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a b s t r a c t 

Chloride deposition-rate measurements at points within Aus- 

tralia are upscaled to the entire continent on a regular 0.05 °
grid. The upscaling uses a double-exponential correlation 

between deposition rate and distance to the coast, where 

the parameters in the double-exponential are spatially vary- 

ing. These parameters are estimated using least-squares with 

Tikhonov regularisation to ensure minimal spatial variabil- 

ity. A calibration-constrained, null-space Monte-Carlo anal- 

ysis is used to quantify uncertainty in the prediction. The 

resulting dataset consists of the best-fit chloride deposition 

rates across Australia, as well as estimates of uncertainty. 

The dataset can be used for various purposes including: es- 

timating groundwater recharge through the use of the chlo- 

ride mass-balance method; catchment salt balance estimates; 

regional investigations of groundwater hydrochemistry; and, 

corrosion prediction. 
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pecifications Table 

Subject Environmental Science: Hydrology and Water quality 

Specific subject area Chloride deposition rate in Australia 

Type of data Tables, Rasters, computer scripts 

How the data were acquired Raw data acquired from a literature review of published and unpublished 

sources listed in Table 1. 

The upscaling to gridded chloride deposition-rates across Australia was 

performed using the PEST software along with the python pykrige package 

and custom python scripts included with the data. 

Data format Analysed 

Description of data collection Source chloride deposition data from the literature review were weighted 

with 1.0 if at least one year of continuous collection of rainfall with 

well-documented methods; 0.8 is reliable but not published; 0.6 less than 

full year of data collection but all rainfall collected; 0.4 not fully 

documented; 0.2 less than full year, not all rainfall collected; 0 otherwise. 

Output rasters are summaries of 10 0 0 replicates. 

Data source location See Table 1 

Data accessibility Repository name: Australian chloride deposition rate (1937-2021) 

Data identification number: v1 

Direct URL to data: https://doi.org/10.25919/zkr0-fw05 

alue of the Data 

• Chloride deposition rates have been measured at 367 isolated locations across the continent

but this is not of sufficient density for many purposes. This dataset upscales these data to a

regular gridded deposition rate with its associated uncertainty that can be interrogated for

all points in Australia, making it useful for studies outside the 367 isolated locations. 

• Hydrologists, hydrogeologists and hydrogeochemists will find this dataset useful for defining

a baseline chloride input to the landscape at point, catchment or continental scale. 

• These data can be used to estimate groundwater recharge through the chloride mass-balance

method, are useful in catchment salt balance studies, investigations of groundwater hydro-

chemical evolution and can be used for predicting corrosion. 

. Data Description 

.1. Raw (primary data) 

observations_update_v04.csv. Plaintext CSV file with columns labelled Table 1 : 

SITE_NO (our unique identifier for this raw data) 

LONGITUDE (degrees, GDA94) 

LATITUDE (degrees, GDA94) 

CHLORIDE_OBS (chloride deposition-rate observation, in kg/hectare/year) 

WEIGHT (the weight prescribed to the observation: a measure of reliability) 

DIST_TO_COAST (distance to coast of observation, in metres) 

REFERENCE (the source from which the data was extracted) 

observations_update_v04.png: Graphical representation of the measured chloride deposition

ates found in observations_update_v04.csv 

https://doi.org/10.25919/zkr0-fw05
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Table 1 

Data sources. 

Data sources 

G.P. Ayers, The Chemical Composition of Precipitation: A Southern Hemisphere Prospective, in: Atmospheric 

Chemistry. Edited by E.D. Goldberg. Berlin: Springer, 1982. 

E. B. Bekele, R. B. Salama, D. P. Commander, C. J. Otto, W. P. Hick, G. D. Watson, D. W. Pollock, P. A. Lambert, 

Estimation of Groundwater Recharge to the Parmelia Aquifer in the Northern Perth Basin 20 01-20 02. CSIRO 

Land and Water Technical Report 10/03, 2003. 

