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Abstract

B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory
signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide
co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody
responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to
antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88
harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In
vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10.
Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism
could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell
receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell
responses arise.
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Introduction

Antibodies perform a broad array of functions dictated by the

constant region of their heavy chain. Mature B cells diversify the

number of functions performed by a particular antibody by

switching from IgM to IgG expression while preserving their

antigen specificity [1]. IgG production usually results from the

integration of two signals: An antigen specific signal provided via

the B-cell antigen receptor (BCR), and co-stimulatory signals

provided by T cells and dendritic cells in the form of cytokines

and/or membrane-bound ligands [2]. This two signal requirement

limits the risk of undesired immunopathology but imposes a 5–7

day delay in the induction of an effective antibody response, a

delay that might be far too long to fight fast growing pathogens.

Toll-like receptors (TLRs) and their associated signaling

pathways are mostly known for their role in the control of innate

immunity [3], but they also contribute to the induction [4] and

control [5] of adaptive immunity. TLR signaling participates in

the maintenance of B-cell memory in humans [6], and although it

has been shown to facilitate switching from IgM to IgG expression

[7,8,9], it is still unclear to what extent it is required for the

induction of antigen-specific antibodies [9,10,11,12]. The impor-

tance of establishing the role of TLRs in the control of the

humoral response is highlighted by the outcome of vaccination

against B. burgdorferi in humans: individuals with diminished

TLR1/2 function showed a significant decrease in their antibody

response to the B. burgdorferi OspA protein (a TLR2 ligand) [13]. In

the more physiological set up of an infection, the collaboration

between TLR and BCR signaling might be important for the early

activation of pathogen-specific B cells that help contain the

infection until the establishment of a mature T cell response.

LPS produced by Gram-negative bacteria activates B cells by

way of innate TLR4 and/or TLR2 signaling pathways [14]. In

this work we analyzed the contribution of TLR4 to the induction

of mouse IgG antibodies to LPS. We found that IgG antibodies to

LPS are induced by the synergistic interaction of low concentra-

tions of LPS with TLR4 and the BCR. This synergism results from

the association of BCR and TLR4 molecules in a B-cell membrane

complex mediated by the TLR4 transmembrane domain. This

mechanism might be therapeutically exploited for the induction of

antigen-specific antibodies.

Results

Natural IgG antibodies to LPS are not detected in mice
lacking a functional TLR4

IgM and IgG antibodies to self and non-self antigens can be

induced by immunization, however some antibodies also arise

naturally in the absence of known immunization or overt clinical

disease; these antibodies have been termed natural antibodies [15].

Natural antibodies against microbial antigens are probably the

result of repeated sub-clinical encounters with normal flora and

infectious agents, and have been shown to be effective in the

control of infection [16,17,18,19].

C3H/HeJ mice harbor a P712H point mutation in the TLR4

gene that results in a non-functional protein, whereas other C3H
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mouse strains express functional TLR4 [20,21]. We probed the

repertoire of natural IgG antibodies in pooled sera from non-

immunized 14-week old C3H/HeJ (hereafter TLR4P712H) or

C3HeB/FeJ (hereafter TLR4WT) mice using a panel of 87 self and

non-self antigens (Table S1). Both strains of mice harbored

similar profiles of natural IgG antibodies except for antibodies to

LPS that were present in the sera of TLR4WT mice, but not

detectable in the sera of TLR4P712H mice (Figure 1A). This strain

difference was confirmed by testing sera of individual mice

(Figure 1B). Surprisingly, there were no differences in the levels

of anti-LPS IgM between the two strains despite the significant

difference in anti-LPS IgG (Figure 1B). To rule out a prozone

effect, sera were serially diluted and tested for anti-LPS IgG. The

TLR4P712H sera were not reactive to LPS at any dilution

(Figure 1C). The lack of IgG reactivity to LPS in TLR4P712H

mice was not due to masking of LPS epitopes by IgM because sera

were pre-treated with 0.05 M b-mercaptoethanol [22] to disrupt

IgM. The natural anti-LPS IgG antibodies were almost exclusively

of the IgG3 subclass (Figure 1D), and recognized an oxidation

sensitive epitope (data not shown), as has been previously

described for antibodies to the carbohydrate portion of LPS [23].

We analyzed the appearance of anti-LPS IgG over time

(Figure 1E). At 4 weeks of age, anti-LPS IgG was not detectable

in either strain, however both strains manifested anti-LPS IgM

(data not shown). Starting at week 8, anti-LPS IgG was detectable

in the sera of the TLR4WT mice, but not in the sera of the

TLR4P712H mice, through age 16 weeks (Figure 1E).

Based on these results, and taking into consideration that LPS is

a T cell independent antigen known to elicit primarily IgM and

IgG3 antibodies [24], we focused our investigations on the role of

TLR4 in the generation of IgG3 to LPS.

The synthesis of anti-LPS IgG3 involves MyD88-
dependant TLR4 signaling

To confirm that the difference in anti-LPS IgG was due to the

differences in the TLR4 gene and not to other genetic differences

between the C3H sub-strains, we back-crossed the TLR4 P712H

point mutation from C3H/HeJ mice onto the genome of NOD/LtJ

mice that normally bear functional wild-type TLR4 (Figure S1).

