
ble at ScienceDirect

Regenerative Therapy 21 (2022) 201e209
Contents lists availa
Regenerative Therapy

journal homepage: http: / /www.elsevier .com/locate/ reth
Review
Mesenchymal stem cell therapy: A review of clinical trials for multiple
sclerosis

Asma Alanazi a, c, *, Mohammad Alassiri b, c, Dunia Jawdat b, c, Yaser Almalik a, c, d

a College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
b College of Science and Health Professions, Riyadh, Saudi Arabia
c King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
d Division of Neurology, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
a r t i c l e i n f o

Article history:
Received 27 May 2022
Received in revised form
2 July 2022
Accepted 15 July 2022

Keywords:
Multiple sclerosis
Mesenchymal stem cells
Hematopoietic stem cells
Stem cell therapy
Regenerative medicine
* Corresponding author. Basic Medical sciences, Co
Saudi Arabia.

E-mail address: Anazia@Ksau-hs.edu.sa (A. Alanaz
Peer review under responsibility of the Japane

Medicine.

https://doi.org/10.1016/j.reth.2022.07.003
2352-3204/© 2022, The Japanese Society for Regener
creativecommons.org/licenses/by/4.0/).
a b s t r a c t

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is the result of the body's
own immune cells being auto-reactive to the myelin regions of the body as if these regions were foreign
antigens. This demyelination process is damaging to the electrical conductivity of neurons. The current
medicines are only capable of fighting off the symptoms of the disease, but not the disease itself.
Specialized stem cells, known as mesenchymal stem cells (MSCs), seem to be the candidate therapy to
get rid of MS. MSCs can be isolated from multiple sources of the person's body, and even from the
umbilical cord (UC) and placenta of a donor. These cells have anti-inflammatory effects so they can target
the overactivity and self-antigen attacks by T cells and macrophages; this immune system overactivity is
characteristic of MS. MSCs show the ability to locate into brain lesions when injected and thus can
compensate for the loss of the brain function by differentiating into neuronal precursor cells and glial
cells. The author has listed tables of clinical trials that have utilized MSCs from different sources, along
with the years and the phase of study completed for each trial. The consensus is that these cells work on
inhibiting CD4þ and CD8þ T cell activation, T regulatory cells (Tregs), and macrophage switch into the
auto-immune phenotype.

The best source of MSCs seems to be the UC due to the easiness of extraction, the noninvasive method
of collection, their higher expansion ability and more powerful immune-modulating properties
compared to other locations in the body. Studies showed there was a significant decline of mRNA
expression of several cytokines after the administration of MSCs derived from the UC (UCMSCs). Other
researchers were able to repair the defects of Tregs in MS patients by co-culturing Tregs from these
patients with UCMSCs, which decreased the production of the pro-inflammatory cytokine IFN g, and also
suggested a strong link between Tregs lack of functionality in MS patients with the pathogenesis of the
disease.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations

AD-MSCs Human adipose-derived mesenchymal stem cells
AICD Activation-induced cell death
ALS Amyotrophic lateral sclerosis
APCs Antigen-presenting cells
ASCs Adipose-derived stem cells
BAEP Brainstem auditory evoked potential
BH Black hole
BBB Bloodebrain barrier
BM-MSCs Bone marrow-derived mesenchymal stem cells
CNS Central nervous system
CSF Cerebrospinal fluid
CTL Cytotoxic T cells
DCs Dendritic cells
EAE Experimental autoimmune encephalomyelitis
EDSS Expanded disability status scale
Gd Gadolinium
GEL Gadolinium-enhancing lesions
IFN g Interferon gamma
IL Interleukin

MHC Major histocompatibility complex
MRI Magnetic resonance imaging
MS Multiple sclerosis
MSCIMS Mesenchymal stem cells in multiple sclerosis
MSCs Mesenchymal stem cells
ODCs Oligodendrocytes
PBMCs Peripheral blood mononuclear cells
PPMS Primary progressive multiple sclerosis
RRMS Relapsing-remitting multiple sclerosis
SEP Somatosensory evoked potential
SPMS Secondary progressive multiple sclerosis
SSS Sexual satisfaction scale
TCR T-cell receptors
Teffs T effector cells
TGF Transforming growth factor
Th T helper
TNFa Tumor necrosis factor
Tregs T regulatory cells
UC Umbilical cord
UCMSCs Umbilical cord mesenchymal stem cells
VEP Visual evoked potential
1. Background on multiple sclerosis

Multiple sclerosis (MS) is a chronic, demyelinating,
autoimmune-mediated neuroinflammatory disease of the central
nervous system (CNS). MS immunopathogenesis involves CNS
inflammation, bloodebrain-barrier (BBB) disruption, and attacks of
neurologic symptoms that often lead to limb paralysis, serious
problems in sensation, and partial or complete loss of central
vision, fatigue, dizziness, lack of sleep, and depression [13,20]. MS is
categorized into several phenotypes: primary progressive MS
(PPMS), relapsing-remittingMS (RRMS), and secondary progressive
MS (SPMS) [64]. The progressive phase is characterized by an
irreversible neurodegeneration and axons damage, but the inci-
dence of RRMS is higher than the other types and is associated with
worsening attacks of neurological function due to flare-ups of
neurological disabilities from time to time [4].

