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Simple Summary: The production of bio-based materials, including organic acids, antibiotics, en-
zymes, ethanol, and hydrogen, is generally done by the cultivation of suspended cells rather than
using immobilized cells. However, several studies suggest the application of productive biofilms
as a reliable alternative for biocatalysis, with many advantages over suspended-growth systems.
This review gives an overview of the breakthrough in the application of biofilm platforms for the
sustainable production of valuable compounds, with particular insight into the latest advances in the
production of recombinant proteins. Productive biofilms are shown to improve production rates and
product yields, demonstrating great potential for industrial applications.

Abstract: In recent years, abundant research has been performed on biofilms for the production of
compounds with biotechnological and industrial relevance. The use of biofilm platforms has been
seen as a compelling approach to producing fine and bulk chemicals such as organic acids, alcohols,
and solvents. However, the production of recombinant proteins using this system is still scarce.
Biofilm reactors are known to have higher biomass density, operational stability, and potential for
long-term operation than suspended cell reactors. In addition, there is an increasing demand to
harness industrial and agricultural wastes and biorefinery residues to improve process sustainability
and reduce production costs. The synthesis of recombinant proteins and other high-value compounds
is mainly achieved using suspended cultures of bacteria, yeasts, and fungi. This review discusses the
use of biofilm reactors for the production of recombinant proteins and other added-value compounds
using bacteria and fungi.

Keywords: productive biofilms; cell immobilization; biofilm reactor; recombinant protein; added-
value product

1. Introduction

Biofilms are aggregates of microorganisms, such as bacteria, fungi, or algae, which are
protected by a matrix of extracellular polymeric substances (EPS) that are usually attached
to a solid surface that can be organic or inorganic [1,2]. Research in biofilms tends to focus
on their detrimental effects on sectors such as health, food, and the maritime industry [3,4].
These effects range from persistent infections on medical devices [5], equipment clogging,
heat transfer reduction and product degradation in the food industry [6], and the increment
in frictional drag and consequent fuel consumption in marine vehicles [7]. The beneficial
properties of biofilms include not only wastewater treatment [8], bioremediation, and
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removal of toxic pollutants [9,10], but also the production of added-value substances, such
as organic acids, enzymes, alcohols, and recombinant proteins [11–15].

Recombinant proteins and other added-value compounds are being produced in
biofilm reactors due to several advantages of this platform when compared to suspended
cell systems. Biofilm reactors can (1) retain more biomass per unit volume, increasing
production rates and yields, (2) resist stress conditions such as toxic compounds, (3) re-
duce the risk of washout (which eliminates the need for repeated inoculations during
subsequent batch fermentation), and (4) reduce fermentation times and exhibit long-term
activity [11,15–17]. However, some challenges need to be addressed, namely, (1) limitations
of substrate and oxygen diffusion, which can increase population heterogeneity, (2) the
complex maintenance of a pure culture in consecutive operations, (3) biofilm reactors are
difficult to scale up [17], and (4) product secretion to the extracellular medium can be
challenging, leading to difficulties in downstream processes [15].

Several studies propose the application of biofilms as robust, self-immobilized, and
self-regenerating systems in the production of added-value chemicals and specific pro-
teins [11,18,19]. Hence, this review intends to outline the advances in the production of
recombinant proteins using biofilms, as well as to give an overview of the main added-value
compounds produced using biofilms as a biocatalytic system.

2. Production of Added-Value Chemicals

In recent years, microbial biofilms have emerged as a new generation of biocatalysts
due to their potential for the sustainable production of added-value chemicals [16,20,21],
including organic acids, enzymes, polysaccharides, antimicrobial compounds, alcohols
and solvents, and other products (Figure 1). This production typically resorts to a variety
of biofilm reactors in which microorganisms attach to support materials [11,17–19]. The
most common reactor types used to produce these substances are stirred-tank [22–24] and
packed-bed reactors [25–27]. The packed-bed reactor is usually filled with densely packed
solid supports, which provide high interfacial areas, whereas stirred-tank reactors integrate
inserts and/or particles [19]. Additionally, membrane biofilm reactors with a porous gas-
permeable membrane (e.g., silicone [28,29] and polysulphone [30]) are often used for these
bioreactions [28,29]. Other configurations include fluidized-bed reactors [31,32], airlift
reactors [33,34], bubble column reactors [35,36], rotating-disk reactors [37,38], or tubular
biofilm reactors [39]. Thus, the choice of the reactor and feeding strategy (batch, fed-
batch, and continuous mode) should be molded to the process conditions and nutritional
requirements of the producing microorganisms.

Several support materials have been employed for the immobilization of microor-
ganisms in high biomass concentrations inside the reactors. The supports must be prone
to adhesion of microorganisms, be widely available and inexpensive, resist high me-
chanical forces, and be non-toxic [16,18,19]. Synthetic materials employed as supports
in biofilm reactors may include ceramics [26,40], silicone [41,42], polyethylene [43–45],
polyurethane [46,47], clay bricks [27], polypropylene [48], and glass [39]. Natural polymers,
such as alginate [49,50] and carrageenan [22], and some lignocellulosic materials, such as
cotton [51,52], have also been used to immobilize microbial cells. Many agriculture-based
waste materials have been used to create biofilm supports, such as corn stalks [53] or char-
coal pellets produced from waste mushroom medium [54]. A good example is the loofah
sponge, an inexpensive and environmentally friendly support matrix obtained from the
ripped dried fruit of Luffa aegyptica [55,56], applied to produce lactic and gibberellic acids.
Furthermore, many studies extensively implemented a specific class of plastic composite
supports (PCS) for biomass immobilization due to the channeling of agricultural wastes to
produce valuable compounds [24,38,57–60]. PCS are a blend of polypropylene, nutritious
agricultural materials (e.g., oat hulls, soybean flour, and cornstarch), microbial nutrients
(e.g., yeast extract, and bovine albumin), and mineral salts [60–62], usually produced in
the form of chips [57], rings/disks [60], or tubes fixed to the agitator shaft of stirred-tank
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biofilm reactors [63]. Hence, this support simultaneously provides attachment areas for
biofilm development and nutrients for the growth and synthesis of products.
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Since the production of chemicals and fuels through biocatalytic processes in biore-
fineries is strongly impacted by raw material costs [64], it is driven by the utilization
of renewable feedstocks, low in cost, abundant, and readily available, to sustainably
produce commercially valuable products [65]. These raw materials do not compete
with food crops and often comprise industrial wastes such as whey and milk perme-
ates [25,55], molasses [46], olive mill wastewater [26], potato starch [56], and rice straw [66].
Potato waste and rice straw hydrolysates were used by Izmirlioglu and Demirci [67] and
Todhanakasem et al. [68], respectively, as fermentation media to benefit from available
and inexpensive waste materials to make ethanol production more sustainable. In another
study, a complex medium containing the liquid fraction of deacetylated corn stover hy-
drolysate was used as a substrate for succinic acid production [65]. Although renewable
feedstock may be cost-effective, their commercial feasibility requires a compromise between
material costs and fermentation productivities and yields. Since the nutrients might be less
accessible to microbial consumption, sometimes an additional step is needed to make their
carbohydrate fraction available for microbial conversion [69]. During this pre-treatment,
inhibitory compounds are produced, which can decrease production rates and yields,
demanding an extra step for the removal of these substances and increasing the process
costs [70]. Biofilms can tolerate such hazardous environments more easily than suspended
cells, conferring a great advantage in this case.
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2.1. Organic Acids