We previously demonstrated that NOD mice develop anti-LPS IgG

by 8 weeks of age in the absence of immunization, just as do C3H

mice homozygous for wild-type TLR4 genes [25]. Since NOD mice

develop a rich network of natural autoantibodies [25], we could test

the impact that loss of TLR4 signaling has upon these reactivities.

Breeding the mutant TLR4 allele into the NOD/LtJ genome

(hereafter NODP712H) specifically impaired their B-cell proliferative

response to LPS, whereas proliferation induced by a mitogenic

antibody to surface IgM (aIgM), or by a CpG oligonucleotide

(known to activate murine B-cells via TLR9 [26]) remained intact

(Figure 2A). The NODP712H and littermates bearing WT TLR4

(hereafter NODWT) all developed anti-LPS IgM antibodies (data

not shown), but only the NODWT mice developed anti-LPS IgG:

IgG3 and to a lower extent, IgG1 (Figure 2B). Regardless of the

functionality of their TLR4 both the NODP712H and the NODWT

mice spontaneously developed IgG antibodies that bound the self-

antigens GAD, Histone IIA, dsDNA and ssDNA (Figure 2C),

among others. Thus although both strains were equally exposed to

LPS, as suggested by the similar levels of LPS-reactive IgM,

functional TLR4 is specifically needed for the spontaneous

development of natural anti-LPS IgG antibodies.

TLR2 governs the innate response to LPS from gram-negative

organisms such as P. gingivalis (pgLPS) and to lipoproteins and

peptidoglycans [3]. Both TLR2- and TLR4-dependent signaling

pathways operate through the adaptor molecule MyD88 [3,14],

although TLR4 signaling can proceed through a MyD88-

independent pathway [14]. To confirm the specificity of the

control by TLR4 of the induction of anti-LPS IgG3 antibodies we

followed the induction of natural IgG3 antibodies to LPS in

TLR2-deficient mice: no difference was seen in their levels when

compared to matched controls (Figure 2D). However, mice

deficient in the intracellular adaptor protein MyD88 failed to

develop anti-LPS IgG3 (Figure 2D), although they did develop

natural anti-LPS IgM (data not shown). Thus, the appearance of

IgG3 LPS-specific antibodies is TLR2 independent and is

controlled by TLR4 via the MyD88 pathway.

TLR4 controls the response to LPS upon immunization
We tested whether functional TLR4 was also needed for the

induction of IgG3 by deliberate immunization to LPS. We

immunized 1-month old TLR4WT or TLR4P712H mice with LPS.

At this age (Figure 1C) and throughout the experiment (Figure 3A),

un-immunized mice of both strains were still negative for natural anti-

LPS IgG antibodies. Groups of mice received a single high (1 mg) or

low (0.01 mg) dose of E. coli LPS, or 1 mg of P. gingivalis LPS (pgLPS),

or PBS, and we assayed the mouse sera for anti-LPS antibodies.

Immunization with 0.01 mg of E. coli LPS sufficed to induce anti-LPS

IgG3 in the TLR4WT mice, and to a lesser extent IgG1 (Figures 3B
and 3D). In contrast, the 0.01 mg dose of LPS did not induce the

TLR4P712H mice to produce anti-LPS IgG antibodies (Figure 3B).

Both the TLR4WT and the TLR4P712H mice produced anti-LPS IgG

(detected at a dilution of 1:100) upon immunization with the 1 mg

dose of LPS (Figure 3C). Nevertheless, serial dilutions of the sera

demonstrated that the anti-LPS IgG3 titers were significantly higher

in the TLR4WT mice (Figure 3D, p,0.05). The antibodies to E. coli

LPS were specific; immunization with pgLPS did not induce

significant levels of anti- E. coli LPS IgG antibodies in either strain,

and mice immunized with E. coli LPS did not manifest cross-reactivity

to pgLPS (data not shown). Moreover, no differences in LPS-specific

IgM levels were detected between the two strains of mice upon

immunization with the 0.01 mg or the 1 mg dose of LPS (data not

shown). These results indicate that TLR4 signaling is critical not only

for natural anti-LPS IgG3 antibodies but also for the induction of

anti-LPS IgG3 antibodies in situations where antigen availability is

the limiting factor. Higher doses of LPS can apparently generate

IgG3 antibodies by other signaling pathways, although the antibody

titer, often a critical factor in protection, is still controlled by the

TLR4-generated signal.

TLR4 and BCR synergize
LPS is composed of a lipid A moiety connected to chains of

polysaccharide. Lipid A is responsible for the toxic effects of LPS and

the B-cell mitogenic effect, however it is virtually non-immunogenic;

antibodies to LPS bind to the polysaccharide chains [27]. The finding

that TLR4 signaling is needed for the induction of IgG3 antibodies to

LPS in intact mice suggested that the innate TLR4, activated by the

lipid A component of LPS, and the adaptive BCR molecules that

recognize polysaccharide LPS epitopes, might interact together in

responding B cells during activation. To test this hypothesis, we

studied the responses of purified B cells to LPS and/or BCR

stimulation in vitro. We simulated BCR antigen-activation using

mitogenic anti-IgM antibodies (aIgM) that cross-link the BCR. In

vitro, aIgM does not induce isotype switching to IgG3 whereas LPS is

a mitogenic signal that does induce switching to IgG3, but at

relatively high concentrations (Figure S2 and ([28]). IgG3 synthesis

is known to require the autocrine secretion of IL-10 by activated B-

cells [29]. Thus we could use aIgM and LPS to detect possible

synergistic effects of the activation of BCR- and TLR4-dependent

signaling pathways, respectively.