A keypathological feature ofMS is an autoimmunemechanism in
which auto-reactive myelin-specific CD4þ T cells e T helper (Th)
cells e target the self-antigens of the myelin in the CNS after pene-
trating the BBB, in an uncontrolled response of the immune system.
Neurons transmit information by electrical signaling and to do this
efficiently, their axons should be insulated with myelin. Oligoden-
drocytes (ODCs) are cells that provide support and insulation for
axons by forming themyelin sheath. The auto-reactive Tcells initiate
and propagate an autoimmune response against the CNS, and in the
process attack myelin, ODCs, and neurons. Death of ODCs is the
primary causes of axonal loss, demyelination, and damaging of CNS
by the formation of CNS plaques [15]. CNS plaques are composed of
inflammatory cells and their products, demyelinated and transected
axons, and astrogliosis in both white and gray matter [37].
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It is known that some major histocompatibility complex (MHC)
haplotypes, as well as some alleles of cytokines and their receptors,
increase the risk forMS (Gourraudet al 2012). An interactionbetween
environmental andgenetic factors in the susceptibility toMShasbeen
suggested by recent findings, offering possible scenarios for collabo-
ration between specific factors in MS initiation. For instance, MS risk
modulators, including genetic variants in interleukin-7 receptor-a
(IL7RA*C), IL-2 receptor-a (IL2RA*T), MGAT1, and CTLA-4, and envi-
ronmental factors affecting vitamin D3 levels, converge in order to
alter branching of Asn (N)-linked glycans [44], Gourraud et al 2012.
More importantly, branching reduction results in T-cell hyperactivity
and promotes spontaneous inflammatory demyelination and neu-
rodegeneration in the MS animal model. N-glycan branching is
positively regulated by Mgat1 and Mgat5, both of which are Golgi
body enzymes. Mgat1 is down-regulated by IL7RA*C; IL2RA*T is
opposed byMgat1 and vitamin D3, but IL2RA*Toptimizes branching
and mitigates the risk of MS when combined with enhanced N-
glycosylation of CTLA-4. Therefore, various genetic and environ-
mental factors regulate a final common pathway: N-glycosylation.
This pathway is highly relevant for MS pathogenesis [17].

[17] and [50] have shown that vitamin D directly stimulates the
expression of HLA-DRB*15, MHC class II allele, which is a major MS
genetic risk factor [18]. suggested that a low vitamin D level in early
childhood leads to a decrease in the expression of HLA-DRB*15 in
the thymus, which results in an inadequate presentation of self-
antigens. Consequently, more auto-reactive T cells could emerge
in the immune system of people who had low vitamin D in their
early childhood. Below is a sketch that represents the major cell
types of the CNS and the immune system in the pathogenesis of MS
disease [38].
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T-cell activation, which can result in the attack on self-myelin,
comes from the recognition of antigens presented by MHC mole-
cules on the surface of antigen-presenting cells (APCs). Dendritic
cells (DCs) are APCs that are capable of activating naïve T cells,
which makes DCs central in the initiation of the adaptive immune
response [9]. T cells have T-cell receptors (TCR) and co-receptor
molecules (CD4 or CD8) that help them bind with MHC com-
plexes on the molecules of APCs. If a T cell expresses CD4, it rec-
ognizes MHC class II molecules, and if it expresses CD8, it
recognizes MHC class I molecules. T cells that express CD4 are
designated as CD4þ T cells, and those that express CD8 are desig-
nated as CD8þ T cells, and are known as cytotoxic T cells (CTL). Th
cells produce mediators that perform effector and regulatory
functions in immunity, while CTL cells kill infected, or damaged,
cells. Th cells are integral to the pathogenesis of MS as they play a
critical role in the maturation and complete activation of other
immune cells. Th cells can be differentiated into Th1, Th2, or Th17
phenotypes when Il-2, IL-23, or IL-4 bind to them. Once differen-
tiated, the Th1 phenotype releases interferon gamma (IFN g) and
tumor necrosis factor (TNF-a), both of which are proinflammatory
cytokines that can promote inflammation by suppressing Th2 dif-
ferentiation, and thus canceling the Th2 release of IL-4 and IL-13,
both of which are anti-inflammatory cytokines [79]. Th17 is
another type of CD4þ T cells that induces a large number of cyto-
kines, including IL-17, IL-21, IL-22, and IL-26, all of which are
capable of promoting inflammation (Ouyang et al 2008).

