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Background. We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk 
for coronavirus disease 2019 (COVID-19) presenting for urgent care.

Methods. We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respi-
ratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into 
development (n = 9381, 7 March–2 May) and prospective (n = 2205, 3–14 May) cohorts. Outcomes were hospitalization, critical ill-
ness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio 
(E/O). Discrimination was assessed by area under the receiver operating curve (AUC).

Results. In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, re-
spectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 
1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 
were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate.

Conclusions. CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to 
COVID-19 infection.
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The coronavirus disease 2019 (COVID-19) pandemic has pre-
sented unparalleled challenges for healthcare systems around 
the world [1–8]. The severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) first appeared in Wuhan, China, in 
December 2019. The first case in the United States (US) was 
confirmed on 20 January [9], followed by exponential spread 
within the US [2]. By the end of April, Massachusetts was the 
third hardest hit state, trailing only New York and New Jersey 
[10]. Within Massachusetts, Boston and Chelsea were epicen-
ters for the spread of COVID-19.

In anticipation of a surge in COVID-19 patients and to help 
limit viral spread and preserve personal protective equipment, 
Massachusetts General Hospital (MGH) closed most outpatient 
and urgent care clinics and set up new respiratory illness clinics 
(RICs) on 7 March 2020. These clinics were staffed by clinicians 
and nurses reassigned from other areas, many with little urgent 
care experience. COVID-19 suspected cases were also screened 
in the emergency department (ED). Due to high volumes and 
precautions for staff and patients, visit duration and extent of 
clinical assessments for most patients were curtailed. In addi-
tion to limited clinical assessment, triage decisions were com-
plicated by COVID-19’s biphasic clinical course: Patients who 
initially present with mild symptoms often later return for ad-
mission, and many subsequently suffer adverse events including 
intensive care unit (ICU) transfer, mechanical ventilation (MV), 
or death. Various prediction rules have been proposed to pre-
dict these adverse events, but to our knowledge few have been 
prospectively validated, and most were developed for the inpa-
tient [11–14] rather than for outpatient screening.

To help frontline clinicians appropriately triage and plan fol-
low-up care for patients presenting for COVID-19 screening, 
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we developed an outpatient screening score, the COVID-19 
Acuity Score (CoVA), using data from MGH’s RICs and ED. 
CoVA is designed in a way that automated scoring could be in-
corporated into electronic medical record (EMR) systems, in-
cluding Epic. CoVA assigns acuity levels based on demographic, 
clinical, radiographic, and medical history variables, and pro-
vides predicted probabilities for hospital admission, ICU ad-
mission or MV, or death within 7 days.

METHODS

Study Population

The Partners Institutional Review Board approved the study 
and granted a waiver of consent. We extracted EMR data from 
patients seen in the MGH RICs and ED between 7 March and 
14 May 2020. Patients were divided into 2 mutually exclusive 
cohorts: a development cohort (7 March to 2 May, n = 9381), 
and a prospective cohort (3 May to 14 May, n = 2205). All pa-
tients were admitted either through the emergency room (ER) 
or through an RIC clinic, among which 484 patients were ini-
tially evaluated in RIC and subsequently sent to the ER and then 
admitted. We split the cohorts on 2 and 3 May as the ratio of 
patients in development vs prospective cohorts was the closest 
to 80% vs 20%, which was the same ratio as in cross-validation 
inside the development cohort. This was prespecified before 
data analysis was started.

The flowchart to generate the development and prospective 
cohorts is illustrated in Figure 1. Inclusion criteria were (1) an 
MGH RIC visit between 7 March and 14 May 2020, or an ED 
visit in the same timeframe where the reason for visit was con-
sidered possible COVID-19 related (cough, fever, shortness of 
breath) or other specific reasons listed in Supplementary Table 
10; and (2) age ≥18 years. Exclusion criteria were (1) lack of any 
clinical assessment of vital signs (systolic/diastolic blood pres-
sure, body temperature, heart rate, and respiratory rate), even 
if a COVID-19 diagnostic test was performed (often done for 
low-risk asymptomatic patients who needed only COVID-19 
testing); and (2) patients with visits were excluded if they were 

in both development and prospective cohorts, to ensure that the 
model was not biased to those patients. Note that 1 patient con-
tributes only once in either cohort. In the development cohort, 
we randomly chose 1 visit for each patient to avoid patients with 
multiple visits contributes unevenly to the model coefficients. 
In the prospective cohort, we chose the most recent visit from 
each patient. This was done to focus more on prediction perfor-
mance on dates further into the future relative to the develop-
ment cohort.