BCR/TLR4 Crosstalk
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Figure 1. Natural IgG antibodies to LPS are not detectable in TLR4P712H mice. A. IgG reactivity in pooled blood samples from non-
immunized TLR4WT and TLR4 P712H mice. B. IgM and IgG antibodies to LPS in individual TLR4WT and TLR4 P712H mice (n = 5, *** P,0.001 when
compared to TLR4WT mice). C. Titration of spontaneous IgG antibodies to LPS in TLR4WT and TLR4P712H mice (n = 5 per group, ** P,0.01 and ***
P,0.001 when compared to TLR4WT mice). D. IgG subclass of antibodies to LPS in individual TLR4WT and TLR4 P712H mice (n = 5, ** P,0.01 when
compared to TLR4WT mice). E. Time course of the induction of IgG3 antibodies to LPS (n = 6 per group, ** P,0.01 when compared to TLR4WT mice).
doi:10.1371/journal.pone.0003509.g001
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For in vitro experiments, we purified B cells from the spleens of

TLR4WT or TLR4P712H mice, and then measured B-cell

proliferation, secretion of IL-10 and production of IgG3 in

response to the following agents: LPS alone, aIgM alone, mixtures

of LPS and aIgM, and LPS conjugated to aIgM. The conjugate

simulates the encounter of LPS by a B-cell bearing a BCR specific

for the polysaccharide since the antigenic polysaccharide epitope

and the lipidic TLR4 ligand are covalently bound in the LPS

molecule. The purified population of B cells was free of T cells or

macrophages (data not shown), and thus there was no T-cell help.

Surprisingly, despite no differences in B-cell proliferation to these

mitogenic agents (Figure S3), the LPS-aIgM conjugate triggered

only the TLR4WT B cells to secrete significantly higher levels of IL-

10 and IgG3 compared to the other stimuli (Figures 3E and 3F).

The effect of the conjugate was mediated by TLR4: we did not

detect IL-10 or IgG3 secretion from purified TLR4P712H B-cells

stimulated by the conjugate (Figures 3G and 3H). Since

conjugation of the two mitogens was required to induce the

production of IgG3, it was likely that co-ligation of TLR4 and

BCR was sufficient to activate the IgM to IgG3 switching

mechanism in the absence of T cells.

TLR4 and BCR associate on the B cell membrane
Costimulation of B cells through different co-receptors is known

to modulate B cell activation [30]. The CD19-CD21 complex, for

example, co-clusters with the BCR upon interaction with

complement-tagged antigens resulting in increased BCR signaling

[30], thus we studied the surface distribution of the BCR and

TLR4 molecules by confocal microscopy. Membrane IgM and

TLR4 molecules capped together on the surface of B-cells

following in vitro activation with LPS; these caps also contain

FITC-labeled LPS (Figure S4A). An additional TLR family

member expressed on B cells, RP105, was not recruited to the

LPS-induced caps (data not shown) [31]. Thus, B-cell activation by

LPS triggers the co-localization of TLR4 and BCR molecules.

To confirm these results, we performed immuno-precipitation

and pull-down assays. IgM and TLR4 were co-precipitated from

extracts prepared from wild-type LPS-treated B cells, but not from

TLR4del B-cells (Figure 4A and Figure S4B). No co-precipita-

tion was detected using extracts from LPS-treated TLR4P712H B

cells, suggesting that physical association depends on functional

signaling through TLR4 (data not shown). To confirm these

results, we preincubated cell extracts from LPS activated (or

control) B cells with biotinylated antibodies to TLR4, and then

captured the biotinylated antibody-antigen complexes on strepta-

vidin coated microtiter plates. The plates where washed and the

BCR molecules pulled-down with TLR4 were quantified using an

HRP-conjugated anti-mouse IgM detection antibody. TLR4/IgM

complexes could be pulled down from TLR4WT B cells, but not

from their TLR4del counterparts (Figure 4B). These results

suggest that the TLR4 and IgM molecules are associated on the

Figure 2. Natural Anti-LPS IgG3 is generated via MyD88-dependant TLR4 signaling. A. Purified B cells from NOD P712H and NODWT mice
were activated in vitro with LPS, CpG or aIgM and the proliferative response was assayed. ** P,0.01 when compared to NODWT mice. B. Total IgG and
IgG1 vs. IgG3 antibodies to LPS in NODWT (n = 13) and NOD P712H mice (n = 7). *** P,0.001 when compared to NODWT mice. C. IgG antibodies to GAD,
histone IIA, dsDNA and ssDNA in NODWT (n = 13) and NOD P712H mice (n = 7). D. IgG3 antibodies to LPS in WT, TLR22/2 and MyD882/2 mice (n = 4).
*** P,0.001 when compared to WT or TLR22/2 mice. Results represent mean (6SD) of each group.
doi:10.1371/journal.pone.0003509.g002

BCR/TLR4 Crosstalk

PLoS ONE | www.plosone.org 4 October 2008 | Volume 3 | Issue 10 | e3509



Figure 3. TLR4 and BCR synergize. A–C. TLR4WT and TLR4P712H mice were left untreated (A) or immunized with a single low (B, 0.01 mg/mouse) or
high (C, 1 mg/mouse) dose of LPS in PBS and IgG3 antibodies to LPS were determined by ELISA. ** P,0.01 when compared to TLR4WT mice. D. The
titer of antibodies to LPS was determined in the serum samples taken 12 days after immunization with 1 mg/mouse of LPS. Results represent the
mean (6SD) of each experimental group (n = 5, *** P,0.001 when compared to TLR4WT mice). E and F. Purified B cells from TLR4WT mice were

BCR/TLR4 Crosstalk

PLoS ONE | www.plosone.org 5 October 2008 | Volume 3 | Issue 10 | e3509



surface of LPS-activated B cells, either directly or through yet

uncharacterized interaction partners.