Without the support of other Th cells, B cells do not mature into
long-lasting memory cells or plasma cells. CTL are also not fully
activated without Th cell involvement. CTL can also be found in MS
lesions, according to many studies, as outlined by [31]. CTL can
trigger ODCs death and thus play an important role in MS patho-
genesis. Once the ODCs are impaired, the myelin repair process is
also impaired [27]. There are several types of effector Th cells,
which include Th1 and Th17, that appear to be major pathogenic
populations in MS [39]. Once T cells enter the CNS, they will be
nonfunctional unless reactivated upon their entry. While there are
no DCs in a healthy CNS [51], other APCs are capable of reactivating
T cells in the CNS. Besides macrophages, CNS contains other semi-
professional APCs, which include microglia, B cells, and endothelial
cells, as well as nonprofessional APCs (astrocytes), which can
reactivate T cells [1].

In the process of T cell maturation, T cells that recognize self-
antigens are eliminated or inactivated by mechanisms of central
and peripheral tolerance. Central tolerance is based on the inter-
action between TCR and MHC, which takes place in the thymus. A
naïve T cell can be activated only if it receives simulation simulta-
neously through TCR, coreceptors, and cytokines. If the recognition
lasts too long, or is too intense, a T cell will be eliminated in the
process of activation-induced cell death (AICD) [16].

In a healthy individual who does not suffer fromMS, Tregs play a
crucial role in self-tolerance control and peripheral tolerance, by
dynamically suppressing the activation and expansion of auto-
reactive T cells and other immune cells in peripheral and CNS
systems. Tregs do this by secreting immunosuppressive mediators
through cell-to-cell contact, and also via the inhibition of the
stimulatory capacity of APCs [29,55]. It is hypothesized that the
reduced number of Tregs in MS patients is responsible for the
activation of auto-effective T cells in the peripheral and CNS These
auto-effective T cells initiate and propagate an immune system
attack which damages the CNS via demyelination and killing of
ODCs [32,23].

Many studies report that the adoptive transfer of autologous or
allogenic Tregs reversed, and even inhibited, autoimmune disease
development; their transfer was not accompanied by any immune
systems as these cells controlled the allo-immune response to
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organ and cell transplantation by cell-to-cell contact, secretion of
anti-inflammatory cytokines, and modulation of APCs [34,78]. Pre-
clinical and clinical studies have shown that autologous Tregs may
have potential as a novel therapy in the treatment of autoimmune
diseases. However, other studies have confirmed that Tregs that are
in the patients who have autoimmune diseases like MS, cannot
efficiently inhibit the proliferation of auto-effective T cells as Tregs
in these patients have become impaired in their suppressive
function [67,68]. Therefore, developing clinically applicable pro-
tocols that reverse or repair the impaired suppressive function of
these Tregs would be necessary before autologous Tregs are to be
used as real therapeutic cells.

Currently, there isn't an effective therapeutic model for MS
disease. Current medications are costly and are focused on less-
ening the symptoms and chronic inflammation, but not curing the
disease or repairing the damaged myelin. Furthermore, the symp-
toms were recurrent or became aggravated after drug withdrawal.
Adding to this is the unfortunate reality that medicines with
immunomodulatory and immunosuppressant properties provide
partial efficacy to ameliorate autoimmune reactions. This is the
reason why disease progression can lead to approximately 50% of
affected patients to develop chronic progressive diseasewith a poor
prognosis (Lei et al 2014). Recent evidence has suggested that an
appropriate treatment should be centered on the modulation or
suppression of aggressive immune response, protection of neurons
and axons against degenerative process, as well as improvement of
repair or remyelination [14].

2. Mesenchymal stem cells

MSCs are multipotent adult stem cells that are highly prolifer-
ative, are capable of self-renewal, and have immunomodulatory
and neurodegenerative effects [61]. They can also attenuate over-
active immune and hyperinflammatory processes as they are
capable of inducing Foxp3þ expression in CD4 Tcells in vitro [10]. In
addition, MSCs display multiple regulatory roles in the immune
system by inducing the generation of Tregs via cellecell contact
between MSCs and T cells, and also by secreting anti-inflammatory
factors in vitro, which would allow them to control the progress of
autoimmune diseases, including MS [62,60,72]. Their immuno-
modulatory actions may be exerted by a direct contact with im-
mune cells or by paracrine activity. It is reported that MSCs can
inhibit Th17 and Th1 cell differentiation [58,24]. They can also
promote repair and regeneration of tissue by having the ability to
differentiate into multiple cell types. Moreover, they can also
antimicrobial molecules and they do so with low immunogenicity
(low levels of class I and class II human leukocyte antigen). Previous
studies have suggested that MSCs amplified in vitro can suppress
the proliferation of T lymphocytes, B lymphocytes, and natural
killer cells, and can also inhibit maturation and differentiation of
dendritic cells [28,60].