E. Bettenay, A. V. Blackmore, F. J. Hingston. Aspects of the Hydrologic Cycle and Related Salinity in the Belka 

Valley, Western Australia, Australian Journal of Soil Research 2, no. 2 (1964): 187-210. 

https://doi.org/10.1071/SR9640187 . 

A. J. W. Biggs, Rainfall Salt Accessions in the Queensland Murray-Darling Basin, Soil Research 44, no. 6 (2006): 

637-45. https://doi.org/10.1071/SR06006 . 

G. Blackburn, S. McLeod, Salinity of Atmospheric Precipitation in the Murray-Darling Drainage Division, 

Australia, Australian Journal of Soil Research 21, no. 4 (1983): 411-34. https://ejournal.csiro.au/cgi-bin/sciserv. 

pl?collection=journals&journal=0 0 049573&issue=v21i0 0 04&article=411 _ soapitmdda . 

M. E. Bormann, "Temporal and Spatial Trends in Rainwater Chemistry across Central and Western Victoria. Bsc 

Honours Thesis, 2004. 

R. S. Crosbie, The Regional Scaling of Groundwater Recharge, PhD Thesis, University of Newcastle, 2003. 

R. S. Crosbie, D. Morrow, R. Cresswell, F. Leaney, S. Lamontagne, M. Lefournour, New Insights to the Chemical 

and Isotopic Composition of Rainfall across Australia. CSIRO Water for a Healthy Country Flagship, Australia, 

2012. 

I. Douglas, The Effects of Precipitation Chemistry and Catchment Area Lithology on the Quality of River Water 

in Selected Catchments in Eastern Australia, Earth Science Journal 2, no. 2 (1968): 128-44. 

P. Farrington, G. A. Bartel, Accession of Chloride from Rainfall on the Gnangara Groundwater Mound, Western 

Australia, CSIRO Technical Memorandum 88/1, 1988. 

P. Farrington, R. B. Salama, G. A. Bartle, G. D. Watson, Accession of Major Ions in Rainfall in the South Western 

Region of Western Australia, CSIRO Divisional Report 93/1, 1993. 

J. N. Galloway, G. E. Likens, W. C. Keene, J. M. Miller, The Composition of Precipitation in Remote Areas of the 

World, Journal of Geophysical Research 87, no. C11 (1982): 8771–86. 

H. Guan, A. J. Love, C. T. Simmons, O. Makhnin, A. S. Kayaalp, Factors Influencing Chloride Deposition in a 

Coastal Hilly Area and Application to Chloride Deposition Mapping, Hydrol. Earth Syst. Sci. 14, no. 5 (2010): 

801-13. http://www.hydrol- earth- syst- sci.net/14/801/2010/ 

F. J. Hingston, V. Gailitis, The Geographic Variation of Salt Precipitated over Western Australia, Australian 

Journal of Soil Research 14, no. 3 (1976): 319-35. 

J. T. Hutton, Rainwater Analysis: July 1957 to March 1961, CSIRO Divisional Report 7/62, 1962. 

J. T. Hutton, Rainwater Analysis, CSIRO Divisional Report 8/57, 1957. 

J. T. Hutton, T. I. Leslie, Accession of Non-Nitrogenous Ions Dissolved in Rainwater to Soils in Victoria, Article, 

Australian Journal of Agricultural Research 9, no. 4 (1958): 492-507. 

M. Keywood, Origins and Sources of Atmospheric Precipitation from Australia: Chlorine-36 and Major-Element 

Chemistry, Australian National University, 1995. 

P. J. Langkamp, M. J. Dalling, Nutrient Cycling in a Stand of Acacia Holosericea, A. Cunn. Ex G. Don. Iii. Calcium, 

Magnesium, Sodium and Potassium, J Australian Journal of Botany 31, no. 2 (1983): 141-49. 

https://doi.org/10.1071/BT9830141 . 