The production of a wide variety of organic acids in biofilm reactors is very popular
due to their higher robustness to changing environmental conditions, in particular, a
decrease in pH [19]. The organic acids produced in these systems include lactic, succinic,
acetic, citric, fumaric, gibberellic, glycolic, propionic, and kojic acids (Table 1). Ho and
colleagues reported a few studies on the production of lactic acid (widely used in chemical,
pharmaceutical, and food industries [71]) in biofilm reactors, studying the characteristics
of PCS and their effects on biofilm formation and lactic acid production [72], and the
effects of different agricultural components on the properties of PCS [73]. These supports
stimulated biofilm formation and improved the productivity of lactic acid in repeated-batch
fermentations up to 4.3 g·L−1·h−1 at a starting glucose concentration of 100 g·L−1 [62].
The immobilized cells shortened the total fermentation time up to 61% and increased
the lactic acid productivity of L. casei up to 70% relative to suspended cells. Following
this, the fungi Rhizopus oryzae was used by Tay and Yang [51] to produce lactic acid in a
rotating fibrous bed bioreactor. Glucose and cornstarch were the fermentation substrates
tested. The highest lactic acid productivity of 2.5 g·L−1·h−1 was obtained from glucose
in fed-batch fermentation with a yield of 90%, whereas a lactic acid yield close to 100%
was achieved with cornstarch, despite the lower productivity of 1.65 g·L−1·h−1. Moreover,
the immobilization with the cotton cloth restrained control and operation problems in the
reactor observed with freely suspended fungal cells. More recently, Cuny et al. [39] used
Lactobacillus delbrueckii to produce lactic acid in a horizontal tubular biofilm reactor. This
biofilm system was operated in continuous mode for 3 weeks under different flow velocities
and demonstrated good stability. The productivity increased with the flow velocity since,
at low flow velocities, the higher retention times cause a strong pH drop generated by lactic
acid accumulation, inhibiting the growth rate and production. The maximum productivity
obtained was 10 g·L−1·h−1 with a product yield of 94%. The biofilm system demonstrated
superior cell density and productivity of lactic acid over a batch culture by a factor of 19
and 6–8, respectively.

Urbance et al. [63,74] reported two works on the production of succinic acid by Acti-
nobacillus succinogenes using PCS for biofilm formation. In their first study, they developed
a medium supporting the growth and succinic acid production by A. succinogenes and
screened customized PCS blends for cell immobilization and succinic acid production [74].
Then, the effectiveness of these supports was evaluated in repeated-batch and continuous
fermentation with immobilized and suspended-cell systems [63]. For the continuous mode
in the PCS bioreactor, as the dilution rate increased, succinic acid final concentrations and
percentage yields decreased while productivity increased. A maximum of 8.8 g·L−1·h−1

was reached at a dilution rate of 1.2 h−1, whereas a maximum productivity of 7.0 g·L−1·h−1

was obtained at a dilution rate of 1.0 h−1 for suspended culture. In batch fermentation,
A. succinogenes was able to tolerate high initial glucose concentrations. However, the overall
production rate was higher at lower glucose concentrations (0.9 g·L−1·h−1), which suggests
the need to continuously remove the succinic acid from the fermentation broth due to prod-
uct inhibition.Another series of studies exploring the continuous production of succinic
acid was performed by Bradfield and colleagues [42,65,75]. In their last study, Bradfield
and Nicol [42] employed different types of biofilm supports (tightly bound wooden sticks,
silicone-tubing segments, and loosely spaced wooden sticks) in three separate fermenta-
tions using a xylose feed stream. The results showed succinic acid yields on xylose of
0.55–0.68 g·g xylose

−1, titers of 10.9–29.4 g·L−1, and productivities of 1.5–3.6 g·L−1·h−1 at
different dilution rates. Although these levels were lower than the maximum achieved on
glucose (4.4 g·L−1·h−1) in their previous work [75], the authors believe that succinic acid
productions on xylose and glucose are comparable, suggesting that industrially relevant
biomass feedstocks can be employed in the production of valuable compounds. Moreover,
Ferone et al. [76] investigated the continuous anaerobic production of succinic acid by
A. succinogenes for more than 5 months in a packed-bed biofilm reactor with Tygon rings
as immobilization support. The bioreactor was fed with a synthetic medium simulating
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the composition of a lignocellulosic hydrolysate and carbon dioxide (CO2) for the succinic
acid production pathway. The maximum succinic acid productivity (35 g·L−1·h−1) was
obtained using glucose as a carbon source at a dilution rate of 1.9 h−1 and was the highest
productivity reported so far using biofilms reactors. However, the optimum balance be-
tween succinic acid concentration, productivity, and sugar conversion was obtained at a
dilution rate of 0.5 h−1 (43 g·L−1, 22 g·L−1·h−1, and 88% glucose conversion, respectively).

In addition to lactic acid, R. oryzae was employed by Cao et al. [77,78] in the production
of fumaric acid from glucose in a rotating-disk biofilm reactor with polysulfone plastic
disks mounted on a horizontal shaft. The authors created an integrated system of simultane-
ous/continuous production and recovery of fumaric acid by an adsorption column coupled
to the reactor [78]. When R. oryzae produces fumaric acid, a decrease in the pH below a cer-
tain threshold may stop the fermentation. Therefore, adsorbent resins were used to remove
the free acid and moderate the decrease in pH, thereby enhancing the fermentation rate
and maintaining cell viability. As a result, this biofilm reactor reached a concentration of fu-
maric acid of 85 g·L−1, a yield of 91% (w/w), and maximum productivity of 4.25 g·L−1·h−1

within 20 h (compared to 72 h in the suspended-cell reactor). Conversely, in a stirred-tank
fermentation, the productivity was 0.9 g·L−1·h−1, about 5 times lower than with biofilms.
The same rotating-disk reactor was operated, supplementing the medium with CaCO3 to
neutralize the pH, as an alternative to the adsorbent unit, and the fumaric acid productivity
in the biofilm reactor was 3.78 g·L−1·h−1 within 24 h, about 5 times higher than with the
stirred-tank fermenter, and the fermentation time was shortened by one-third [77]. The
biofilm reactor was operated for 2 weeks without loss of biological activity.