MSCs can be easily isolated from peripheral blood, bone
marrow, adipose tissue, umbilical cord (UC), and placenta [5,33].
Later, they can be expanded in culture media to create a large
population of cells for cell-based therapy [49]. Adding to the easi-
ness of their extraction, a patient can also be served as a donor for
himself without the risk of rejection, and it has been found that
autologous MSCs carry a safer patternwithout the risk of malignant
transformation [53,71].

Stem cell-based therapy has recently provided a hope for
treatingMS patients, and is now considered the most preferred and
noninvasive method for treatment of different diseases [71].
Experimental studies showed that intravenous administration of
MSCs has immune suppressive effects and ameliorates autoim-
mune diseases [25]. It has also been shown that MSC



Table 1
Mesenchymal stem cells therapy and clinical trials for MS disease.

Cell Type Years Country Phase Evaluation after Cell Therapy

Autologous MSCs 2013 Italy 1 & 2 MSC therapy without side effect infusion (NCT01854957)
Autologous MSCs 2011e2018 Iran 1 & 2 Evaluate the effect of MSC transplantation on number of Gd

(gadolinium)-positive lesions (NCT01377870)
Autologous MSCs 2013e2016 UK 1 & 2 MSC therapy without side effect after infusion, quantified by the

reduction in the number of new contrast-enhancing lesions on MRI
scans (NCT01606215)

Autologous MSCs 2010e2014 Spain 2 No identification of any serious adverse events, at 6 months, patients
treated withMSCs had a trend to lowermean cumulative number of GEL
(gadolinium-enhancing lesions), and at the end of the study to reduced
mean GEL, non-significant decrease of the frequency of Th1 (CD4þ, IFN
gþ) cells in blood of MSCs treated patients (NCT10228266)

Autologous MSCs 2014e2018 Canada 2 Efficacy: total number of GEL on MRI scan (NCT02239393)
Autologous MSCs 2011e2016 USA 1 Evaluated the feasibility of culturing MSCs, and infusion-related safety

and tolerability of autologous MSC transplantation over one month in
patients with relapsing forms of MS. Stem cell therapy was without side
effects (NCCT00813969)

Autologous MSCs 2010e2015 Spain 1 & 2 Evaluated safety and tolerability related to the intravenous infusion of
autologous mesenchymal stem cells. Evaluated effects on MS disease
activity as measured by: clinical variables, immunological and
neurophysiologic analysis, neurophysiological and quality of life scales
(NCT01056471)

Autologous MSCs 2001e2005 USA 1 MSC therapy is safe without side effects after injection (NCT00017628)
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transplantation significantly improves the clinical outcomes of MS
in experimental autoimmune (EAE) models [3]. Up-going and
completed clinical studies that investigated the effectiveness and
safety of MSCs in MS treatment revealed that upon intravenous
injection into the cerebrospinal fluid (CSF) of the spinal cord, MSCs
are able to locate into brain lesions. This should improve the sur-
vival rate of brain cells via the cells’ differentiation into neuronal
precursor cells and glial cells, thereby compensating for the lost
brain function. This could decrease disease severity and improve
the quality of life in patients with MS [69,46]. Table 1 discusses the
years, countries, and phases of study for the application of autol-
ogous MSCs in cell therapy, which are derived from oneself so
would not present the risk of rejection and cannot possibly become
malignant (see Table 1).
3. Bone marrow-derived MSCs (BM-MSCs)

Bone marrow tissue is an important source of MSCs and these
cells have the ability to differentiate into several cell types due to
their multi-potential properties BM-MSCs were the first cells to be
discovered, which is why a lot of studies used bone marrow as a
source of MSCs. They can be administered either through the
intraperitoneal route or intravenously. Administration through the
intraperitoneal route improved experimental autoimmune
encephalomyelitis (EAE), as demonstrated by the amelioration of
clinical score and the reduced inflammatory infiltration and
demyelination of the spinal cord. These cells inhibited CD4þ and
CD8þ T cell activation, induced Tregs, and modulated macrophage
polarization from M1 to M2 phenotype which led to a reduced
production of pro-inflammatory cytokines [73]. Table 2 lists several
clinical trials that evaluated the effectiveness of BM-MSCs in MS
disease treatment; the cells were administered intravenously, a
method that has proved to be safe. BM-MSCs that were adminis-
tered intravenously improved neurobehavior outcomes and
reduced inflammatory infiltration as well as demyelination in the
spinal cord. The results were centered on the improvement in
disease severity, cognitive function, and quality of life of MS pa-
tients, thanks to the cells’ neuroprotective and anti-inflammatory
properties [7].
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4. Human adipose-derived MSCs