Primary Outcome

The primary outcome was the occurrence of an adverse event 
within 7 days following an outpatient medical encounter, in-
cluding either hospitalization at MGH, critical illness (defined 
as ICU care and/or MV), or death. The prediction horizon was 
set to 7 days because this period was considered meaningful by 
our frontline teams for clinical decision-making, and because 
empirically, within the model development cohort most ad-
verse events occurred within 7 days of initial presentation. A 
secondary analysis was done using a 4-week (28-day) window.

Predictors

We selected 98 variables that were routinely available in the out-
patient setting during the COVID-19 pandemic to serve as can-
didate predictors. These included demographic variables: age, 
sex, tobacco use history, most recent body mass index (BMI) 
(represented as binary variables designated as high BMI [>35 
kg/m2], and low BMI [<18.5 kg/m2]), the most recent vital signs 
(blood pressure, respiratory rate, heart rate, temperature, blood 
oxygen saturation level [SpO2]) within the preceding 3 days; 
COVID-19 testing status (based on a nasopharyngeal swab 
testing for SARS-CoV-2 polymerase chain reaction at the time 
of sampling; see Supplementary Data, “Predictor encoding,” for 
encoding details); specific symptoms associated with COVID-
19 infection (anosmia, dysgeusia based on International 
Statistical Classification of Diseases, Tenth Revision [ICD-10] 
codes), and preexisting medical diagnoses, coded as present 
or absent based on groups of billing codes (ICD-10 codes; 
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Figure 1.  Data flowchart for the development and prospective cohorts.
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Supplementary Table 7) in the EMR. To be coded as present, 
the diagnostic code had to be recorded on or before the day of 
presentation. The weighted Charlson Comorbidity Index (CCI) 
was computed based on groups of ICD codes [11]. We omitted 
race and ethnicity as predictors because (1) the composition 
of race/ethnicity our dataset does not necessarily generalize to 
populations outside MGH. Therefore, the coefficients for race/
ethnicity based on our dataset may not reflect the actual (or 
causal) value, instead they are biased by the particular composi-
tion of race/ethnicity in our dataset; and (2) we have found that 
these variables were often unavailable or inaccurately recorded, 
especially ethnicity.

For patients who underwent chest radiograph (CXR) im-
aging during these encounters, we identified groups of common 
findings based on radiology reports that correlate with COVID-
19 infection. These groups were identified in 2 steps. First, we 
manually reviewed 50 CXR reports and liberally extracted key 
words, phrases, and word patterns describing abnormal find-
ings. Next, a pulmonary and critical care medicine physician 
(L. B.) categorized these phrases into groups. Five groups were 
identified: multifocal, patterns typical for COVID-19 (pneu-
monia, bronchopneumonia, acute respiratory distress syn-
drome), patchy consolidation, peripheral or interstitial opacity, 
or hazy or airspace opacities. The phrases and groupings are 
shown in Supplementary Table 8. CXR findings suggestive of 
COVID-19 were coded as present, not present, or unavailable.

Data Preprocessing and Selection of Predictor Variables

We treated predictors outside of physiologically plausible ranges 
as unavailable (Supplementary Table 9). Unavailable values were 
imputed using K-nearest neighbors [15], where the value of K 
was determined by minimizing the imputation error on a subset 
with available data by randomly masking variables according 
to the pattern of unavailability in the overall data. Importantly, 
we did not impute CXR predictors or COVID-19 status for pa-
tients who did not have either of them available. Instead, for 
these we coded unavailable (see details in the Supplementary 
Data, “Predictor encoding conventions”). We have provided the 
performance of CoVA depending on the availability of CXR and 
COVID-19 status in Supplementary Table 4.