TLR4/BCR association does not require CD14 and MD-2
and is specific to TLR4

To characterize the components involved in the interaction

between TLR4 and BCR, we used the non-lymphoid HEK293

cell line. Transfection of HEK293 cells with vectors coding for the

IgM heavy and light chains (HC and LC, respectively) leads to the

cytoplasmic localization of the newly made IgM (Figure 5A); the

IgM is relocalized to the cell surface upon co-transfection with

vectors coding for CD79a and CD79b (Figure 5B) [32]. Since

HEK293 cells can also express functional TLR4 [33], we studied

whether the interaction between TLR4 and the BCR might result

in changes in the localization of these molecules. Transfection of

HEK293 cells with vectors coding for TLR4 (Figure 5C) alone or

together with IgM HC and LC (Figure 5D) led to the cytoplasmic

expression of the newly synthesized proteins. The cytoplasmic

localization of TLR4 in HEK293 cells has been reported

previously and may be related to the absence of additional

components of the LPS receptor complex in these cells (find ref).

In any case, the cytoplasmic location of TLR4 when expressed

alone or together with IgM HC and LC dramatically shifted when

TLR4 was co-transfected with IgM HC and LC together with

CD79a and CD79b. Co-transfection led to the translocation of

both the newly synthesized IgM and TLR4 to the cell membrane

(Figure 5E). Thus, the interaction evidenced by co-precipitation

experiments shown in Figure 4 appears to be operational in

HEK293 cells, allowing BCR molecules to drag the TLR4 to the

cell surface. Since the transfected cells express TLR4 but not

CD14 or MD-2 [33], these components of the LPS receptor

complex do not appear to be involved in the TLR4 association

with the BCR. Note however, that in HEK293 cells TLR4

physically associated with the BCR in the absence of LPS

stimulation, probably as a result of the over-expression of the

transfected molecules or because of differences in membrane

microdomains of this cell line and primary B cells [34].

Since synergism between the BCR and TLR9 has also been

described [7,8,35,36,37], we studied whether TLR9 could interact

with the BCR in HEK293 cells. In contrast to TLR4, co-

transfection of HA-tagged TLR9 with IgM HC/LC and CD79a/

CD79b, led to the cytoplasmic expression of TLR9 and surface

localization of the IgM (Figures 5F–H). This suggests that TLR9

does not associate physically with the BCR in this system. Since

TLR9 is known to localize to intracellular compartments in all cells

studied [38], overexpression in HEK293 cells with the BCR would

not be expected to shift its expression to the cell surface. The fact

that TLR9 expression remained intracellular validated the use of

HEK293 transfectants in this study of TLR trafficking and

localization. Nevertheless, in B cells the BCR is internalized

following antigen cross-linking and direct or indirect interaction

with intracellular TLR9 may underlie the synergistic signal [38,39].

The transmembrane domain of TLR4 mediates the
interaction with the BCR

To map the domain in the TLR4 molecule responsible for the

TLR4/BCR interaction, we studied the ability of truncated TLR4

proteins to interact with IgM and relocalize to the membrane of

HEK293 cells upon cotransfection with CD79a and CD79b. We

used HA-tagged TLR deletion mutants containing the extracel-

lular and transmembrane domains (named TLR4 EC-TM),

intracellular and transmembrane domains (TLR4 TM-IC) or only

the transmembrane domain (TLR4 TM). TLR4 TM-IC

(Figures 6A and B), TLR4 EC-TM (Figures 6C and D) and

TLR4 TM (Figures 6E and 6F) trafficked to the membrane

when IgM HC and LC were co-expressed with CD79a and

CD79b, suggesting that the TLR4-BCR interaction is mediated by

the TLR4 transmembrane domain. To test this hypothesis, we

made a construct coding for a non-HA tagged version of the 38 aa

TLR4 transmembrane domain. Over-expression of this non-

tagged TLR4 transmembrane domain competed with the HA-

tagged full length TLR4 and inhibited its translocation to the cell

membrane upon cotransfection with CD79a and CD79b

(Figure 7A–D). Therefore, the TLR4/BCR interaction in

HEK293 cells is mediated by the TLR4 transmembrane domain.