Human adipose-derived MSCs (AD-MSCs) were able to reduce
disease severity when administered both at the onset or during the
acute phase of the disease in EAE mice. These cells can be easily
isolated by liposuction method from adipose tissue, which is
abundant in abdominal tissue and hip area. In addition, they are
clinically used in tissue engineering and reconstruction, as well as
in cell-based therapies. Experimental studies revealed AD-MSCs
can differentiate into myelin-producing cells and compensate
myelin loss in MS disease models [30,59]. Both the autologous and
allogenic models of ASCs have been frequently used in clinical
studies, with several of the studies reporting that the injection of
these cells is safe without adverse effects [47]. Table 3 lists the
results of several clinical studies that considered the effect of AD-
MSCs in MS treatment, with the consensus of it being a safe
method that improves MS disabilities such as sexual problems and
social activities (see Table 4).
5. Umbilical cord MSCs (UCMSCs)

MSCs extracted from the umbilical cord are termed UCMSCs.
They can be easily derived from umbilical cords discarded after
delivery, so they do not cause any ethical controversies and their
collectionmethod is noninvasive [48]. UCMSCs are bioequivalent to
MSCs from the bone marrow. Moreover, UCMCSs are genome-
stable, have lower immunogenicity, have higher expansion ability
compared to those from the bone marrow and other adult tissues,
and have more powerful immune-modulating properties [77,65].
For example, UCMSCs suppressed mitogen-induced lympho-pro-
liferation to a greater extent than bone marrow-derived MSCs.
UCMSCs are also capable of promoting the production of Tregs
in vitro [62] and increasing peripheral Treg in vivo [60]. The
administration of these cells in cynomolgus monkeys with EAE
improved MS clinical symptoms, reduced demyelination and
inflammation [35].

UCMSCs can be isolated from different parts of the umbilical
cord, such as Wharton's jelly. MSCs derived from this jelly region
have high proliferative and therapeutic ability, their administration

https://clinicaltrials.gov/ct2/show/NCT01854957
https://clinicaltrials.gov/ct2/show/NCT01377870
https://clinicaltrials.gov/ct2/show/NCT01606215
https://clinicaltrials.gov/ct2/show/NCT01228266
https://clinicaltrials.gov/ct2/show/NCT02239393
https://clinicaltrials.gov/ct2/show/NCT00813969
https://clinicaltrials.gov/ct2/show/NCT01056471
https://clinicaltrials.gov/ct2/show/NCT00017628


Table 2
BM-MSCs clinical trials for MS disease.

Cell Type Years Country Phase Evaluation after Cell Therapy

Autologous BM-MSCs 2014e2016 Israel 2 Changes in immunological response at 12 months following treatment.
Neurological function test and Expanded Disability Status Scale (EDSS)
improvement (NCT02166021)

Autologous BM-MSCs 2015e2018 France 1 & 2 Primary outcome is safety cell therapy without side effects. Efficacy
assessed by combined unique magnetic resonance imaging (MRI)
activity, volume of GEL, and volume of BH (black holes) (NCT02403947)

Autologous BM-MSCs 2006e2011 UK [8,7] 1 & 2 Safety and feasibility of the intervention and informing design of future
studies to address efficacy, mesenchymal stem cells in multiple sclerosis
(MSCIMS) adopts a novel strategy for testing neuroprotective agents in
MS e the sentinel lesion approach serving as proof of principle for its
future wider applicability (NCT00395200)

Autologous BM-MSCs 2013e2017 Jordan 1 & 2 Patient with any relevant side effects observed, assessing the safety of
autologous MSCs injection (NCT00781872)

Autologous BM-MSCs 2006e2009 Israel [26] 1 & 2 Safety and migration ability of the injected cells, clinical efficacy. N side
effects. Transplantation of MSCs in patients with MS and ALS is a
clinically feasible and relatively safe procedure and induces immediate
immunomodulatory effects (NCT00781872)

Autologous BM-MSCs 2013e2016 Spain 1 & 2 Safety and efficacy after cell therapy, subsequent flow cytometry: IL-2,
4, 6, IFN-g, IL-10, TNF-a, or by ELISA: TGF-b and IL-17 (NCT02035514)

Autologous BM-MSCs 2017 Jordan 1 Effectiveness assessment by MRI, safety assessment by physical
examination, vital signs, analytical results, electrocardiograph
monitoring, and EDSS (NCT03069170)