Predictors were standardized to zero mean and unit standard 
deviation using z score transformation (Supplementary Table 
1). Predictors were selected for inclusion in the CoVA model 
in 2 stages. First, we used analysis of variance (ANOVA) to 
identify predictors associated with hospitalization, ICU care or 
MV, or death. At an α = .05 significance level, we identified 65 
predictors to carry forward into the model fitting procedure (P 
values are shown in Supplementary Table 11). A 1-way ANOVA 
test was used to test the null hypothesis, if the average feature 
value was the same across the 4 groups: hospitalization, crit-
ical illness, death, and none of the above. Here we treated or-
dinal outcome as categorical outcome). Second, we used least 

absolute shrinkage and selection regression during the model 
fitting procedure to select a reduced subset of highly predictive 
and relatively uncorrelated variables.

Model Development

We assigned an ordinal scale to adverse events, including no 
event, hospitalized, ICU care and/or MV, and death. We per-
formed pairwise learning to rank an implementation of ordinal 
regression [16, 17]. Training involves learning to predict which 
of a pair of patients will have a worse outcome. On biological 
grounds, and to address co-linearity among predictors, we con-
strained the model optimization to allow only nonnegative co-
efficients for CXR predictors, medical comorbidities, CCI, and 
history of current or past tobacco use; and unconstrained for 
other predictors. Model training and preliminary evaluation 
of model performance was performed using the development 
cohort, using nested 5-fold cross-validation (Supplementary 
Figure 2). The final model provides acuity scores between 0 and 
100 and predicted probabilities for hospitalization and for crit-
ical illness or death within 7 days (in any situation including 
patients more generally in other populations). The final model 
was tested on the prospective validation cohort. Performance 
is reported both for the development cohort (cross-validation) 
and for the prospective cohort.

Statistical Analysis of CoVA Predictive Performance

We summarized the distribution of cohort characteristics and 
adverse events using event counts and proportions for cat-
egorical predictors, and the mean and standard deviation for 
continuous variables. For model calibration, an expected-to-
observed ratio (E/O) of 1.0 indicates that the number of ex-
pected events equals the number of observed events; and the 
calibration slope (CS) is defined as the linear correlation be-
tween the observed O and expected probabilities E, where the 
expected (predicted) values (E) are binned into quintiles [18].

We calculated the area under the receiver operating charac-
teristic curve (AUC) to quantify how well CoVA scores discrim-
inated between individuals who were hospitalized within 7 days 
vs those who were not hospitalized, and between those who had 
critical illness (ICU care, MV, or death) within 7 days vs those 
who did not. We considered an AUC between 0.50 and 0.55 to 
be poor; between 0.55 and 0.65, moderate; between 0.65 and 
0.75, acceptable; and >0.75, excellent. We also calculated spec-
ificity, positive predictive value, and negative predictive value 
at the 90% sensitivity level. Finally, we looked at the ability of 
the CoVA score to predict adverse events over a longer 4-week 
(28-day) window.

RESULTS

Cohort Characteristics

From 7 March to 2 May 2020, 9381 patients met inclusion 
criteria and were included in the development cohort. The 
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average age was 51 years old, with 49% being female. Among 
these, 3344 (35.6%) had adverse events within 7 days of pres-
entation: 2562 (27.3%) were hospitalized, 679 (7.2%) received 
ICU care and/or were mechanically ventilated, and 103 (1.1%) 
died.

From 3 to 14 May 2020, 2205 additional patients met inclu-
sion criteria and were included in the prospective cohort. The 
average age was 53 years old, with 49% being female. Among 
these, 726 (32.9%) had adverse events: 575 (26.1%) were hospi-
talized, 139 (6.3%) received ICU care and/or were mechanically 
ventilated, and 12 (0.5%) died.

Cohort characteristics are summarized in Table 1. Compared 
to the model development period, during the prospective vali-
dation period there were modest increases in the proportion of 
patients with CXRs (prospective 52.3% vs development 41.0%), 
the proportion of outpatient evaluations performed in RIC clinics 
(prospective 26.5% vs development 21.4%), and in testing rates for 
COVID-19 (prospective 78.8% vs development 59.5%). Several 
other small but likely clinically insignificant differences between 
cohorts also reached statistical significance, due to the large co-
hort sizes. COVID-19 infections and clinical adverse events by 
age and decade of life are shown in Supplementary Figure 1.