G. E. Likens, W. C. Keene, J. M. Miller, J. M. Galloway, Chemistry of Precipitation from a Remote, Terrestrial Site 

in Australia, Journal of Geophysical Research: Atmospheres 92, no. D11 (1987): 13299-314. 

( continued on next page ) 

https://doi.org/10.1071/SR9640187
https://doi.org/10.1071/SR06006
https://ejournal.csiro.au/cgi-bin/sciserv.pl?collection=journals&journal=00049573&issue=v21i0004&article=411_soapitmdda
http://www.hydrol-earth-syst-sci.net/14/801/2010/
https://doi.org/10.1071/BT9830141
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Table 1 ( continued ) 

J. L. Martinez, M. Raiber, M. E. Cox, Assessment of Groundwater–Surface Water Interaction Using Long-Term 

Hydrochemical Data and Isotope Hydrology: Headwaters of the Condamine River, Southeast Queensland, 

Australia, Science of The Total Environment 536 (2015): 499-516. https://doi.org/10.1016/j.scitotenv.2015.07.031 . 

B. N. Noller, N. A. Currey, G. P. Ayers, R. W. Gillett, Chemical Composition and Acidity of Rainfall in the 

Alligator Rivers Region, Northern Territory, Australia, Science of The Total Environment 91 (1990): 23-48. 

M. E. Probert, The Composition of Rainwater at Two Sites near Townsville, Qld, Australian Journal of Soil 

Research 14, no. 3 (1976): 397-402. 

M. Raiber, J. A. Webb, D. A. Bennetts, Strontium Isotopes as Tracers to Delineate Aquifer Interactions and the 

Influence of Rainfall in the Basalt Plains of Southeastern Australia, Journal of Hydrology 367, no. 3 (2009): 

188-99, https://doi.org/10.1016/j.jhydrol.2008.12.020 . 

T.R. Ransley, Personal communication, Unpublished data. 

M. E. Sweeney, C. L. Moore, K. G. McQueen, T. Spandler, Geomorphic Controls on Deposition of Salt in the 

Greater Tamar Catchment, Northeast Tasmania, Australian Journal of Earth Sciences (2016): 1-12. 

https://doi.org/10.1080/08120099.2016.1212400 . 

L. J. H. Teakle, The Salt (Sodium Chloride) Content of Rainwater, J. Agric. W. Aust. 14 (1937): 115-23. 

J. Turner, M. J. Lambert, J. Knott, Nutrient Inputs from Rainfall in New South Wales State Forests, Forest 

Research and Development Division, State Forests of New South Wales, 1996. 

R. Wetselaar, J. T. Hutton, The Ionic Composition of Rainwater at Katherine, NT. and Its Part in the Cycling of 

Plant Nutrients, Australian Journal of Agricultural Research 14, no. 3 (1963): 319-29. 

https://doi.org/10.1071/AR9630319 . 

D. Wilson, P. G. Cook, L. B. Hutley, S. Tickell, P. Jolly, Effect of Land Use on Estimates of Evapotransporation and 

Recharge in the Daly River Catchment, Department of Natural Resources, Environment and the Arts, Technical 

Report No. 17/2006D, 2006. 
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.2. Output data (secondary data) 

mean.tif: GeoTiff file in the GDA94 coordinate system describing the mean chloride deposi-

ion across Australia, with units kg/hectare/year. This is defined to be 10 ̂ (mean(log10(chloride

eposition))), where the mean is taken over 10 0 0 uncertainty-run replicates. This formula is

sed because the uncertainty analysis is formulated in log10 units. 

sd.tif: GeoTiff file in the GDA94 coordinate system describing the standard deviation of chlo-

ide deposition from 10 0 0 replicates of chloride deposition-rate across Australia. 

sdlog10.tif: GeoTiff file in the GDA94 coordinate system describing the standard deviation of

og10 of chloride deposition from 10 0 0 replicates of chloride deposition-rate across Australia. 

skew.tif: GeoTiff file in the GDA94 coordinate system describing the skewness of chloride

eposition from 10 0 0 replicates of chloride deposition-rate across Australia. 

skewlog10.tif: GeoTiff file in the GDA94 coordinate system describing the skewness of log10

f chloride deposition from 10 0 0 replicates of chloride deposition-rate across Australia. 