Autologous BM-MSCs 2001e2005 USA [2] 1 Four new or enhancing lesions were seen on MRI, all within 13 months
of treatment. In this population with high baseline EDSS, a significant
proportion of patients with advanced MS remained stable for as long as
7 years after transplant (NCT00014755)

Autologous BM-MSCs 2015e2018 Spain 1 & 2 MS therapy is safe without side effects after cell injection. Evaluated
EDSS score (NCT02495766)

Autologous BM-MSCs 2013e2018 UK [52] 1 & 2 MS therapy is safe without side effects after cell injection. Evaluated
EDSS score (NCT02495766)

Autologous BM-MSCs 2014e2018 UK [52,52] 1 & 2 MS therapy is safe without side effects after cell injection. Evaluated
EDSS score (NCT02495766)
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is of little invasiveness, and lack significant immunogenicity (low
levels of class I and class II human leukocyte antigen), which per-
mits allogenic transplantation without immunosuppressive drugs
[56,63]. In fact, Mikaeli [43] reported that human Wharton's jelly
stem cell-derived oligodendrocyte progenitor cells transplanted
into the brain ventricles of anMSmouse significantly decreased the
clinical signs of MS and induced functional improvements.
Furthermore, histological examinations demonstrated that trans-
plantation of these cells promoted the regeneration of myelin
sheaths in the brain lesions.

[36,74] reported that the immunosuppressive function of
CD4þCD25þ Tregs or CD8þCD28d Tregs from PBMCs of healthy
donors are enhanced in vitro by co-culture with allogenic MSCs
from bone marrow [54]. have reported on the safety and effec-
tiveness of allogenic UCMSCs injected to MS patients. They found
that UCMSCs improved neurological parameters such as the Scripps
neurological rating scale, EDSS, the nine-hole peg test, the
expanded EDSS rating neurologic impairment, and 25-foot walking
time in these patients. Below are several clinical trials on the
effectiveness of intravenous injection of UCMSCs in expanded EDSS
scores improvement.

[76] carried out a study in which they demonstrated that
UCMSCs significantly increased the frequency of CD4þCD25high

CD45RA þ Tregs and the production of anti-inflammatory cytokines
in co-cultures with PBMCs from healthy subjects. In another study
by [75]; the researchers further investigated the immunomodula-
tory effects of UCMSCs on the frequency and immunosuppressive
function of Tregs from the peripheral blood of MS patients by co-
cultures of UCMSCs and peripheral blood mononuclear cells
(PBMCs) of MS patients, for 3 days. To repair the defects of Tregs
from MS patients, the researchers co-cultured Tregs from MS pa-
tients with UCMSCs. It was found that the functional defects of
Tregs in MS can be repaired in vitro using a simple UCMSCs priming
approach as UCMSCs significantly increased the frequency of
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CD4þCD25þCD127low/- Tregs in resting CD4þ T cells (P < 0.01) from
MS. Additionally, UCMSCs-primed Tregs of MS patients signifi-
cantly inhibited the proliferation of PHA-stimulated autologous and
allogenic CD4þCD25d T effector cells (Teffs) from MS patients and
healthy individuals, compared to non-UCMSCs-primed Tregs from
the same MS patients (P < 0.01). [_Schneider_et_al_2013] suggest
that Teffs resistance to the regulation of Tregs may also contribute
to the pathogenesis of MS. While [75] did not examine whether
there is resistance of Teffs to Tregs, but the data showed that
UCMSCs-primed Tregs from MS patients efficiently suppressed the
proliferation of autologous Teffs stimulated by PHA, a non-specific
stimulant of normal lymphocytes, compared to non-UCMSCs-
primed Tregs from the same MS patients. One more significant
result to report here is that UCMSCs co-cultures decreased the
production of pro-inflammatory cytokine IFN g.

The study before the last in the table is by [42] who wanted to
investigate the clinical efficacy and safety of UCMSCs trans-
plantation for treating two MS patients, for a total of seven times of
treatments. The researchers collected UC from healthy pregnant
women with no history of infectious, familial, or hereditary dis-
eases. This was done in Yan'an Affiliated Hospital of Kunming
Medical University. UCMSCs were isolated and cultured from
these cords. The number of cells in each intravenous infusion
was 1e2 � 106 cells/kg at 3-month intervals for 7 times. After
treatment, clinical effects including symptoms, vital signs, clinical
attacks, MRI, neurological function scores, and adverse reactions
like fever, dizziness, and vascular irritation were monitored and
evaluated.