Table 1. Characteristics of Study Participants

Characteristic Development Cohort Prospective Cohort P Value

No. of patients 9381 2205  

Respiratory illness clinic 2013 (21.5%) 584 (26.5%) <.01**

Emergency department 7368 (78.5%) 1621 (73.5%) <.01**

COVID-19 positive   <.01**

 Yes 1404 (15.0%) 243 (11.0%)  

 No 4178 (44.5%) 1494 (67.8%)  

 Untested or unknown 3799 (40.5%) 468 (21.2%)  

Outcome in 7 days   NS

 Hospitalization 2562 (27.3%) 575 (26.1%)  

 ICU or MV 679 (7.2%) 139 (6.3%)  

 Death 103 (1.1%) 12 (0.5%)  

Age, y, mean (SD) 51.1 (19.2) 52.6 (18.6) <.01**

Female sex 4587 (48.9%) 1087 (49.3%) .735

BMI, kg/m2, mean (SD) 28.4 (7.0) 28.4 (6.8) .792

Race   <.01**

 Asian 373 (4.0%) 79 (3.6%)  

 Black 1023 (10.9%) 218 (9.9%)  

 Pacific Islander 15 (0.2%) 4 (0.2%)  

 Native American 6 (0.1%) 1 (0.0%)  

 White 5673 (60.5%) 1434 (65.0%)  

 Other or unknown 2291 (24.4%) 469 (21.3%)  

Ethnicity   <.01**

 Hispanic 1879 (20.0%) 377 (17.1%)  

 Non-Hispanic 6698 (71.4%) 1635 (74.1%)  

 Unavailable 804 (8.6%) 193 (8.8%)  

Smoking   <.01**

 Yes or quit 3190 (34.0%) 834 (37.8%)  

 Never or passive 5245 (55.9%) 1165 (52.8%)  

 Not asked/unknown 946 (10.1%) 206 (9.3%)  

Weighted Charlson score, mean (SD) 1.5 (2.4) 1.6 (2.6) .031*

SpO2, %, mean (SD) 97.3 (2.3) 97.3 (2.2) .152

CXR (percentage is among available patients except the first one) <.01**

 CXR available 3851 (41.1%) 1154 (52.3%)  

 Multifocal 1214 (31.5%) 242 (21.0%)  

 Typical pattern for COVID-19 548 (14.2%) 119 (10.3%)  

 Patchy consolidation 739 (19.2%) 245 (21.2%)  

 Peripheral/interstitial opacity 72 (1.9%) 8 (0.7%)  

 Hazy or airspace opacity 480 (12.5%) 101 (8.8%)  

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: BMI, body mass index; COVID-19, coronavirus disease 2019; CXR, chest radiograph; ICU, intensive care unit; MV, mechanical ventilation; NS, not significant; SD, standard 
deviation; SpO2, oxygen saturation.

*P < .05.

**P < .01.
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Predictive Performance of the CoVA Score

CoVA showed excellent calibration and discrimination in the 
development cohort for hospitalization (E/O: 1.00 [.98–1.02], 
CS: 0.99 [.98–.99], AUC: 0.80 [.79–.81]); for critical illness (E/O: 
1.00 [.93–1.06], CS: 0.98 [.96–.99], AUC: 0.82 [.80–.83]); and 
for death (E/O: 1.00 [.84–1.21], CS: 1.32 [1.01–1.60], AUC: 0.87 
[.83–.91]) (all values in brackets indicate the 95% confidence in-
terval). Performance generalized to the prospective validation 
cohort, with similar results for hospitalization (E/O: 1.01 [.96–
1.07], CS: 0.99 [.98–1.00], AUC 0.76 [.73–.78]); for critical illness 
(E/O: 1.03 [.89–1.20], CS: 0.98 [.94–1.00], AUC: 0.79 [.75–.82]); 
and for death (E/O: 1.63 [1.03–3.25], CS: 0.91 [.35–1.47], AUC: 
0.93 [.86–.98]) (all values in brackets indicate the 95% confidence 
interval). Additional performance metrics are reported in Table 
2. We also trained a model for 28-day horizon and provided the 
performances in Supplementary Table 2. The model achieved nu-
merically similar results compared to that for the 7-day horizon. 
To explore whether including patients with visits in both cohorts 
would make a difference, we also randomly assigned half of them 
to the development cohort and half to the prospective cohort. 
The results are in Supplementary Table 3, which do not differ sig-
nificantly with that from excluding these patients.

We also investigated performance over different time 
periods during the pandemic under investigation using 3-day 
nonoverlapping windows (Figure 5). The linear fit shows that 
there is no trend in AUC for hospitalization (P = .6) or for crit-
ical illness (P = .1); no trend in E/O for hospitalization (P = .9) 
or for critical illness (P = .3).