To analyze whether the TLR4/BCR interaction was also

mediated by the TLR4 transmembrane domain in the membrane

of LPS-activated B cells, we competed the pull-down of IgM and

TLR4 molecules (Figure 4B) by preincubation with peptides

coding for the TLR4 transmembrane domain (10 mM). Peptide

TM1 corresponds to the 648–659 aa region of TLR4, while

peptide TM2 corresponds to the 629–655 aa region of TLR4. As a

control we used a peptide derived from HSP60 that shows a

Figure 4. TLR4 and BCR interact in the membrane of LPS-
activated B-cells. A. Purified B cells from TLR4WT or TLR4del mice were
incubated for 1 hr with 0, 0.1 or 1 mg/ml of LPS, TLR4 was
immunoprecipitated and bound proteins were separated by PAGE-
SDS and analyzed by western blot using an IgM-specific antibody. D.
Purified B cells from TLR4WT or TLR4del mice were incubated for 1 hr
with 0, 0.1 or 1 mg/ml of LPS, TLR4 was immunoprecipitated with a
specific biotinylated antibody and then captured on streptavidin-
coated microplates and bound IgM was detected with a specific HRP-
conjugated antibody. * P,0.05 and ** P,0.01 vs. control (no LPS).
doi:10.1371/journal.pone.0003509.g004

activated in vitro with LPS, aIgM (aIgM), LPS and aIgM (LPS+aIgM) or the [LPS-aIgM] conjugate (conjugate) for 48 hr, and the supernatants were
assayed for the secretion of IgG3 (E) or IL-10 (F). ** P,0.01 when compared to cells treated with LPS, aIgM (aIgM) or LPS and aIgM (LPS+aIgM).
Purified B cells from TLR4P712H mice were activated in vitro with LPS, aIgM (aIgM), LPS and aIgM (LPS+aIgM) or the [LPS-aIgM] conjugate (conjugate)
for 48 hr, and the supernatants were assayed for the secretion of IgG3 (G) or IL-10 (H).
doi:10.1371/journal.pone.0003509.g003
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similar charge distribution (VLGGGCALLRCPALDSLT-

PANED). Preincubation with the TM1 or TM2 peptides, but

not with a control peptide, led to a dose-dependent decrease in the

IgM pulled down with biotinylated antibodies to TLR4 from LPS-

activated cell extracts (Figure 7E). Thus, the TLR4 TM domain

mediates the TLR4/BCR interaction on B-cells following

exposure to LPS.

Discussion

In this work we report that TLR4 synergizes with the BCR to

control the induction of IgG3 antibodies to LPS. The control

exerted by TLR4 in the induction of anti-LPS IgG is the result of

synergism between TLR4 and BCR signaling pathways triggered

with limiting amounts of LPS in the absence of T-cell help. This

synergistic interaction manifested three characteristics: A) It was

constrained by the specificity of the TLR involved; inactivating

mutations in TLR4 did not decrease the induction of antibodies to

a TLR2 ligand. B) It was shown to be MyD88-dependent;

synergism was not observed in MyD88-deficient mice. C) It was

mediated by interactions that depended on the transmembrane

domain of TLR4 and the BCR. Taken together, our results show

that synergism between TLR4 and the BCR lowers the threshold

for IgG3 production by B cells expressing an LPS-reactive BCR.

Note that the control exerted by TLR4 in the induction of anti-

LPS IgG3 might operate at the level of the class-switch

recombination (CSR) to IgG3 and/or the somatic hypermutation

(SHM) of LPS-specific antibodies. Both CSR and SHM are

mediated by the activation-induced cytidine deaminase (AID)

[40], and AID expression levels have been shown to be regulated

by TLR signaling [41,42]. Although our data using in vitro

activated purified B cells shows a direct effect of TLR4 on CSR

(Figures 3E–H), the decreased levels of LPS-specific IgG3

observed in mice carrying a mutant TLR4 might reflect a

decrease in both CSR and SHM.

Our results support a role for TLRs in controlling the antibody

response to TLR-ligands under conditions where the antigen is

present in limiting amounts. Accordingly, natural IgG3 (and to a

lesser extent natural IgG1) antibodies to LPS could only be detected

in animals harboring a functional TLR4/MyD88 pathway. TLR-

dependency, however, was restricted to control of production of IgG3

antigen specific antibodies, since we detected no association between

anti-LPS IgM levels and the presence of a functional TLR4/MyD88

pathway. It has been recently reported that MyD88-dependent

signaling in B cells is required for the generation of IgM and IgG1

antibodies to the TLR5 ligand flagellin, while MyD88 signaling in

non-B cells might be needed for the generation of specific IgG3

antibodies [12]. Flagellin, however, is a bacterial protein that in

addition to its role as a TLR5 ligand [43] also provides T-cell epitopes

and consequently T-cell help for the induction of an anti-flagellin B-

cell response [12]; moreover, to study the induction of the anti-

flagellin antibody response the authors complexed the immunogen to

alum [12]. Nevertheless, the results of Pasare and Medzhitov [12] and

our own work suggest that TLR signaling in B cells controls aspects of

the B cell response to TLR ligands.

Synergistic signaling has also been shown for the BCR and

TLR9, and the dual engagement of these receptors is implicated in

the triggering of IgM to IgG switching events and activation of

Figure 5. TLR4 and BCR are physically associated. HEK293 cells were transfected with BCR and HA-tagged TLR constructs, fixed, mounted, and
examined by confocal microscopy. TLR staining (anti-HA followed by Cy3-conjugated anti- mouse IgG) was pseudo-colored green and IgM staining
(with Cy5-conjugated anti-human IgM) was pseudo-colored red. Panels showing TLR/BCR co-transfection experiments (D–E and G–H) represent an
overlay of the green and red channels. A and B. IgM HC and LC constructs (BCR, shown in A) are fully cytoplasmic (A) but they are shifted to the
membrane upon transfection with CD79a and CD79b coding constructs (B, arrow). C–H. HA-tagged TLR4 (C–E) or TLR9 (F–H) were transfected alone
(C and F) or co-transfected with the IgM HC and LC constructs (D and G) or HC/LC+CD79a/CD79b (E and H). HA-tagged TLR4 (C–E), but not HA-tagged
TLR9 (F–H), is dragged to the membrane upon cotransfection with CD79a and CD79b coding constructs.
doi:10.1371/journal.pone.0003509.g005
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autoreactive B cells [7,8,9]. Co-signaling seems to depend on