The research results of [42] did not present obvious adverse
reactions or residual pathological syndromes appeared during
transplantation. Additionally, the regulatory immunomodulatory
effects of UCMSCs on immune system of MS patients were also
assessed. This was done by collecting peripheral blood before and
after cell transplantation. The results indicated that patients’

https://clinicaltrials.gov/ct2/show/NCT02166021
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Table 3
AD-MSCs therapy clinical trials for MS disease.

Cell Type Years Country Phase Evaluation after Cell Therapy

Autologous ADMSCs 2018 Spain [11] 1 & 2 Infusion of autologous AD-MSCs is safe and feasible in patients with
SPMS (NCT01056471)

Autologous ADMSCs 2012e2015 Sweden [6] 1 & 2 Safety of intravenous (IV) therapy with autologous MSCs in MS patients
(NCT01730547)

Autologous AMDSCs 2014e2018 USA 2 Change from baseline in sexual satisfaction at month 12 as measured by
participants using the SSS (Sexual Satisfaction Scale) (NCT02157064)

Table 4
UCMSCs therapy for MS disease.

Cell Type Years Country Phase Evaluation after Cell Therapy

Allogenic UCMSCs 2014e2017 China 1 & 2 No clinical attacks occurred during transplantation. MRI revealed a
reduced number of foci and EDSS scores were decreased

Allogenic UCMSCs 2017 Jordan 1 & 2 Intensity and volume of CNS lesions assessed to investigate the
therapeutic benefits of the injected allogenic MSCs and physical therapy
by MRI (NCT03326505)

Allogenic UCMSCs 2014e2017 Panama 1 & 2 Change in disability as measured by EDSS, qualify of life as measured by
the SF-36 quality of life questionnaire (NCT02034188)

Allogenic UCMSCs 2010e2014 China [42] 1 & 2 Evaluated core of EDSS, VEP (visual evoked potential), MRI, SEP
(somatosensory evoked potential) and BAEP (brainstem auditory
evoked potential). No side effects were apparent after cell injection
(NCT01364246)

Allogenic UCMSCs 2018 Panama Not specified Gadolinium-enhanced MRI scans of the brain and cervical spinal cord
were taken at baseline and also 1 year post-treatment. Treatment with
UCMSCs intravenous infusions for subjects with MS is safe
(NCT0234188) [54]
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symptoms improved after UCMSCs transplantation. No clinical at-
tacks happened during transplantation. MRI revealed a reduced
number of foci in both patients, suggesting that UCMSCs trans-
plantation promoted remyelination [22]. Furthermore, the EDSS
scores had decreased in both patients, indicating that clinical
symptoms were mitigated. Real-time PCR was used to determine
the mRNA expression of CD86, interleukin (IL)-2, IL-17c, Foxp3,
CTLA-4, and HLA-DRB1, transforming growth factor (TGF)-b 1, and
TGF-b 2 in peripheral blood. All but Foxp3, TFG- b 1, and TGF-b 2
were significantly reduced after UCMSC transplantation (P < 0.05).
The two versions of TGF are responsible for cell proliferation, dif-
ferentiation, apoptosis, and immunoregulation, while Foxp3 plays
an important role in immune protection [21]. The reason for why
three immune factors did not decrease after transplantation should
be investigated in future studies.

Given that the mRNA expression of each cytokine decreased,
this demonstrates the immunomodulatory properties of UCMSCs.
CD86 and CTLA-4 are important co-stimulatory molecules with a
negative regulating function. When bound together, they produce
inhibitory signals. During disease progression, the body's patho-
logical immune response induces high expression of the inhibitory
co-stimulatory signals. MSCs correct this pathological immune
response in vivo, which decreases the expression of CD86 and CTLA-
4 [40]. IL-2 is the core of the immune regulatory network [66],
whosemRNA expressionwas reduced after UCMSC transplantation.
T-helper 17 (Th17) cells are a subset of CD4-T helper cells, which are
characterized by their production of IL-7. IL-7 is a pro-inflammatory
cytokine, which is highly expressed in the serum and tissue of
patients with rheumatoid arthritis, asthma, systemic lupus ery-
thematosus, and MS [70,12]. In this study, IL-7 expression
decreased after transplantation of UCMSC, meaning that UCMSCs
inhibited Th17 cell differentiation.