5th_percentile.tif: GeoTiff file in the GDA94 coordinate system describing the 5th percentile

f chloride deposition across Australia. This is defined to be 10 ̂ (5th percentile of log10(chloride

eposition)) 

95th_percentile.tif: GeoTiff file in the GDA94 coordinate system describing the 95th percentile

f chloride deposition across Australia. This is defined to be 10 ̂ (95th percentile of log10(chloride

eposition)) 

uncertainty_results.png: Graphical representation of: mean chloride deposition, standard de-

iation of chloride deposition, skewness of chloride deposition, skewness of log10 deposition,

th percentile of deposition and 95th percentile of deposition. The GeoTiff data is machine read-

ble, while this file is more easily interpretable by humans. 

https://doi.org/10.1016/j.scitotenv.2015.07.031
https://doi.org/10.1016/j.jhydrol.2008.12.020
https://doi.org/10.1080/08120099.2016.1212400
https://doi.org/10.1071/AR9630319
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1.3. Computer scripts (see methods section for detailed explanations) 

pilot_to_obs.py: python3 script that uses kriging to interpolate the values of A1, A2, l1 and

l2 (see Methods section) in the pilot-point file to observation points. PEST treats this as “the

model’’ and runs it many times during iterating to the best solution for A1, A2, l1 and l2. PEST

also uses it during the uncertainty analysis. 

randpar_1.py: python3 script that generates the PEST “par’’ files used in the PEST uncertainty

analysis. 

generate_pest_files.py: python3 script that uses the observations and the pilot points to write

PEST tpl, pst, ins files as well as the windows batch file to run the “model’’ pilot_to_obs.py. 

run_uncertainty.bat: windows batch file to run the null-space Monte-Carlo uncertainty anal-

ysis.pilot_to_obs.py: python3 script that perform 

2. Experimental Design, Materials and Methods 

2.1. Background 

Chloride deposition rates have been collated from measurements at 367 sites across Australia.

These data are compiled into observations_update_v04.csv and shown graphically in observa-

tions_update_v04.png. The data sources are listed in Table 1 . These measurements are of bulk

rainfall and contain both wet and dry deposition of chloride. 

Davies and Crosbie [1] describe a method for extrapolating such chloride deposition data

to the entire continent. Here, their method is explained in more detail than the original paper

and used to estimate chloride deposition across the continent. Davies and Crosbie [1] used 291

observations in their calibration of the continental scale model and an additional 20 observations

as validation sites. Here, a comprehensive set of source data consisting of 367 observations is

used, this raw dataset has been updated using data collated 10 years after Davies and Crosbie

[1] collated their data in 2010. 

2.2. Weighting the observations 

Each observation is provided with a weight of between 0 and 1, w p , depending on its relative

quality of field measurements, which is also listed in the raw data observations_update_v04.csv.

It is generally assumed [2–4] that a complete year of data is the minimum time period required

to obtain a representative estimate of the chloride deposition. The weight for each observation

was chosen using the following method: 

• 1.0: most reliable data available, at least one year of continuous collection of rainfall with

well documented methods 

• 0.8: reliable source of data but not published 

• 0.6: less than full year, but collected all rainfall (typically tropics) 

• 0.4: reliable source of data but not fully documented 

• 0.2: less than full year, but did not collect all rainfall 

• 0: not used in calibration, data of very poor quality 

The result is shown in Fig. 1 . 