Properties of the CoVA Score

For the prospective cohort, the proportion of patients with 
adverse events at 7 days increases with higher CoVA scores, 

rising from 18% with CoVA scores in the 0–20 range, to 88% 
for those with scores in the 80–100 range. The proportion of 
patients with critical illness or death also rises, from 2% for 
scores between 0 and 20, to 32% with scores between 80 and 
100 (Figure 2A).

We examined the ability of the CoVA score to predict events 
over a 4-week (28 days) window following initial presentation 
to the RIC or ED in the prospective cohort. Curves for the 
cumulative incidence of adverse events over time for different 
levels of CoVA scores are shown in Figure 2B and additional 
performance data are provided in Supplementary Table 2. By 
28 days, 751 (34%) of patients experienced hospitalization, 
critical illness, or death. Of these, 699 (32%) occurred within 
1 day, and 726 (33%) had occurred by 7 days. Critical illness 
or death occurred in 175 (8%) of patients within 28 days of 
presentation. Of these, 111 (5%) occurred within 1 day, and 
151 (7%) occurred within 7 days. Therefore, a high percentage 
of patients experiencing adverse events did so within both 1 
day and 7 days. These numbers support our choice of 7 days as 
a clinically meaningful event prediction horizon, and reflect a 
high percentage of patients who were admitted directly from 
the RIC or ED.

Predictors of Adverse Events

Thirty predictors were selected by the data-driven model 
training procedure (Table 3). All but 4 predictors increase the 
predicted probability of adverse events when present. SpO2, 
diastolic and systolic blood pressure, and low BMI inversely 
correlated with the probability of adverse events. Predictors 
from CXR reports included in the model were multifocal pat-
terns (diffuse opacities, ground glass) and patterns typical for 
COVID-19.

Table 2. Prediction Performance for 7-Day Horizon

Metric Hospitalization, ICU, MV, or Death ICU, MV, or Death Death

Concurrent validation (based on the development cohort but cross-validated)

 Patients, No. (%) 3344 (35.6%) 782 (8.3%) 103 (1.1%)

 Calibration (E/O) 1.00 (.98–1.02) 1.00 (.93–1.06) 1.00 (.84–1.21)

 Calibration slope 1.02 (.99–1.06) 0.86 (.79–.93) 1.32 (1.05–1.58)

 AUC 0.80 (.80–.81) 0.82 (.80–.83) 0.87 (.83–.91)

 Specificity at 90% sensitivity 0.56 (.53–.59) 0.44 (.41–.48) 0.35 (.24–.45)

 PPV at 90% sensitivity 0.47 (.45–.49) 0.16 (.14–.17) 0.03 (.02–.04)

 NPV at 90% sensitivity 0.89 (.88–.90) 0.98 (.98–.99) 1.00 (1.00–1.00)

Prospective validation

 Patients, No. (%) 726 (32.9%) 151 (6.8%) 12 (0.54%)

 Calibration (E/O) 1.01 (.96–1.07) 1.03 (.89–1.20) 1.63 (1.03–3.25)

 Calibration slope 0.92 (.83–.99) 0.76 (.60–.95) 0.84 (.37–1.40)

 AUC 0.76 (.73–.78) 0.79 (.75–.82) 0.93 (.86–.98)

 Specificity at 90% sensitivity 0.66 (.62–.70) 0.53 (.43–.63) 0.29 (.01–.31)

 PPV at 90% sensitivity 0.40 (.38–.43) 0.11 (.09–.14) 0.017 (.01–.22)

 NPV at 90% sensitivity 0.87 (.86–.89) 0.98 (.98–.99) 1.00 (1.00–1.00)

Data in parentheses indicate 95% confidence intervals.

Abbreviations: AUC, area under the receiver operating characteristic curve; E/O, ratio of expected to number of observed adverse events; ICU, intensive care unit; MV, mechanical ventilation; 
NPV, negative predictive value; PPV, positive predictive value.
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Impact of Chest Radiographs and COVID-19 Testing on Predicting Critical 

Illness

CXRs and testing for COVID-19 were not universal, and 
testing rates evolved over time. One potential use of CoVA 
is to help determine whether to perform these tests. We 
therefore investigated the impact of CXR findings on the 
predicted probability of critical illness or death. As shown 
in Supplementary Figure 3, positive CXR findings are most 
informative when the pre-CXR probability is 30% (critical 
illness or death), in which case they increase the predicted 
probability of an adverse event by 4%.