A rotating-disk biofilm reactor was similarly used by Wang et al. [79] to produce
citric acid by Aspergillus niger immobilized in polyurethane foam disks. The volumetric
productivity obtained with the immobilized cell culture was 0.9 g·L−1·h−1 (weight yield
of 72%), about 3 times higher than a stirred-tank fermenter with suspended cell culture
(0.33 g·L−1·h−1; weight yield of 60%). Additionally, the immobilized biofilm was active for
eight repeated-batch cycles without losing bioactivity. More recently, Yu et al. [80] devel-
oped a new carrier material termed PAF201 (polymeric porous foam made of polyurethane
and carbon black) for A. niger immobilization with improved citric acid yield and produc-
tivity levels. PAF201 demonstrated improved cell immobilization and glucose consumption
compared with other materials. Moreover, this carrier reduced the fermentation period
(72 h) compared to planktonic cells (96 h). In a repeated fed-batch fermentation, the pro-
duction of citric acid using cassava medium and immobilized A. niger showed maximum
citric acid yields, concentrations, and productivity of 90%, 163 g·L−1, and 2.26 g·L−1·h−1,
respectively, which were kept constant in all batches, demonstrating long-term stability.
On the other side, the citric acid productivity of the suspended cell system was almost half
of immobilized fermentation (1.41 g·L−1·h−1).

As for acetic acid, Horiuchi et al. [54] operated a packed-bed reactor with Acetobacter
pasteurianus immobilized in charcoal pellets. The acetic acid productivity reached a maxi-
mum of 6.5 and 3.9 g·L−1·h−1 with a supply of O2-enriched air (40%) and normal aeration,
respectively, indicating that the process was limited by oxygen transfer. The charcoal
pellets were obtained at low cost from agricultural wastes and presented a porosity and
specific surface area appropriate for bacterial adhesion; also promoting good operational
stability since the system was continuously operated for 180 days. On the other side,
Talabardon et al. [52] investigated the production of acetic acid from lactose and milk per-
meate, a by-product of the ultrafiltration of milk, using an anaerobic thermophilic co-culture
of Clostridium thermolacticum and Moorella thermoautotrophica. In this fermentation process,
C. thermolacticum converts lactose into lactic acid, which is thereby converted into acetic acid
by M. thermoautotrophica. The fermentation kinetics were compared between a suspended
cell reactor and an immobilized-cell fibrous-bed reactor in fed-batch fermentations at 58 ◦C.
The acetic acid final concentration (22.0–22.5 g·L−1) and productivity (0.18–0.54 g·L−1·h−1)
achieved in a fibrous-bed bioreactor using either lactose or milk permeate were signifi-
cantly higher compared to those from the suspended cell fermentation (final concentration,
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15 g·L−1; productivity, 0.06–0.08 g·L−1·h−1). The higher productivity of the fibrous-bed
bioreactor was attributed to the higher cell density (20 g·L−1), approximately 10 times
higher than in the planktonic culture (2 g·L−1). Additionally, the higher acetic acid yields
and concentrations in the bioreactor were attributed to the mitigation of ethanol production
as a by-product, and to the ability of the immobilized cells to adapt and tolerate higher
product concentrations, respectively.

Gibberellic acid was produced from a milk permeate by the fungi Fusarium moniliforme
immobilized in loofah sponge disks [55]. The effect of incubation temperature, initial pH,
number of disks, and its reusability for gibberellic acid production was evaluated. The
best gibberellic acid productivity of 15.6 mg·L−1·h−1 was reached at pH 5 after 6 days of
incubation. Additionally, the F. moniliforme cells immobilized on the loofah sponge were
reused in repeated batches and showed high production stability.

Liu et al. [59] used a PCS-immobilized bioreactor to produce kojic acid (an acid with
strong metal chelating capacity widely used in cosmetic and food industries) by Aspergillus
oryzae in repeated-batch fermentations. The use of a nitrogen-deficient (Ndef) medium
created differences in mycelium morphology between the free suspension and the PCS-
immobilized cultures. Mycelia in the Ndef medium had a feather-like structure, while in
suspension, mycelia were more compact. These morphology changes were assumed to
increase the surface area for absorbing more nutrients, which resulted in increased kojic
acid production. In addition, RNA expression (kojA and kojT) under nitrogen starvation
was 2.5 times higher than the control with full nitrogen, indicating that nitrogen deficiency
influenced kojic acid production at the transcriptional level. This PCS immobilized fermen-
tation system decreased the time needed to reach higher productions and productivities,
where 83.47 g·L−1 of kojic acid was produced with a productivity of 3.09 g·L−1·day−1,
which is higher than free-suspension in batch fermentation.
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Table 1. Different classes of organic acids produced in biofilm reactors.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(g·L−1·h−1) Productivity Increment c Ref.

Lactic acid Lactobacillus casei
subsp. rhamnosus

Glucose as CS and YE
as NS PCS Packed-bed reactor (B) b 1584 4.3 1.5 [62,72,73]

Stirred-tank reactor (C) n.d. 9.88 n.a. [24]

Lactobacillus delbrueckii Glucose as CS and YE
as NS Glass Tubular biofilm reactor (C) 504 10 6–8 [39]

MRS medium with
molasses as CS Polyurethane foam Packed-bed biofilm reactor

and stirred-tank reactor (C) 1000 5 4 [46]

Rhizopus oryzae Glucose and cornstarch
as CS Cotton cloth Rotating fibrous bed

bioreactor (FB) 200 2.5 n.a. [51]

Potato starch Loofah sponge Airlift reactor (B) 48 5 g·L−1 1.7 [56]

Succinic acid Actinobacillus succinogenes Xylose as CS and YE as NS Wooden sticks and
silicone-tubing segments n.d. (C) 1500 3.6 n.a. [42]

Glucose as CS and YE
as NS PCS Stirred-tank reactor (B, C) b n.d. 8.8 1.25 [63,74]