2.3. Relationship with distance to coast 

Davies and Crosbie [1] explored correlations between the observed deposition rates and dis-

tance to the coast, elevation, terrain slope, difference in angle between the aspect of the slope
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Fig. 1. Location and weight of each chloride deposition observation. 
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nd direction to the coast, mean annual rainfall and mean annual windspeed. The only strong

orrelation was between deposition and distance to the coast. Based on work by Keywood [5] ,

hey postulated a relationship of the form: 

D = A 1 e 
− d 

λ1 + A 2 e 
− d 

λ2 (1)

Here: 

• D is the deposition rate, with units kg.ha −1 .yr −1 ; 

• d is the distance to the coast, with units km; 

• A 1 is a coefficient, with units kg.ha −1 .yr −1 ; 

• A 2 is a coefficient, with units kg.ha −1 .yr −1 ; 

• λ1 is a decay constant, with units km; 

• λ2 is a decay constant, with units km. 

The physical motivation for this form is that there are two sources of deposition as described

y Keywood [5] : 

• the “fast” component, A 1 e 
− d 

λ1 , which represents the wet and dry deposition in aerosols

sourced from the ocean; 

• the “slow” component, A 2 e 
− d 

λ2 , which represents the deposition of gaseous chloride that is

formed by volatilisation of chloride in sea salt at pH less than 3. 

This correlation is also clear in the 367 observations considered here, as shown in Fig. 2 ,

here a least-squares fit results in: 

• A 1 = 84 kg.ha −1 .yr −1 

• A 2 = 17 kg.ha −1 .yr −1 
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Fig. 2. Correlation between the observed chloride deposition and the distance to the coast. The blue and orange lines 

are fits to the near-coast and central-region data, respectively. The green line is the resulting fit from Eq. (1) . The shaded 

region and σ is described below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• λ1 = 25 km 

• λ2 = 279 km 

The least-squares fits are performed to provide a suitable initialisation for the PEST algo-

rithms described below, they are not used in any other analyses. 

2.4. Scatter of repeat measurements 

The Monte-Carlo uncertainty analysis described below requires uncertainty to be quantified

in one form or another (more specifically, the prior or posterior uncertainty distribution can

be quantified). One way of estimating uncertainty is by exploring data from observation sites

where repeated measurements have been performed. If, for example, the observations remain

unchanged with time, then it is reasonable to infer that the observations are highly reliable,

which means the prediction will be more reliable than the case where the observations at each

site fluctuate wildly. 

It is generally assumed [2–4] that a complete year of data is the minimum time period re-

quired to obtain a representative estimate of the chloride deposition, and the amount of chloride

deposition is not considered dependent upon the amount of rainfall. However, Davies and Cros-

bie [1] found that there is some dependence on rainfall amount. 

Katherine in the NT is the best example in the dataset of temporal fluctuations in chloride

deposition, and that using a single year of observation can result in considerable uncertainty.

In Katherine, there have been 5 independent studies measuring the chloride deposition spread

over five decades and ranging from 1 to 5 years duration. These studies have reported a chloride

deposition rate of between 2.46 to 7.30 kg.ha −1 .yr −1 [5–9] . 

In the dataset collated here, there are 19 sites that have repeat measurements. The differ-

ence in the observations is a measure of the uncertainty in the chloride deposition within the

observed dataset. The mean difference of the natural-log transformed data is 0.68, if the obser-

vations that do not have a weight of 1 are excluded, this decreases to 0.44, as shown in Fig. 3 . 
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Fig. 3. Boxplots of the difference in chloride deposition measured at the same site by difference studies. (Red line is the 

mean of the absolute difference in the natural log transformed observations). 

Fig. 4. Scattered points: the residual, which is the difference between the observation and lnD of Eq. (1) . The standard 

deviation, σ , of this residual may be fitted with a straight line: σ = 0 . 7 + 0 . 0 0 022 d. 
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.5. Scatter of observations around distance-to-coast formula 

Another way of estimating the uncertainty of the prediction is to explore the scatter of the

bservations around the model given by Eq. (1) . The difference between ln D of Eq. (1) and

he logarithm of the observations is called the residual, which is plotted in Fig. 4 . The scatter

s approximately normally-distributed, and the standard deviation, σ , of the residuals may be
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Fig. 5. Pilot points used in this study. 