physical interaction, either direct or indirect, in the case of TLR4/

BCR, but may be independent of physical association in the case

of TLR9. Endogenous TLR9 is sequestered in intracellular

compartments in both resting and activated B-cells [44],

supporting the notion that synergism is generated downstream of

receptor-ligand binding events. Recently, however, Chaturvedi et

al demonstrated that the subcellular location of TLR9 is shifted to

compartments containing the internalized BCR in B cells

following cross-linking of the BCR on the surface by antigen

[39]. Thus, TLR9 and BCR may associate in subcellular

compartments although the fact that the TLR4/BCR association

mapped to the TLR4 TM domain in our study, suggests that this

interaction with the BCR, whether directly or through additional

partners, may be unique to TLR4. The TLR4 TM domain is

highly conserved across species (80% homology between mouse

and human), but there is little sequence similarity between TM

domains of different TLR family members. The structural motifs

that mediate the BCR/TLR4 interaction are therefore likely to be

absent from other TLR TM domains. Thus, the synergism of the

BCR with TLR4 seems to operate following rules different from

those governing the crosstalk with other TLRs.

Conversely, intermolecular associations seem to play a central

role in the regulation of TLR4-dependent signal transduction and

the response to LPS. It has been recently been reported that TLR4

interacts in DC with RP105, and this interaction results in the

modulation of the response to LPS [45]. Although it has still to be

proven that this mechanism is operative in B cells, it suggests that

the partition of TLR4 between different interacting partners might

play a role in modulating the B-cell response to LPS.

The mitogenic properties of LPS and its T-cell independence

were described long before TLRs were discovered [46]. Our

results provide a new molecular understanding for how IgG

antibodies to LPS arise. The interaction of TLR4 with an LPS-

reactive BCR results in a synergistic signal that induces IgG3 and

IL-10 production, in the absence of T-cell help. Although the

synergistic signal may be achieved by surface co-ligation of the

BCR and TLR4 in the absence of an association of the receptors,

the intimate relationship we describe enhances the sensitivity to

the signal, allowing IgG3 antibodies to arise in a setting of very low

circulating levels of LPS. Sub-mitogenic levels of LPS might also

impact upon other functions of B-cells through BCR-TLR4

synergy, such as antigen uptake and presentation to T-cells and

antibody somatic mutation [12,47].

The control of the induction of specific IgG3 antibodies

triggered by limiting amounts of LPS might be clinically

important. IgG3 antibodies contribute to the control of viral and

bacterial infections through opsonization, complement fixation,

and FcR mediated activation of neutrophils [48]. IgG3 anti-LPS

antibodies have also been described to sequester LPS in the

Figure 6. TLR4/BCR associate through the TLR4 transmem-
brane region. HEK293 cells were co-transfected with truncated or full
length TLR4 constructs with BCR (left panel) or BCR+CD79a/CD79b (right
panel). Cells were prepared as in Figure 5 and all panels represent the
overlay of green (anti-HA staining) and red (anti-IgM staining) channels.
The HA-tagged TLR4 TM-IC construct (A–B), TLR4 TM-EC construct (C–
D), as well as the TLR4 TM region alone (E–F) each translocated to the
cell surface with expression of surface IgM.
doi:10.1371/journal.pone.0003509.g006

Figure 7. The TLR4 transmembrane region competitively
inhibits the TLR4/BCR association. A–D. HEK293 cells were co-
transfected with HA-tagged full length TLR4, along with the BCR (A and
C) or the BCR and CD79a/CD79b constructs (B and D). In addition, cells
in C and D were also cotransfected with a construct coding for the
unlabeled TLR4 TM region. Cells were prepared as in Figure 5 and all
panels represent the overlay of green (anti-HA staining) and red (anti-
IgM staining) channels. The non-tagged TLR4 TM construct competed
with the HA-TLR4 TM-IC, inhibiting its translocation to the cell
membrane (compare B to D). E. Purified B cells from TLR4WT mice were
pre-incubated for 2 hr with peptides TM1 or TM2 corresponding to the
transmembrane region of TLR4 or with a control peptide, activated with
1 mg/ml of LPS for 1 hr, and TLR4 was immunoprecipitated with a
specific biotinylated antibody and captured on streptavidin-coated
microplates. Bound IgM was detected with a specific HRP-conjugated
antibody as in figure 5C. ** P,0.01 vs. control-treated group.
doi:10.1371/journal.pone.0003509.g007
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circulation thereby preventing or reducing its toxicity [49].

Although other mechanisms might also be involved, a lack of

TLR4-BCR synergism may contribute to the increased suscepti-

bility to E. coli or S. typhimurium infection in TLR4 deficient mice

[50,51], and to the increased risk of gram-negative infections in

humans carrying inactivating TLR4 polymorphisms [52]. Thus,

the synergistic signaling between the BCR and innate receptors

may be a general property of B-cell physiology important for the

generation of microbe-specific antibodies in the early stages of an

immune response when antigen specific T cell help is not yet

available. These synergistic interactions are potential targets for

the design of new vaccines aimed at exploiting the innate-adaptive

cross-talk to provide fast and effective protective immunity against

pathogens.