Another detailed study in the table was by that by [54] which
included twenty subjects; mean age of enrollees was 41.15
(SD¼ 9.25) years and 12 of themwere females. Fifteen subjects had
a diagnosis of RRMS, four had PPMS, and one had SPMS. Enrolled
subjects received 140� 104 UCMSCs intravenously over seven visits
(20 � 106 UCMSCs/day), with each visit 1e4 days apart from the
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next visit. The UCMSCs were collected from afterbirth tissue after
obtained full-term healthy births. There were improvements re-
ported after one month 1 month in the EDSS scores (P < 0.03) with
a mean reduction of 0.48 (SD ¼ 1.49) after 1 month and a reduction
of 0.68 after 1 year, in addition to improvements in bladder and
bowel functions, and sexual dysfunction (P < 0.01), in walk times
(P < 0.02), and improved quality of life. MRI scans of the brain and
cervical spinal cord showed inactive lesions in 15 out of 18 subjects
after 1 year. There were no reported serious adverse events, with
only headache or fatigue reported. This treatment is much better
thanMS drugs which have side effects and are muchmore costly. In
addition, MS drugs are required to be taken daily or weekly [19].

6. Discussion

MS is an autoimmune disease and a complex disorder of the CNS
which is associated with the loss of axons and long-term progres-
sive disability that tends to be of an irreversible nature. There is no
effective therapeutic method for this disease. Current medications
can only manage and relieve the progress of the disease, but would
not treat it thoroughly and cannot prevent recurrence. Recent
studies have shown that cell-based therapies are able to repair CNS
and can protect it against inflammatory responses caused by the
immune system [57]. Cell-based therapies that rely onMSCs, which
are multipotent cells with high self-renewal capabilities and
immunomodulatory effects, have provided a new window for the
prevention and treatment of different neurodegenerative diseases,
such as MS, Parkinson's disease, Alzheimer's, and amyotrophic
lateral sclerosis [41,45].

Many studies have suggested CD4þ cell involvement in the
initiation and progression of MS by being auto-reactive and
attacking the body's neurons. Once Th cells differentiate into Th1,
Th2, or Th17 phenotypes, the new phenotypes have the ability to
secrete special cytokines, including IFN g, and TNF-a, which can
promote inflammation. B lymphocytes are also linked toMS as TGF-
b and TNF-a produced by these cells promote inflammation. In
addition to these cells, CD8þ cells are also found in MS lesions. They
play a role in the death of ODCs and CNS inflammation, and hence,

https://clinicaltrials.gov/ct2/show/NCT01056471
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the pathogenesis of MS. In a healthy individual who does not suffer
from MS, Tregs play a crucial role in self-tolerance control and
peripheral tolerance, by dynamically suppressing the activation
and expansion of auto-reactive T cells and other immune cells in
peripheral and CNS systems. Thus, reversing the function of Tregs
can help to inhibit the proliferation of auto-reactive T cells and
possibly stop MS progression [67,68].

There are many good types of MSCs, including BM-MSCs,
ADMSCs, and UCMSCs. BM-MSCs have the ability to inhibit CD4þ

and CD8þ T cell activation, can induce Tregs, and modulate
macrophage phenotype switch fromM1 to M2. Their actions result
in the reduced production of pro-inflammatory cytokines [73].
Table 2 summarized studies in 5 countries on the use of BM-MSCs,
the consensus being an improvement in the conduction of CNS
pathways that are affected during MS, and generally a halt to MS
progression in the patients. The results were confirmed using
different methods, including MRI, volume of GEL, volume of BH,
and EDSS scores. This places BM-MSCs as a novel therapeutic
approach toward MS treatment [7]. The other type discussed is AD-
MSCs, which are MSCs derived from human adipose tissue. Their
source is abundant in quantity and extracting them has proven to
be safe [11]. These cells have been used in clinical trials and stem
cell research [30,59]. Table 3 has reported on their use in clinical
trials run in 3 countries, the consensus being that AD-MSCs therapy
is safe and it improves MS disabilities, including sexual problems
and social activities in the patients studied.

Of the several types of MSCs, UCMSCs are the best option for MS
treatment for several reasons. These cells can do a faster self-
renewal than other MSCs, can differentiate into three germ layers,
and can accumulate in damaged tissue or inflamed areas. They also
have their own advantages that makes them the choice of MS
therapy. First, the separation of the cells from the UC is easy,
painless, and without ethical issues. Second, the amount of stem
cells produced per unit area is high. Third, the cost of stem cell
transfusion from the UC is not expensive. Fourth, these cells are
very safe to use. Based on the studies presented in the section about
UCMSCs, these cells would be considered as a safe and alternative
option for treatment of the neurological parameters of MS, through
results confirmed by EDSS, the nine-hole peg test, the expanded
EDSS rating neurologic impairment, and the 25-foot walking time.
UCMSCs have also been found to affect the function of the disabled
Tregs in MS patients in vitro and revert them to normal conditions;
impaired immunoregulatory function of Tregs constitute a main
fixture of MS progression as being impaired means they cannot
inhibit the proliferation of auto-effector T cells that would attack
ODCs and initiate MS. Based on the information presented, it is the
author's recommendation to emphasize the clinical utility of
UCMSCs for regenerative medicine and immunotherapy.
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