 

 

 

 

 

 

 

 

 

 

computed, which results in: 

σ = 0 . 7 + 0 . 0 0 022 d 

where d is measured in km (this is also shown in Fig. 4 , and assumes that D is measured in

kg.ha −1 .yr −1 ). The standard deviation, σ , is only weakly dependent on distance from the coast,

which may reflect that experimental error is virtually independent of where the sample is per-

formed, or may reflect that the model of Eq. (1) is equally valid at all points. Using this value to

perturb the fit of ln D expressed through Eq. (1) results in the green shaded region of Fig. 2 . 

2.6. Pilot points and kriging scheme 

The method of Davies and Crosbie [1] uses the PEST software [10] to estimate A 1 , A 2 , λ1 , λ2 

at “pilot points” scattered throughout Australia, and to interpolate these to the remainder of

Australia using kriging. The PEST process is described in sections below: this section describes

the pilot points and kriging. 

An evenly spaced grid of pilot points is used here, with spacing being 2 degrees in latitude

and longitude, as shown in Fig. 5 . 

Ordinary kriging is used to interpolate A 1 , A 2 , λ1 , λ2 from the pilot points to a finer grid of

0.05 degrees ( ∼5 km) across Australia. The python PyKrige software package [11] is employed.

The key ingredient to the kriging process is the variogram. In keeping with Davies and Crosbie

[1] , an exponential variogram is used here: 

v = p 

(
1 − e −

ˆ d 
r 

)
+ n 
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Fig. 6. Kriging some artificial data (black dots) using 4 different variograms. 
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here 

• p is the partial sill, with value 100; 

• ˆ d is the distance between points, measured in degrees; 

• r is the range, with value 120 deg; 

• n is the nugget, with value 1. 

Some example results are shown in Fig. 6 . Only certain aspects of the variogram are impor-

ant (for example, the overall scaling is irrelevant to the result) and different variograms can

roduce similar results (compare the base “exponential” type with the linear variogram of the

orm v = 1 + 10 ̂  d in Fig. 6 ). The final chloride-deposition results are not strongly dependent on

he form of the variogram. 

.7. Core PEST process 

The PEST software [10] is used to find the best values (in a least-squares sense) of

 1 , A 2 , λ1 , λ2 at each pilot point. Since there are 205 pilot points, this means the minimisation

nvolves 820 unknowns. Each iteration of the PEST process involves the following steps. 

1. Initial values for the 820 unknowns are provided are provided from Fig. 2 . 

2. The kriging procedure described above is used to find A 1 , A 2 , λ1 , λ2 at each observation point.

3. Eq. (1) provides the predicted value for chloride deposition at each observation point. 

4. The objective function, J, which quantifies the differences between these predictions and each

observation, is computed: 

J = 

∑ 

p 
w 

2 
p 

(
log 10 ( Pre dictio n p ) − log 10 ( Observatio n p ) 

)2 

here p indicates the observation point, and w p is the weight of each observation. Note that

og 10 is used here, in contrast to ln used above. 

5. The Jacobian, which is the change of the objective function with respect to changes in

A 1 , A 2 , λ1 , λ2 at each pilot point, is calculated. This is used to supply new values for the
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820 unknowns such that J will decrease. The process then starts again from Step (2) using

these new values. 

In the simplest case, PEST minimises the error, J, to provide the best values of A 1 , A 2 , λ1 , λ2 .

However, given the number of unknowns is greater than the number of observations, this simple

model is likely to suffer from overfitting, and PEST can quite easily find solutions with small J.

The overfitting is eliminated by using two additional ingredients. 

Firstly, a target J is provided to PEST to define when the iterative procedure described above

should stop. Above, the uncertainty inherent within the observations was found to be approxi-

mately 0.44 on a natural-log scale. Assuming these uncertainties are representative of an accept-

able mismatch between the model and the data, then for 367 observations a reasonable target

is J target ≈ 367 × ( 0 . 44 
ln 10 

) 2 ≈ 13 . 5 . This alone does not eliminate overfitting: instead, it simply pro-

vides PEST freedom to find multiple solutions. 