Materials and Methods

Mice
NOD/LtJ, C3HeB/FeJ and C3H/HeJ mice (Jackson Labora-

tories, Maine, USA) were bred and maintained in the spf animal

facility of the Weizmann Institute of Science. C57BL/10 (herein

referred to as TLR4++) and C57BL/10ScNJ-Tlr4lps-del (herein

referred to as TLR4del) were from The Jackson Laboratory and

were housed in the spf of Harvard Medical School. All

experimental protocols were approved by the Institutional Animal

Care and Use Committees of the respective institutions.

Sera
Blood was taken from the lateral tail vein and sera was stored at

220uC.

ELISA assay
Antibodies to gel purified LPS of E. coli 055:B5 (Sigma, MO,

USA, product #L2637) were measured by ELISA. Plates

(Maxisorb Nunc, Denmark) coated overnight with 50 ng/well of

LPS were blocked with 1% BSA for 1 hr at 37uC. Serum samples

diluted 1/100, unless otherwise stated, were added to the plates

and incubated for 2 hr at 37uC. For the measurement of IgG

reactivity, serum samples were pre-treated with 0.05 M b-

mercaptoethanol to rule out masking by IgM [22]. Bound

antibodies were detected using anti-mouse IgG or IgM (Jackson

ImmunoResearch Labs. Inc.,West Grove, Pennsylvania, USA) or

isotype-specific secondary antibodies (Southern Biotechnology

Associates Inc, Birmingham, AL, USA) conjugated to alkaline

phosphatase, and Sigma’s substrate for alkaline phosphatase.

C3H/HeJ X NOD/Ltj cross
F1 progeny of NOD female mice crossed with C3H/HeJ male

mice were intercrossed and F2 tail vein DNA samples were

screened to identify mice homozygous for the CCTRCAT

mutation found in C3H/HeJ mice. A 400 bp DNA fragment

surrounding the ScrF1 restriction site (200 bp on each side)

located 25 bp downstream of the point mutation was amplified

using the upstream primer ACCTGATACTTATTGCTGGCT

and the reverse primer GCTAAGAAGGCGATACAATTC.

PCR products were cleaned, digested with ScrF1 (New England

Biolabs, MA, USA), and separated on 3% agarose gels (Cambrex

Bio Science Rockland Inc,, Rockland, ME, USA). The

CCTRCAT mutation causes a loss of a ScrF1 endonuclease site

and therefore DNA samples homozygous for the mutation are

digested at only one site and yield two products of equal length

(200 bp). Homozygous wt PCR products are cut at two sites and

yield two visible bands of equal intensity, one 200 bp in length and

the other 175 bp. It follows that 75% of the products from DNA of

heterozygote samples is 200 bp in length and 25% is 175 bp.

Homozygous mutant mice were backcrossed for three generations

onto the NOD/Ltj background.

Conjugation of LPS to anti-IgM
LPS was conjugated to Goat anti-mouse IgM (Jackson

ImmunoResearch, West Grove, Pennsylvania, USA) using the

heterobifunctional cross-linking reagent EMCH (Pierce, Rockford,

IL, USA). The anti-IgM was thiolated using 2-Iminotiholane HCl

at a 5-fold molar excess of thiolane to IgG. The reaction was

purified by gel filtration with a Sephadex G-25 column (Pierce).

Thiolated IgG was reacted with a 10-fold molar excess of EMCH

for 2 h at RT. In parallel, LPS was oxidized with 10 mM sodium

periodate (Sigma, Rehovot, Israel) for 30 min at RT. Oxidized

LPS was added to the IgG-EMCH reaction at a 10-fold molar

excess of hydrazide to LPS and reacted for 2 h at RT. The

product was purified by size exclusion chromatography and LPS

content of the conjugate was determined using the kinetic-

turbidimetric LAL test method compared to a standard control

(Biological Industries, Kibbutz Beit Haemek, Israel).

B cell purification and activation
Splenic B cells were purified from 2 month old mice using the

MACS B Cell Isolation Kit (Miltenyi Biotec GmbH, Bergisch

Gladbach, Germany) according to the manufacturer’s directions.

The purity of the purified B cell fraction was .97% as determined

by FACS analysis (data not shown).

Purified B cells were cultured in quadriplicates (26105/well) in

round-bottom plates (Nunclon, Nunc, Denmark) for 72 hr at 37uC
in a humidified atmosphere with 7.5% CO2, in the presence of

different concentrations of aIgM, LPS or the [aIgM-LPS]

conjugate. Stimulation medium was composed of Dulbecco’s

modified Eagle’s medium (Gibco, Paisley, UK) supplemented with

2-mercaptoethanol (5 1025 M, Sigma, Rehovot, Israel), L-

glutamine (2 mM, Biological Industries, Kibbutz Beit Haemek,

Israel), sodium pyruvate (1 mM, Sigma, Rehovot, Israel), penicilin

and streptomycin (100 u/ml and 100 mg/ml, respectively; Biolog-

ical Industries, Kibbutz Beit Haemek, Israel), non-essential amino

acids (1% v/v, Bio Lab, Jerusalem, Israel), and 5% fetal calf serum

(Grand Island Biological Company, Grand Island, NY, USA).