Glucose and CO2 as CS,
and YE as NS Poraver beads Packed-bed reactor (C) 80 10.8 n.a. [81]

Tygon rings 3600 35 n.a. [76]

Fumaric acid Rhizopus oryzae Glucose as CS Polysulfone plastic disks
Rotary biofilm
contactor (FB) b 20 a 4.25 5 [77,78]

Citric acid Aspergillus niger Sucrose as CS Polyurethane foam
Rotary biofilm
contactor (FB) b 120 a 0.90 3 [79]

Sucrose and sugar cane
juice as CS Cellulose microfibrils Recycle reactor (C, FB) 624 2.08 1.8 [82]

Glucose as CS dissolved in
wheat bran extract and
cassava-based medium

Polyurethane and carbon
black foam Flasks (FB) b 72 a 2.26 2 [80]

Acetic acid Acetobacter pasteurianus Glucose as CS and ethanol
as BS Charcoal pellets Packed-bed reactor (C) 4320 6.45 n.a. [54]

Clostridium thermolacticum
and Moorella

thermoautotrophica

Lactose and milk permeate
as CS and trypticase and

YE as NS

Cotton towel overlaid with
a stainless-steel wire cloth

Fibrous-bed bioreactor
(B, FB) b 336 a 0.54 6 [52]
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Table 1. Cont.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(g·L−1·h−1) Productivity Increment c Ref.

Propionic acid Propionibacterium
acidipropionici

Sorghum bagasse
hemicellulosic

hydrolysate
Sorghum bagasse Glass column (B) b 146 1.17 6 [83]

Glycolic acid Pseudomonas diminuta Ethylene glycol as the BS Stainless steel
structured packing

Aerated trickle-bed biofilm
reactor (C) 1536 1.6 5 [84]

Gibberellic acid Fusarium moniliforme Milk permeate Loofah sponge Shaking flask (B) b 144 1.6 × 10−2 1.4 [55]

Gluconic acid Aspergillus niger Deproteinized whey Polyurethane foam Erlenmeyer flasks (B) 72 92 g·L−1 1.33 [85]

Fatty acids (ac-
etate, propionate,

and butyrate)

Methanogens and
acid-producing bacteria Methane as BS Hollow fiber membranes Membrane biofilm

reactor (B) b 12 a 0.42 n.a. [86]

Kojic acid Aspergillus oryzae Glucose as CS PCS Shaking flasks (B) b 648 0.13 >1 [59]

a batch duration; b repeated-batch or fed-batch mode; c Productivity increment corresponds to the productivity ratio between biofilms and suspended cell processes. When productivity
increment is not reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity obtained with planktonic cultures.
Abbreviations: B, batch culture; C, continuous feeding; FB, fed-batch culture; CS, carbon source; YE, yeast extract; NS, nitrogen source; BS, biotransformation substrate; PCS, plastic
composite supports; MRS, De Man, Rogosa, and Sharpe broth; n.a., not applicable; n.d., not described.
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2.2. Enzymes

The production of enzymes by the application of biofilm reactors has been scarcely
investigated (Table 2). The production of cellulase, a lignocellulosic material with applicabil-
ity in biofuel production and textile, paper, and pulp industries [87], using biofilm reactors
was firstly reported by Webb et al. [88] using Trichoderma viride immobilized on stainless
steel particles in a spouted-bed fermenter. They obtained a volumetric productivity of
31.5 U·L−1·h−1, which was more than three times higher compared with suspended cells.
Since then, a few studies were performed on cellulase production in biofilms. Hui et al. [89]
examined the stability of the Aspergillus terreus suspended cells and immobilized onto
woven nylon pads with respect to cellulase production under repeated-batch fermentations.
They found that the immobilization extended enzyme production for longer periods (about
120 days vs. 40 days) with a nearly 4.5-fold increase in productivity (with a cumulative
enzyme activity of 453 U compared to 114 U) when compared to suspended cells.

Other ligninolytic enzymes, lignin (LiP) and manganese (MnG) peroxidases, were
produced by the white-rot fungus Phanerochaete chrysosporium. Solomon and Petersen [30]
described the production of these ligninolytic enzymes in a polysulfone membrane gra-
dostat bioreactor. The study of the effect of operating parameters on enzyme production
revealed higher activities at higher temperatures and lower glucose and ammonium con-
centrations. The maximum LiP and MnP were 35 and 96 U·L−1, respectively. The same
biofilm system was used by Govender et al. [90] for the continuous production of MnP. In
an initial screening, the authors optimized the effect of nutrient additives (Mn2+, Tween
80, and soybean-derived phospholipids) and oxygenation on MnP production and biofilm
morphology and physiology. Oxygenation tangential to the biofilm has shown higher
peroxidase activity (112 U·L−1) compared with oxygenation via a side arm (39 U·L−1) and
bubbling O2 into the media (66 U·L−1). Additionally, the nutrient additives enhanced MnP
activity both individually and when combined, resulting in a 58% increase in peroxidase
activity compared to the conventional medium and a productivity of 1.3 U·L−1·h−1 under
optimal conditions. In addition, Khiyami et al. [23] investigated the production of LiP and
MnP in a biofilm stirred tank reactor holding PCS tubes. The addition of veratryl alcohol,
a production activator, and aeration effectively improved the yield. The highest LiP and
MnP activities were 50 and 63 U·L−1, respectively.

Yang et al. [91] described the application of Rhizopus arrhizus immobilized in
polyurethane for lipase production. Lipase production was optimized regarding culture
conditions where temperatures under 27 ◦C, a neutral pH, increasing levels of aeration, and
the use of soybean flour and oils as nitrogen and carbon sources, respectively, enhanced
lipase production and activity. The lipase productivity of immobilized cells during the
repeated-batch fermentation in 250 mL flasks (17.6 U·mL−1·h−1) was about three times
higher than a 5 L fermentor (6.1 U·mL−1·h−1), and the fermentation time was also short-
ened (nine and six consecutive batches in 140 h, respectively). This demonstrates the
difficulty in reproducing the lab-scale results in large-scale biofilm reactors.
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Table 2. Different classes of enzymes produced in biofilm reactors.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(U·L−1) Productivity Increment c Ref.