To find the solution that agrees most strongly with the model in Eq. (1) , a second ingredi-

ent is used: PEST allows weak constraints to be placed on the unknowns. This feature is used

to ensure that A 1 , A 2 , λ1 , λ2 are similar at nearby pilot points. This means that the parameters

determining the chloride deposition prediction will “vary smoothly” over the continent. Specifi-

cally, the constraints take the form of 

C 
A 1 
i j 

= log 10 

(
A 

i 
1 

)
− log 10 

(
A 

j 
1 

)
= 0 with weight w i j 

and similarly for A 2 , λ1 , λ2 . Here the superscripts i and j indicate pilot points. Here, given the

distance ˆ d (in degrees) between two pilot points, the weights are w = 10 / 
√ 

ˆ d for A 1 and A 2 if
ˆ d ≤ 5 deg , and zero otherwise. These are similar to Davies and Crosbie [1] , who used approxi-

mately: w = 5 . 3 / ̂  d 0 . 31 for A 1 and A 2 ; w = 6 . 6 / ̂  d 0 . 35 for λ1 ; and w = 7 . 5 / ̂  d 0 . 3 for λ2 . PEST forms

the “regularisation objective function” and uses the Tikhonov process to minimise this as well

as J. 

3. Calibration-constrained Null-space Monte Carlo Approach 

Following Davies and Crosbie [1] , a calibration-constrained null-space Monte Carlo analysis

is used to estimate the uncertainty in the PEST prediction. The idea is that while PEST has pro-

vided a set of A 1 , A 2 , λ1 , λ2 that minimise the error expressed through J and the constraints,

there may be many other parameter combinations that are just as good. The procedure is called

a “calibration-constrained null-space Monte Carlo analysis” [12] involves identifying many model

scenarios that are equally well validated (i.e., also have small J), and is explained in detail be-

low. All these model scenarios are derived from a stochastic process (Monte Carlo) and after

subsequent adaptations, they all provide an acceptable fit to the historical observations. 

This procedure is also performed by PEST, using the following steps: 

1. Pre-calculation step. 

a. A 1 , A 2 , λ1 , λ2 are set to their best-fit values found by PEST in the previous step, the con-

straints removed, and the Jacobian is calculated by PEST. The Jacobian provides an esti-

mate of the change in J as each of the parameters ( A 1 , A 2 , λ1 , λ2 at the pilot points) is

varied individually. 

b. PEST is used to find the “null-space”. These are certain combinations of A 1 , A 2 , λ1 , λ2 that

do not increase J “too much”. In this case, the optimisation procedure described above

resulted in J = 13 . 5 at the optimal solution. Here, “too much” is defined to be J ≤ 15 . 5 .

For example, it may be found that varying A 1 at a pilot point in central Queensland does

not increase J by too much, so this A 1 is part of the null space. Of course, changing this

A 1 may impact the prediction of chloride deposition in Queensland, but it does not impact

the agreement with the observations too much. 
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c. In the case at hand, PEST finds that the solution space contains only about 130 indepen-

dent parameters: most of the 820 parameters are actually in the null space and do not

impact the result too much. 

2. Null-space Monte Carlo step. 10 0 0 random parameter sets are generated. Recall from

Fig. 3 that the uncertainty in observations is roughly 0.44 or 0.68, and that from Fig. 4 , the

scatter is 0.7. These values provide a rough idea of the size of desired variations in ln D in

the random parameter sets. 

a. Monte Carlo process: The 10 0 0 sets are generated starting from the best-fit values men-

tioned in Step (1). Then, at all pilot points, the values of A 1 , A 2 , λ1 , λ2 are randomly per-

turbed using the following procedure: 

i. For each pilot point, a random number, z, is chosen from a normal distribution with

zero mean and standard deviation σ = 0 . 4 (suggested from Figs. 3 and 4 ). The value

of z is added to ln D given by Eq. (1) , that is ln D 

new = ln (D ) + z. To implement this

A 1 , A 2 , λ1 , λ2 at the pilot point in question are altered. Of course, the changes in the

individual values A 1 , A 2 , λ1 , λ2 are not unique, for instance only A 1 could be changed,

leaving the remaining quantities fixed. The following steps define the random proce-

dure for perturbing A 1 , A 2 , λ1 , λ2 . 