[3H]thymidine (0.5 mCi of 5 mCi/mmol; Amersham, England)

was added to the cultures for the last 18 hr of incubation.

Thereafter, supernatants were collected, cells were harvested and

the cpm were counted. The results are expressed as the stimulation

index, the mean cpm of cultures incubated with stimulant divided

by the mean cpm of cultures incubated in the absence of stimulant.

IgG3 and IL-10 secretion
B-cell culture supernatants were analysed for IgG3 and IL-10

content by ELISA using an appropriate pair of capture and

detecting monoclonal antibodies (IL-10: Pharmingen, San Diego,

USA; IgG3: Southern Biotechnology Associates Inc, Birmingham,

AL, USA) according to the manufacturer’s instructions. The

results are expressed as pg/ml, based on a calibration curve

constructed using known amounts of recombinant IgG3 (Southern

Biotechnology Associates Inc) or IL-10 (Pharmingen).

Immunoprecipitation and western blotting
Purified B cells (26106) were lysed for 15 min on ice in 0.1 ml

lysis buffer containing 1% digitonin (Sigma, Rehovot, Israel).

Insoluble material was removed by centrifugation at 10.000 g for

10 min at 4 C. After pre-clearing of the lysate with Protein G-plus

Agarose beads (Santa Cruz Biotechnology Inc., Santa Cruz,
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California, USA) the IgM molecules were precipitated using

biotinylated anti-IgM antibodies (Jackson ImmunoResearch Inc.)

or biotinylated anti-TLR4 (eBioscience, San Diego California,

USA) followed by ON incubation with streptavidin agarose beads

(Sigma). The beads were washed with lysis buffer, boiled, and the

protein supernatant run in a 10–15% SDS-PAGE and analyzed by

western blot using HRP conjugated antibody to IgM (Jackson

ImmunoResearch Labs. Inc.) or TLR4 (eBioscience, USA) and the

Western Blotting Luminol Reagent (Santa Cruz Biotechnology

Inc.). Alternatively, lysates were precipitated with biotinylated

anti-TLR4 and incubated on streptavidin coated plates ON. HRP-

conjugated anti-IgM was used to reveal bound complexes using

and OD was recorded at OD450. We used the following unrelated

peptide as a control: VLGGGCALLRCPALDSLTPANED.

Confocal microscopy
Purified B-cells were incubated overnight with LPS (20 mg/ml)

or left untreated, fixed with 4% para-formaldehyde for 15 min on

ice and washed with PBS. The cells were divided into aliquots

containing 50,000 cells per 100 ml and incubated with biotinylated

Fab anti-IgM (Jackson ImmunoResearch Inc.), antibodies to

TLR4 or RP105 (Santa Cruz Biotechnology Inc.), or FITC-

conjugated E. coli LPS (Sigma). The cells were washed, incubated

with streptavidin conjugated to Cy3 (Jackson ImmunoResearch

Inc.) or Cy5-conjugated anti-rat antibodies (Jackson ImmunoR-

esearch Inc.) and adhered onto Poly-lysine microscope slides

(BDH Laboratory Supplies, Poole,UK). Immunofluorescence was

viewed and analyzed using a Bio-Rad confocal microscope (Bio-

Rad, Richmond, CA).

Plasmids and cloning
pDUO-hMD2/CD14 and pUNO-hTLR4HA (encoding HA-

tagged TLR4) were purchased from Invivogen (San Diego, CA).

pDISPLAY encoding HA-tagged TLR9 was a gift from Dr. David

Segal (National Cancer Institute, National Institutes of Health,

Bethesda, MD). IgM mu and kappa chains, CD79a and CD79b

were cloned using RT-PCR and inserted in-frame into pORF

(Invivogen). RNA for mu and kappa chains was extracted from

SP2/0 cells expressing anti-TNP IgM [53], a gift from Dr. Mark

Shulman (University of Toronto, Toronto, Canada). RNA for

CD79a and CD79b was extracted from the Burkitt lymphoma

Raji cell line, a gift from Dr. Eithan Galun (Hadassah Medical

Center, Jerusalem, Israel).

Transfection and cell staining
HEK293 cells were a gift from Dr. Eitan Galun (Hadassah

Medical Center). For stable expression of HA-TLR4, cells were

transfected in 6-well plates using TransIT LT1 transfection

reagent according to the manufacturer’s protocol (Mirus, Madi-

son, WI) and then selected with Blasticidin S (10 mg/ml). For

transient transfection cells were plated on coverslips overnight

followed the next day by transient transfection of the desired

plasmids using TransIT LT1 transfection reagent. The next day

cells were fixed using 4% PFA in PBS, washed, and incubated with

Cy5-conjugated anti-human IgM (Jackson immunoresearch labo-

ratories Inc.), and monoclonal anti-HA (Covance Research

Products, Berkeley, CA, USA), followed by secondary antibody

Cy3-conjugated anti- mouse IgG (Jackson immunoresearch

laboratories Inc.). Coverslips were mounted in 70% glycerol and

visualized and analyzed using an Olympus FluoView 300 laser

scanning confocal microscope.

Statistical significance
The Prism 4.0a program (GraphPad Software, La Jolla, CA,

USA) was used for statistical analysis. Student’s t-test, and one-way

and two-way ANOVA tests were carried out to assay significant

differences between the different experimental groups.
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