 1 h each time in small glass beakers with
gentle rocking. Fish were raised in beakers with daily water
changes of 40–60% at a density of five fish per 400 ml beaker
between 3 and 6 weeks, and five fish per 800 ml beaker between 6
and 9 weeks post-fertilization. All results are derived from three
independent TCDD exposure experiments done in successive
blocks.

Testes Isolation: Intact Control Testes (CI)
Adult (1-year-old (+/- 1 month)) male zebrafish were euthanized
in tricaine methanesulfonate (1.67 mg/ml) (Fisher Scientific,
Waltham, MA, United States) for 10 minutes. Testes were
dissected and excess adipose tissue removed in ice cold 1x PBS
(Gibco, Waltham, MA, United States). Testes were placed in
300 μL RNALater (Thermo Fisher, Waltham, MA, United States)
for 48 h. RNALater was then drained and tissue stored at -80 °C.

Testes Isolation and Enzymatic
Dissociation of Testes: Control Dissociated
(CD); TCDD and Control Dissociated for 10x
Sequencing (TP, CP); TCDD and Control
Dissociated for Bulk Sequencing (TB, CB)
Adult (1.5-year-old (+/- 1 month) (TP, CP, TB, CB) or 1-year-
old (+/- 1 month) (CD)) male zebrafish were euthanized in
tricaine methanesulfonate (1.67 mg/ml) (Fisher Scientific,
Waltham, MA) for 10 minutes. For CD replicates (n = 3),
only one testis was dissected for dissociation, while the
contralateral testis remained intact for paired bulk-seq. For
all other replicates, both testes were dissected (CB/CP: n = 3;
TB/TP: n = 2). Testes were dissected and excess adipose tissue
removed in ice cold 1x PBS (Gibco, Waltham, MA,
United States). Testes were minced, then centrifuged for
5 min at 500 g. PBS was removed, and 100 uL of digestion

media (100 uL Leibovitz’s L-15 medium (MilliporeSigma,
Burlington, MA, United States), one uL bovine serum
albumin (New England BioLabs, Ipswich, MA,
United States), one uL DNAseI (Zymo Research, Irvine, CA,
United States), and 1 mg collagenase Type II (Worthington
Biochemical Corporation, Lakewood, NJ, United States)) was
added. Tissue was shaken at 280 rpm for 1.5 h, with manual
disruption via wide-bore pipetting every 15 min. Cells were
centrifuged for 5 min at 500 g, digestion media aspirated, and
cells resuspended in PBS. Dead cells were removed with a Dead
Cell Removal Kit (Miltenyi Biotec, Bergisch Gladbach,
Germany). Cell viability of 90% was determined using the
BioVision Live/Dead Cell Viability Assay Kit (BioVision Inc.,
Milpitas, CA, United States), according to manufacturer’s
instructions. Cells were immediately 1) loaded for 10x
sequencing (CP (n = 3), TP (n = 2)), or 2) placed in Qiazol
(Qiagen, Hilden, Germany) and frozen at −80°C (CB (n = 3),
TB (n = 2)). Approximately 5,000 cells were loaded for scRNA-
seq per replicate (CP, TP). The remaining cells (approximately
two million) from the testes suspension were reserved for bulk
seq (CB, TB). All cells (approximately one million) from each
CD testis (n = 3) were used for bulk-seq,

RNA Isolation
RNA was isolated from testes using the RNeasy Lipid Tissue Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
specifications. Briefly, samples were homogenized in Qiazol
(Qiagen, Hilden, Germany), RNA was separated from organic
material with chloroform-isoamyl alcohol mixture (≥99.5%)
(Millipore Sigma, Burlington, MA, United States), RNA was
purified on a filter and eluted with RNAse-free water. RNA
concentration was measured with Qubit 3.0 Fluorometer
(Invitrogen, Carlsbad, CA, United States). Isolated RNA was
stored at -80 °C.

39-End Library Preparation, Sequencing,
and Alignment
3′ mRNA-seq libraries were prepared from isolated RNA using
QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina
(Lexogen, Vienna, Austria). Samples were normalized to 40 ng/
μL (total input of 200 ng in 5 µL) and amplified at 17 cycles.
Libraries were quantified using a Qubit 3.0 Fluorometer and
Qubit® dsDNA Broad Range Assay Kit (Invitrogen, Carlsbad, CA,
United States), and run on an Agilent TapeStation 2200 (Agilent
Technologies, Santa Clara, CA, United States) for quality control.
The samples were sequenced on a HiSeq 2500 (Illumina, San
Diego, CA, United States) in rapid mode (single-end 50 bp reads).
Reads were aligned to D. rerio (genome assembly GRCz11
(danRer11)) using the BlueBee Genomics Platform (BlueBee,
Rijswijk, Netherlands). Raw data and processed files were
uploaded to the NCBI GEO database (GSE193758).

10x Library Preparation and Sequencing
Single cell transcriptome profiles were generated using the 10x
Chromium Controller v2 chemistry following the Chromium
Single Cell 3′ protocol. We acquired 180million reads per sample,
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or ~120,000 reads/cell. Raw data and processed files were
uploaded to the NCBI GEO database (awaiting approval).

10x Data Processing
Cell Ranger was used to align sequencing reads to the zebrafish
reference genome (dR10) which was constructed using the
mkref command (Zheng et al., 2017). Count data was imported
to Seurat (version 4.0.4) for quality control (QC) filtering,
clustering, dimensionality reduction, visualization,
and differential gene expression (Satija et al., 2015; Hao
et al., 2021). Each sample was filtered to cells containing at
least 500 features with clusters requiring a minimum of 30
cells. Samples were merged prior to normalization and
clustering (resolution 0.3). Differentially expressed genes
between conditions for each cluster were identified using
the “FindMarkers” function.

Ingenuity Pathway Analysis
The functional pathways in each comparison were generated
through the use of IPA (Qiagen Inc., https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-analysis).
Genes with significant differential expression, as defined by a log fold
change of ≥1 or ≤ −1, and a p-value<0.01, were uploaded into IPA
software, using RefSeq IDs as identifiers.

Apoptosis Assay
Immunohistochemistry was performed by the Wayne State
University Biobank and Correlative Sciences Core. Formalin-
fixed paraffin-embedded sections of bisected zebrafish were de-
waxed and rehydrated in a xylene-ethanol-water series.
Endogenous peroxides were removed by a methanol/1.2%
hydrogen peroxide incubation at room temperature for
25 min. HIER antigen retrieval was done with a pH6 citrate
buffer and the BIOCARE Decloaking Chamber (Concord, CA,
United States). A 40 min blocking step with SuperBlock Blocking
Buffer (Thermo Scientific, Waltham, MA, United States) was
performed prior to adding the primary antibody. Detection was
obtained using GBI Labs (Bothell, WA, United States) DAB
Chromogen Kit and counterstained with Mayer’s hematoxylin.
Sections were then dehydrated through a series of ethanol to
xylene washes and coverslipped with Permount (Fisher Scientific,
Waltham, MA, United States). A 1:100 dilution of Cleaved
caspase three antibody (9664S) antibody (Cell Signaling,
Danvers, MA, United States) was used overnight at 4 °C.

The authors analyzed CC3 labeling to determine presence
and/or extent of apoptosis (control fish: N = 3; TCDD-exposed:
N = 3). We obtained up to three distinct images from replicate
testes slides at ×40 magnification, and manually quantified a
quadrant of each image (control = 8 quadrants, TCDD = 9
quadrants). Significance of the percent apoptotic cells per cell
type between controls and TCDD images was measured via
student’s two-tailed t-test.
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