Cellulase Trichoderma viride Glucose as CS Stainless steel spheres Spouted-bed reactor (C) 336 31.5 U·L−1·h−1 3 [88]

Aspergillus niger Ground rice straw Celite and
polyurethane foams

Bubble column
fermenter and shaking

flasks (B)
168 1400 2 [66]

Aspergillus terreus Cellulose as CS Woven nylon pads n.d. (B) b 2880 2400 4.5 [89]

Lignin peroxidase
and Manganese

peroxidase

Phanerochaete
chrysosporium Glucose as CS Polysulfone capillary

membrane
Membrane gradostat

bioreactor (C) 336 LiP = 35
MnP = 96 n.a. [30]

PCS Stirred-tank reactor (B) b 144 a LiP = 50
MnP = 63 n.a. [23]

Polystyrene foam Shaking flasks (B) 192 MnP = 421 1.2 [92]
Phospholipid-rich

medium
Polysulfone capillary

membrane
Membrane gradostat

bioreactor (C) 552 1.3 U·L−1·h−1 n.a. [90]

Lipase Rhizopus arrhizus Peanut oil as CS and
soybean flour as NS Polyurethane Shaking flasks (B) b 140 1.76 × 104 U·L−1·h−1 n.a. [91]

a batch duration; b repeated-batch or fed-batch mode; c Productivity increment corresponds to the productivity ratio between biofilms and suspended cell processes. When productivity
increment is not reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity obtained with planktonic cultures.
Abbreviations: B, batch culture; C, continuous feeding; SC, semi-continuous feeding; CS, carbon source; PCS, plastic composite supports; LiP, Lignin peroxidase; MnP, Manganese
peroxidase; U, activity unit; n.a., not applicable; n.d., not described.
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2.3. Polysaccharides

Compared to the other substances, the production of polysaccharides using biofilm
reactors has barely been studied (Table 3). Bacterial cellulose was successfully produced
by Cheng et al. [93,94] using Acetobacter xylinum immobilized in a PCS biofilm reactor.
The high biomass density accumulated on the PCS resulted in a bacterial cellulose pro-
duction of 7.05 g·L−1, about 2.5-fold higher than with the suspended-growth reactors
(2.82 g·L−1) [94]. Moreover, improved mechanical properties (elastic deformation, strain
at break, and mechanical strength) and thermal stability were observed for the PCS-
grown bacterial cellulose. Higher production values were obtained more recently by
Rahman et al. [95] which, similarly to Meleigy and Khalaf [55], used a natural loofah
sponge as a scaffold for cell immobilization, in this case, using Gluconacetobacter kombuchae
for the production of bacterial cellulose for 15 days. Bacterial cellulose production was
compared between immobilized and non-immobilized cells, where immobilization on
loofah supports resulted in approximately two times more product than in the absence of
support. Moreover, several cultivation parameters were analyzed and optimized, including
the initial pH, static or shaking conditions, inoculum size, nitrogen source, carbon/nitrogen
ratio, and supplements that facilitate cellulose production (ethanol and acetic acid). A max-
imum cellulose production of 24 g·L−1 was obtained under shaking conditions, at an initial
pH of 5.5, using yeast extract as a nitrogen source and a C/N ratio of 40 supplemented
with ethanol.

Likewise, pullulan production was extensively investigated by Cheng et al. using
Aureobasidium pullulans immobilized in PCS tubes connected to a stirred-tank
reactor [58,96–98]. First, they tested numerous types of PCS with different compositions
and assessed the effects of various pH profiles on pullulan production and biofilm for-
mation [58]. A pullulan concentration of 32.9 g·L−1 with a purity of 96% was achieved
in the biofilm reactor, which was 1.8 times higher than in a cell suspension, although the
production rate was lower (0.44 g·L−1·h−1 vs. 0.68 g·L−1·h−1, respectively). Subsequently,
they optimized the concentrations of sucrose and nitrogen sources (ammonium sulfate and
yeast extract) in the medium for pullulan production using a Response Surface Methodol-
ogy [96]. Medium optimization improved pullulan production up to 60.7 g·L−1 in 7 days,
which was 2.4-fold higher than suspensions. Lastly, the effects of different concentrations of
ammonium sulfate and sucrose and dilution rates were evaluated for continuous pullulan
production [98]. The maximum pullulan production rate was improved compared with
their previous studies (1.33 g·L−1·h−1 at a dilution rate of 0.16 h−1).

Additionally, Mesquita et al. [99] studied the production of xanthan gum with
Xanthomonas campestris immobilized in polyurethane, and evaluated the storage stabil-
ity and capacity for recycling the immobilized cells. The volumetric xanthan productivity
with immobilized cells (0.62 g·L−1·h−1) was higher than in suspended-growth culture
(0.12 g·L−1·h−1), indicating that immobilization improved the production of xanthan gum.
Additionally, the immobilized cells demonstrated the capacity to be reused up to six times
without losing significant activity. In a more recent study, Nejadmansouri et al. [100] com-
pared the production of xanthan gum on different types of supports, demonstrating the
improvement in xanthan production compared with the control without supports.
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Table 3. Different classes of polysaccharides produced in biofilm reactors.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(g·L−1·h−1) Productivity Increment b Ref.

Bacterial cellulose Acetobacter xylinum Corn steep liquor with
fructose as CS PCS Stirred-tank reactor (B) 120 5.9 × 10−2 2.5 [93,94]

Gluconacetobacter kombuchae Sucrose as CS and YE
as NS Loofah sponge Shaking flasks (B) 360 6.7 × 10−2 2 [95]

Gluconacetobacter xylinum Corn steep liquor
with fructose PCS Rotating-disk bioreactor (B) a 120 1.0 × 10−2 n.a. [38]

Pullulan Aureobasidium pullulans Sucrose as CS, ammonium
sulfate and YE as NS PCS Stirred-tank reactor

(B, C, FB) 168 1.33 3 [58,96–98]

Xanthan gum Xanthomonas campestris YM medium with sucrose
as CS Polyurethane Shaking flask (B) 96 0.62 3.6 [99]

YPD broth Polyethylene n.d. (B) 72 8 g·L−1 2.5 [100]

a repeated-batch or fed-batch mode; b Productivity increment corresponds to the productivity ratio between biofilms and suspended cell processes. When productivity increment is not
reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity obtained with planktonic cultures. Abbreviations:
B, batch culture; C, continuous feeding; FB, fed-batch culture; CS, carbon source; YE, yeast extract; NS, nitrogen source; PCS, plastic composite supports; n.a., not applicable;
n.d., not described.
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2.4. Antimicrobial Compounds

Antibiotic production is usually performed using suspended-cell cultures [49]. How-
ever, cell immobilization proved to be efficacious and enhanced the productivity of antibi-
otics (including neomycin and cephalosporin) and other antimicrobial compounds such
as bacteriocins and other proteins with bactericidal activity (Table 4) [101]. Pediococcus
acidilactici immobilized on κ-carrageenan/locust bean gum gel beads was explored by
Naghmouch et al. [102] for pediocin production in MRS broth and supplemented whey
permeate medium. Pediocin is a bacteriocin with inhibitory action against some food-
borne pathogenic and spoilage microorganisms involved in foodborne outbreaks [103]. An
increased pediocin volumetric productivity was obtained in a repeated-cycle batch with
immobilized cells (5461 AU·mL−1·h−1) compared with free cells (342 AU·mL−1·h−1). More-
over, the maximum activity of pediocin was reached after 0.75- and 2-h incubation cycles in
MRS broth and whey permeate medium (2048 AU·mL−1·h−1), respectively, indicating the
feasibility of using a low-cost medium such as whey permeate for high pediocin production.