ii. Define r = 

A 1 exp ( − d 
λ1 

) 

A 1 exp ( − d 
λ1 

)+ A 2 exp ( − d 
λ2 

) 
. Choose another random number z r from a uniform

distribution with minimum 0 and maximum r. Then the “fast” term is perturbed

by z r z, while the “slow” term is perturbed by ( 1 − z r ) z. That is, ln ( A 

new 

1 
) − d 

λnew 
1 

=
ln ( A 1 ) − d 

λ1 
+ z r z, and similarly for the “slow” term. This means, for instance, if the

“fast” term is much smaller than the total (such as in central Australia, so r � 1 ) then

its perturbation is small. Similarly, if the “slow” term is much smaller than the total

(such as near the coast, so r ∼ 1 ) then its perturbation is small. This avoids perturb-

ing terms that do not greatly impact the chloride deposition prediction. The result

is approximately ln D 

new ≈ ln (D ) + z. To quantify the “approximately”: the process de-

scribed here produces perturbations of ln D that are normally distributed with stan-

dard deviation 0.35 instead of 0.4, which is reflected in the results. 

iii. Consider the “fast” term. The quotient z r z/ ln ( A 1 ) is the fractional perturbation de-

sired in A 1 , if λ1 were kept fixed. This gives an estimate for the perturbations re-

quired. Choose another random number, z 1 , from a uniform distribution with mini-

mum −z r z/ ln ( A 1 ) and maximum z r z/ ln ( A 1 ) , and set λnew 

1 
= λ1 ( 1 + z 1 ) . Now set A 

new
1 

such that ln ( A 

new 

1 
) − d/λnew 

1 
= ln ( A 1 ) − d/ λ1 + z r z. 

iv. The same method is used for the “slow” term (substitute “2” for “1” in the above). 

b. Null-space process: Any random perturbations that are not part of the null space are ze-

roed. For instance, random perturbations of the A 1 mentioned in Step (1b) would be re-

tained, since it is part of the null space. On the other hand, if λ1 at a certain pilot point

in Western Australia was not part of the null space (i.e., it does impact the agreement

with observations) then its random perturbations would be zeroed, so it would assume

its best-fit value in each of the 10 0 0 parameter sets. 

The result of is 10 0 0 parameter sets that should agree with observations just as well as the

riginal of Step (1). However, because of nonlinearities, perfect agreement is rare: the mean

f J over the 10 0 0 parameter sets is J̄ = 13 . 6 (and the standard deviation is 0.07). Because the

onte-Carlo process independently alters of A 1 , A 2 , λ1 , λ2 at each pilot point, the values of R

re substantially higher than the best-fit value of around 250: the mean of R over the 10 0 0

arameter sets is R̄ = 1600 (and the standard deviation is 190). 
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Fig. 7. Results of the uncertainty analysis. 

 

 

 

Using kriging described above, each of these 10 0 0 sets can be used to provide a prediction

of chloride deposition over Australia. At each point in Australia, the mean, and various other

statistics of these 10 0 0 predictions may be calculated. This yields the output datasets, shown

graphically in Fig. 7 . 
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. Contextual Summary 

Hydrologists, hydrogeologists and hydrogeochemists will find the resulting datasets use-

ul for defining a baseline chloride input to the landscape at point, catchment or continental

cale. The results can be used to estimate groundwater recharge through the chloride mass-

alance method, are useful in catchment salt balance studies, investigations of groundwater

ydrochemical evolution from recharge areas to deeper parts of aquifers and can be used for

redicting corrosion of infrastructure assets. 
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