We also examined the effect of COVID-19 testing results on 
the predicted probability of severe adverse events (critical ill-
ness or death). The largest effect of a positive test result occurs 
when pretest probability of a severe adverse event is 28%, in 
which case the posttest probability increases by 8%.

DISCUSSION

Risk stratification of outpatients presenting for COVID-19 is im-
portant for medical decisions regarding testing, hospitalization, 
and follow-up. We developed and prospectively validated the 

COVID-19 Acuity Score (CoVA) as an automatable outpatient 
screening score that can be implemented in EMRs including 
EPIC. The model exhibits excellent calibration, discrimina-
tion, and negative predictive value both in concurrent valida-
tion (n = 9381, 7 March–2 May) and in large-scale prospective 
validation (n = 2205, 3–14 May). While several COVID-19 risk 
prediction models have been proposed for the inpatient setting 
[12–14], CoVA fills an unmet need for a prospectively validated 
risk score designed for outpatient screening and could easily be 
deployed before future COVID-19 surges.

A few critical thresholds are needed to practically guide the 
decision for admission and level of follow-up with CoVA. The 
outpatient clinic plans to provide follow-up calls to reassess 
remotely when the CoVA score is from 10 to 20 (CoVA score 
ranges from 0 to 100) (probability of hospitalization or worse in 
7 days ranges between 20% to 30%) and to bring patients back 
to reassess in the outpatient RIC or ED when the CoVA score 
is >20 (probability of hospitalization or worse in 7 days >30%).

Several predictors selected by the model have been identi-
fied in prior studies, including advanced age [4, 5, 9, 19]; preex-
isting pulmonary [4, 5], kidney [4], and cardiovascular disease 
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Figure 2. A, Distributions of adverse events (AEs) within 7 days after initial outpatient evaluation in the respiratory illness clinical/emergency department, binned by acuity 
score. Colors from light to dark represent distinct AEs: hospitalization, intensive care unit/mechanical ventilation, or death. B, Cumulative incidence of critical illness or death 
up to 17 days following initial evaluation, based on initial acuity score. Curves are computed based on cross-validation in the development cohort. C and D, Calibration curves: 
predicted probability of AEs vs observed rate of AEs. C, Calibration for predicting hospitalization (dashed line for the development cohort; and solid line for the prospective 
cohort). D, Calibration for predicting critical illness or death (dashed line for the development cohort; and solid line for the prospective cohort). The overall calibration (ratio 
of expected to number of observed AEs) and calibration slopes are reported in Table 2.
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[4, 9, 20]; obesity [21]; and increased respiratory or heart rate 
or hypoxia [4]. We found that other preexisting medical condi-
tions also increased risk for adverse outcomes, including cancer 
and pancreatitis. Hypertension and diabetes mellitus did not 
emerge as predictors in the CoVA model, despite being iden-
tified in prior studies [4, 5, 9]. These comorbidities are cor-
related with outcomes in univariate analysis (Supplementary 
Table 11) and correlation analysis shows that both are strongly 
associated with older age, higher CCI, high BMI, and other 
comorbidities already selected as predictors, helping to ex-
plain their nonselection by the model (Supplementary Figure 
4). Human immunodeficiency virus/AIDS was not significantly 
associated with the outcome, but this may have been due to low 
numbers (85/9381, <1% of developmental cohort).

Several studies have documented neurological manifestations 
of COVID-19 [22–24], but the association of past neurological 
history with COVID-19 outcomes remains poorly understood. 
We were surprised to find that a variety of neurological diseases 
surfaced as robust predictors of adverse outcomes in COVID-
19 infection, including ischemic stroke, intracranial hemor-
rhage, subarachnoid hemorrhage, epilepsy, amyotrophic lateral 
sclerosis, myasthenia gravis, and spinal muscular atrophy. It 
is unclear if these neurological diseases are merely markers of 
health or if the worsened outcomes are due to the interaction 
of COVID-19 with neurological disorders that amplifies the 
pathology.