Liu et al. [104] used a similar reactor type and immobilization supports for nisin
production (a biopreservative for the food industry [105]) by Lactococcus lactis. Laboratory
media (5.2 × 107 AU·L−1·h−1) and whey permeate (1.0 × 107 AU·L−1·h−1) originated sim-
ilar productivities, which introduced whey permeate as an economical alternative for sus-
tainable production of bacteriocins. Furthermore, the bioreactor was continuously operated
for 6 months without clogging or contaminations, indicating long-term stability. Pongtha-
rangkul and Demirci [106–109] also performed a set of studies on nisin production using a
biofilm reactor with PCS tubes immobilizing L. lactis. The high biomass density attained
with biofilm reactors was reflected in a shorter lag time of nisin production in comparison
to the suspended-cell reactor, and sucrose (1100 IU·mL−1) increased nisin production sub-
stantially by 1.9-fold as related to glucose (579 IU·mL−1); however, high concentrations of
sucrose stimulated lactic acid production, negatively affecting nisin production, as well as
high magnesium concentrations [106]. Additionally, the levels of nisin production were
greatly affected by the pH, andproduction in the biofilm reactor (3553 IU·mL−1) was about
1.8 times higher than in the suspended-cell system (2018 IU·mL−1) [107]. In a fed-batch
fermentation, nisin production was enhanced for both suspended-cell (4188 IU·mL−1) and
biofilm (4314 IU·mL−1) reactors, achieving 1.8- and 2.3-fold higher nisin titers than their
respective batch fermentation due to the mitigation of substrate limitation and product inhi-
bition [108]. Lastly, the implementation of an online recovery unit of silicic acid (adsorbent)
coupled with a micro-filter module successfully recovered nisin from the fermentation broth
and significantly improved nisin production (7445 IU·mL−1), approximately 4-fold when
compared with the batch fermentation without the online recovery (1897 IU·mL−1) [109].

Srivastava and Kundu [34] produced Cephalosporin-C using Cephalosporium acremonium
immobilized on an inert porous Siran carrier in an airlift reactor. Cephalosporin-C productivity
was significantly improved in biofilm reactors (7.1 × 10−3 g·L−1·h−1) compared to suspended
cell cultures (4.3× 10−3 g·L−1·h−1). By using a similar reactor, Srinivasulu et al. [49] immobilized
Streptomyces marinensis in alginate beads to produce neomycin, and also compared the effect
of dilution rate and the use of planktonic cells on volumetric productivity. The maximum
neomycin productivity with immobilized cells was 7.5 × 10−3 g·L−1·h−1 at a dilution rate of
0.065 h−1, about 2.5 times higher than with suspended cells.

More recently, Ercan and Demirci [110–113] performed stepped studies on the produc-
tion of human lysozyme using the fungi Kluyveromyces lactis on PCS-grid biofilm reactors.
Lysozyme is a lytic enzyme targeting bacterial cell walls with application in medicine,
cosmetics, and food industries. Firstly, the growth conditions of K. lactis and the fermenta-
tion medium were optimized to maximize lysozyme production and biofilm formation on
PCS [110,111]. The optimum conditions for lysozyme and biomass productions were differ-
ent, so a shift in pH and aeration was done after biofilm formation to increase lysozyme
secretion, achieving a lysozyme production of 173 U·mL−1. Later, the authors conducted
fed-batch and continuous fermentations under the optimum operation conditions deter-
mined above [112]. Regarding the fed-batch fermentation, an initial feeding of glucose and
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continuous addition of lactose showed the highest lysozyme concentration and productivity
(187 U·mL−1 and 5.9 U·mL−1·h−1, respectively) compared to their previous study in batch
conditions (173 U·mL−1 and 4 U·mL−1·h−1). Continuous fermentation also supported
significantly higher productivity (7.5 U·mL−1·h−1) over batch and fed-batch fermentations
in a biofilm reactor and suspended cell reactor (4 U·mL−1·h−1). Finally, fermentation in a
biofilm reactor was coupled to an online recovery system using silicic acid as an adsorbent
to enhance lysozyme production and recovery [113]. The adsorption and desorption condi-
tions of the recovery system were optimized, accomplishing 96% lysozyme adsorption and
98% desorption. The simultaneous fermentation and online lysozyme recovery improved
the production to 280 U·mL−1, which was 63% higher than without the online recovery
system (173 U·mL−1), demonstrating, just as Pongtharangkul and Demirci [109] did, that
the use of recovery systems to recuperate bioactive compounds during fermentation has
great potential to enhance the effectiveness of these processes.

Table 4. Different classes of antimicrobial compounds produced in biofilm reactors.

Product Producers Substrate Immobilization
Material Reactor Type Process Time

(h)
Maximum

Productivity
Productivity
Increment c Ref.

Nisin
Lactococcus
lactis subsp.

lactis
Whey permeate k-carrageenan/locust

bean gum gel beads Stirred-tank reactor (B) b 1 a 5.7 × 106

AU·L−1 ·h−1 6.7 [22]

Lactose and whey
permeate as CS

Spiral wound
fibrous matrix Packed-bed reactor (C) 4320 5.2 × 107

AU·L−1 ·h−1 n.a. [104]

Sucrose as CS PCS Stirred-tank reactor
(B, FB) b 12 7.6 × 106

IU·L−1 ·h−1 1.8 [106–109]

Pediocin Pediococcus
acidilactici MRS medium Spiral wound

fibrous matrix
Packed-bed biofilm

reactor (C) 2160 4.2 × 105

AU·L−1 ·h−1 n.a. [114]

MRS medium
and supplemented

whey permeate
medium

k-carrageenan/
locust bean gum

gel beads
Stirred-tank reactor (B) b 0.75 a 5.5 × 106

AU·L−1 ·h−1 16 [102]

Cephalosporin-C Cephalosporium
acremonium Sucrose as CS Siran beads Airlift reactor (FB) 180 7.1 × 10−3

g·L−1 ·h−1 1.65 [34]

Neomycin Streptomyces
marinensis Maltose as CS Alginate beads Airlift reactor (C) 16 7.5 × 10−3

g·L−1 ·h−1 2.5 [49]

Erlenmeyer flasks 96 6.7 × 10−2

g·L−1 ·h−1 1.3 [115]

Lysozyme Kluyveromyces
lactis Lactose as CS PCS Stirred-tank reactor

(B, C, FB) 74 2.8 × 105

U·L−1 1.8 [110–113]

a batch duration; b repeated-batch or fed-batch mode; c Productivity increment corresponds to the productivity
ratio between biofilms and suspended cell processes. When productivity increment is not reported, it was
calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity
obtained with planktonic cultures. Abbreviations: B, batch culture; C, continuous feeding; FB, fed-batch culture;
CS, carbon source; NS, nitrogen source; PCS, plastic composite support; MRS, De Man, Rogosa, and Sharpe broth;
U, activity unit; AU, Anson unit; IU, international unit; n.a., not applicable.

2.5. Alcohols and Solvents

The production of alcohols and solvents, such as ethanol, butanol, and acetone, is a
classic example of the use of biofilm reactors in the biotechnological scope (Table 5). Ethanol
production was largely studied in different geometries of biofilm reactors. Kunduru
and Pometto [116] investigated the continuous production of ethanol in a packed-bed
reactor with PCS chips carrying Zymomonas mobilis or Saccharomyces cerevisiae in a long-
term fermentation for 60 days. A maximum volumetric ethanol productivity of 536 and
76 g·L−1·h−1 were obtained for Z. mobilis and S. cerevisiae at dilution rates of 15 and
3 h−1, respectively, and these values were 100- and 15-fold higher than those obtained in
suspension cultures. Later, lower productivity values of 2.31 g·L−1·h−1 were obtained
by Izmirlioglu and Demirci [67] in a biofilm reactor with PCS-grid tubes immobilizing
S. cerevisiae. The optimal growth parameters for S. cerevisiae in this biofilm reactor were
found to be 34 ◦C, pH 4.2, and 100 rpm, reaching an ethanol concentration of 37 g·L−1

and a theoretical yield of 92%. The high porosity of PCS increased the surface area and
established a very dense biofilm. In a different study, Shen et al. [117] surpassed the mass
transfer limitations commonly observed in ethanol production by syngas fermentation
through the use of a horizontal rotating packed bed (h-RPB) reactor. Biofilms of Clostridium
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carboxidivorans were immobilized on high-density polyethylene carriers and contacted
the liquid and headspace alternately by the continuous reactor rotation. The gas transfer
was more prominent in the headspace phase of the h-RPB reactor, which contributed
significantly to cell growth and ethanol production. The reactor was continuously operated
for 190 days at various rotational speeds, headspace pressures, and dilution rates. The
maximum ethanol titer and productivity were 7.0 g·L−1 and 6.7 g·L−1·day−1, respectively,
achieved at a dilution rate of 0.96 day−1, which was about 3.3-fold higher than those
obtained in continuous stirred-tank reactors. The combination of a simple mechanical
design, inexpensive parts for assembly, low power, and high ethanol demands make this
reactor system efficient for syngas fermentation.

Gross et al. [29] used two recombinant Pseudomonas sp. strains (Pseudomonas sp.
strain VLB120 pBT10 and P. putida PpS81 pBT10) in a silicone membrane biofilm reactor
to continuously produce 1-octanol from octane. The volumetric productivities of both
biofilms were 0.74 and 1.3 g·L−1·day−1 for about 30 and 7 days, respectively, similarly
to the suspended cell reactor (1.0 g·L−1·day−1). Bioreactor aeration enhanced octanol
synthesis by P. putida and decreased synthesis by Pseudomonas sp. strain VLB120, possibly
due to the metabolization of octanol by the host’s alcohol dehydrogenases.

More recently, Hoschek et al. [118] used a dual-species biofilm of cyanobacterium
Synechocystis sp. and Pseudomonas taiwanensis, both carrying the recombinant cyclohexane
monooxygenase responsible for the oxyfunctionalization of cyclohexane to cyclohexanol.
Their complementary properties regarding O2 metabolism resulted in higher cell densities
compared to single-species biofilms since P. taiwanensis consumed the O2 fed to the capillary
reactor, avoiding the inhibition of the Synechocystis sp. growth. This cooperation enabled
the continuous cyclohexane conversion in cyclohexanol for a month with a productivity of
0.2 g·L−1·h−1.

The production of solvents (acetone, butanol, and ethanol—ABE) by solventogenic
Clostridia (e.g., Clostridium acetobutylicum and Clostridium beijerinckii) fermentation has
been attempted using microbial biofilms in order to make ABE production environmentally
favorable by the use of renewable resources such as corn derivates, whey permeates,
or different molasses [119,120]. Lee et al. [121] investigated the production of butanol
by suspended or polyvinyl alcohol-immobilized cultures of C. beijerinckii in batch and
continuous fermentations. The ratio of acetone/butanol was affected by the addition
of acetate and butyrate, which enhanced the production of solvents, presumably due to
a shift in the metabolic pathway toward solvent production. The addition of butyrate
significantly increased butanol production in both immobilized and freely suspended
cells. During continuous mode, the butanol productivity and yield were 0.40 g·L−1·h−1

and 0.44 g-butanol·g-glucose
−1, respectively, about 2 times higher than those obtained with

suspended cells (0.22 g·L−1·h−1 and 0.24 g-butanol·g-glucose
−1). Moreover, supplementation

with butyrate shifted the acetone/butanol ratio to 1:3 and prevented strain degeneration for
150 days, even in the presence of high butanol concentrations. In turn, Napoli et al. [122]
used C. acetobutylicum immobilized in Tygon rings loaded in a packed-bed reactor for
continuous butanol production for 750 h under several operational conditions (dilution
rates, pH, and substrate concentrations). A complex media supplemented with lactose and
yeast extract was employed to reproduce the nutritional characteristics of cheese whey
wastewater. The maximum butanol productivity was 4.4 g·L−1·h−1 at a dilution rate of
1.0 h−1. Ethanol and acetone were also produced at lower concentrations alongside butanol
(butanol selectivity of 88%). In addition, the existence of pH gradients towards the bottom
layers of the biofilms was demonstrated, requiring a pH in the bulk higher than the optimal
pH for suspended cell processes.
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Table 5. Different classes of alcohols and solvents produced in biofilm reactors.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(g·L−1·h−1) Productivity Increment c Ref.