Prior work on predicting outcomes in COVID-19 patients 
is summarized in Supplementary Table 6. Like our study, most 
have attempted to predict critical illness or death. However, 
most are based on small cohorts (median, n = 189 [range, 
n = 26–577]); focus on inpatients; and utilize laboratory values, 

which were rarely available for our outpatient cohort. Only 3 
included prospective or external validation. By contrast, CoVA 
is designed for the outpatient setting. In this setting, the availa-
bility of COVID-19 test results were variable (results were avail-
able for 60% in the development and 80% in the prospective 
cohort) and other laboratory results were rarely available. To 
ensure generalizability, we used a large development cohort of 
9381 patients, and trained the model using a rigorous approach. 
We ensured clinical interpretability by utilizing a linear model 
with positivity constraints on predictors expected to increase 
risk. Finally, we validated our model on a large (n = 2205), pro-
spectively collected patient cohort, providing an assessment of 
model generalizability with minimal (or reduced) bias.

Strengths of this study include its large sample size, careful 
EMR phenotyping, and rigorous statistical approach, and all 
variables required by the model are available and automat-
ically extractable within most electronic health record sys-
tems. The study also has limitations. First, our study is from 
a single center, with demographics specific to MGH patients, 
who mostly come from greater Boston and the surrounding 
regions. Second, we did not have complete follow-up on all 
patients, especially those who were not admitted. As a result, 
we may not have captured hospitalizations and death that 
occurred outside MGH. However, we believe most patients 
would have been readmitted to MGH and the EMR would 
have captured most deaths. Third, the model used data from 
both the RICs and patients seen in the ED for a variety of 
reasons. Nevertheless COVID-19 was, and for now, remains 
a significant concern for patients seen in the ED. We also ex-
cluded patients prior to the onset of COVID-19 in Boston (7 
March 2020); therefore, our model is relevant for screening 

Table 3. Coefficients of the Coronavirus Disease 2019 Acuity Score (CoVA) Model

ID Predictor Coefficient ID Predictor Coefficient

1 Age 0.7353 16 Renal cancera 0.0681

2 Diastolic blood pressure –0.4724 17 Pancreatitisa 0.0608

3 SpO2 –0.3776 18 Cystic fibrosisa 0.0492

4 Ever COVID-19 positive up to event 0.2750 19 Cardiac arresta 0.0491

5 Respiratory rate 0.2746 20 Seizure disorder 0.0437

6 Acute ischemic strokea 0.1746 21 Amyolateral sclerosisa 0.0405

7 CXR: Multifocal 0.1293 22 Metabolic acidosisa 0.0385

8 Heart rate 0.1215 23 Myasthenia gravisa 0.0374

9 Body temperature 0.1206 24 Pneumothoraxa 0.0300

10 Systolic blood pressure –0.1151 25 Spinal muscular atrophya 0.0241

11 Weighted Charlson score 0.1142 26 Pericarditisa 0.0144

12 Intracranial hemorrhagea 0.1087 27 High BMI (>35 kg/m2) 0.0028

13 Subarachnoid hemorrhagea 0.0919 28 CXR: Typical for COVID-19 0.0001

14 Male sex 0.0808 29 Low BMI (<18.5 kg/m2) –0.0001

15 Hematologic malignancya 0.0765 30 ARDSa 0.0001

Diagnoses were based on past medical history and were coded as present (eg, pneumothorax = 1) if recorded in the electronic medical record at any time before the date of presentation for 
COVID-19 screening. All coefficients were applied to rescaled predictors, where the rescaling was done by subtracting the mean and then dividing the standard deviation in Supplementary 
Table 1.

Abbreviations: ARDS, acute respiratory distress syndrome; BMI, body mass index; COVID-19, coronavirus disease 2019; CXR, chest radiograph; SpO2, oxygen saturation.
aPreexisting conditions documented in the electronic medical record.
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during times of high alert for COVID-19. We also did not 
include laboratory test values, since they were typically not 
available during initial outpatient assessments. Finally, the 
study was conducted in the first few months of the epidemic 
in Boston; further research is needed to see if these results 
hold more broadly and as the epidemic matures.

In conclusion, the COVID-19 Acuity Score (CoVA) is a well-
calibrated, discriminative, prospectively validated, and inter-
pretable score that estimates the risk for adverse events among 
outpatients presenting with possible COVID-19 infection.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.
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