Ethanol Zymononas mobilis Glucose as CS and YE
as NS PCS Packed-bed reactor (C) 1440 536 100 [116]

Rice straw hydrolysate Plastic and corn silk
composites carriers Packed-bed reactor (B, C) b 120 YP/S = 0.47 g·g−1 n.a. [68]

Saccharomyces cerevisiae Starch Loofah sponge Packed-bed reactor (B) b 168 a 0.25 1 [123]
Potato waste hydrolysate PCS Stirred-tank reactor (B) b 48 2.31 n.a. [67]

Clostridium carboxidivorans Fructose as CS and syngas
as BS AnoxKaldnes K1 carriers Horizontal rotating

packed-bed reactor (C) 4560 0.28 n.a. [117]

1-Octanol Recombinant
Pseudomonas putida Octane as BS Silicone membrane Biofilm membrane

reactor (C) 720 5.0 × 10−2 1.3 [29]

Cyclohexanol Synechocystis sp. and
Pseudomonas taiwanensis Cyclohexane as BS Glass Capillary reactor (C) 720 0.2 n.a. [118]

1,3-propanediol Klebsiella pneumoniae Glycerol as CS Porous hydrophobic
polyurethane Fixed-bed reactor (FB) b 1460 1.7 1.1 [47]

ABE solvents (acetone,
butanol, and ethanol) Clostridia beijerinckii Glucose as CS and YE as

NS Corn stalk pieces Biofilm reactor (C) 480 5.06 23 [53]

Clostridium acetobutylicum Lactose as CS and yeast
extract as NS Tygon rings Packed-bed biofilm

reactor (C) 750 4.4 n.a. [122]

a batch duration; b repeated-batch or fed-batch mode; c Productivity increment corresponds to the productivity ratio between biofilms and suspended cell processes. When productivity
increment is not reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity obtained with planktonic cultures.
Abbreviations: B, batch culture; C, continuous feeding; FB, fed-batch culture; CS, carbon source; YE, yeast extract; NS, nitrogen source; BS, biotransformation substrate; PCS, plastic
composite support; YP/S, ethanol yield; n.a., not applicable.
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2.6. Other Compounds

Apart from organic acids, enzymes, polysaccharides, alcohols, and antimicrobial substances,
other chemicals such as hydrogen, (S)-styrene oxide, benzaldehyde, and dihydroxyacetone
have been produced using biofilm reactors (Table 6). In similar studies, Manssouri et al. [44]
and Inoue et al. [43] produced hydrogen from sucrose-based synthetic wastewater in stirred
anaerobic sequencing batch biofilm reactors by an anaerobic sludge immobilized on low-density
polyethylene pellets. Using different feeding strategies, maximum molar hydrogen productivities
of 39.9 mol·m−3·day−1 (batch) and 81.2 mol·m−3·day−1 (fed-batch) were obtained, respectively.
More recently, Kongjan et al. [124] compared the application of a granule up-flow anaerobic
sludge blanket reactor and an up-flow anaerobic packed-bed reactor with plastic biofilm supports
for the continuous production of hydrogen by using a microbial consortium composed of
moderate thermophilic cultures. The H2 production rate and yield at the optimal cultivation
conditions were higher for the granules reactor (0.63 L-H2·L−1·h−1 and 0.25 L-H2·g-xylose

−1,
respectively) compared with the biofilm reactor (0.55 L-H2·L−1·h−1 and 0.22 L-H2·g-xylose

−1,
respectively), with acetate and butyrate as the main metabolite products. However, the maximum
H2 production rate of 0.81 L-H2·L−1·h−1 was achieved by the biofilm reactor, though the
H2 yield was lower (0.16 L-H2·g-xylose

−1). Lower production rate values were obtained by
Renaudie et al. [125] using a continuous hollow fiber liquid/gas membrane bioreactor originally
seeded with sludge from a wastewater treatment plant containing C. beijerinckii, Clostridium
pasteurianum, and Enterobacter sp. A maximum hydrogen productivity of 0.26 L-H2·L−1·h−1 was
achieved, with acetate and butyrate being the main metabolite products from the glucose feed.

Furthermore, some studies reported continuous (S)-styrene oxide production through
the epoxidation of styrene using the engineered Pseudomonas sp. strain VLB120DC as a
biocatalyst attached in biofilm membrane reactors. Gross et al. [126] reached a maximum
(S)-styrene oxide volumetric productivity of 70 g·L−1·day−1 using a tubular membrane
reactor with a silicone membrane. This process was conducted for more than 50 days
with no substrate or product mass transfer limitations, although high biomass concen-
trations introduced diffusional limitations of oxygen. On the other side, Halan et al. [40]
employed a membrane biofilm reactor equipped with a microporous central ceramic unit
for aeration and cell attachment, and obtained a maximum (S)-styrene oxide productivity
of 28 g·L−1·day−1.

Additionally, the production of dihydroxyacetone (DHA) by Gluconobacter oxydans
immobilized on silicone-coated Ralu-rings was investigated by Hekmat et al. [41] using
a packed-bed bubble column reactor. Although the DHA yield from glycerol fermen-
tation with and without cell immobilization was similar (0.87 and 0.85 kg·kg−1, respec-
tively), DHA productivity was improved from 3.7 kg·m−3·h−1 using suspended biomass
to 5.9 kg·m−3·h−1 with immobilized cells. The silicone matrix was demonstrated to be
biocompatible, durable, mechanically stable, and have high oxygen permeability.

More recently, Roukas [48] attempted the production of carotene by the fungus Blakeslea
trispora in a modified rotary biofilm reactor (MRBR) with polypropylene disks mounted on a
polypropylene shaft. The MRBR enhanced the carotene production six times at optimal con-
ditions compared with the conventional stirred-tank reactor (57.5 and 9.4 mg·L−1·day−1).
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Table 6. Different classes of other added-value compounds produced in biofilm reactors.

Product Producers Substrate Immobilization Material Reactor Type Process Time (h) Maximum Productivity
(g·L−1·h−1) Productivity Increment c Ref.

Hydrogen Anaerobic sludge Sucrose-based
synthetic wastewater Low-density polyethylene

Stirred anaerobic
sequencing batch biofilm

reactor (FB, B) b
2 a 3.4 × 10−3

mol-H2·L−1·h−1 n.a. [43,44]

High-density polyethylene Packed-bed reactor (C) 336–504 0.12 L-H2·L−1·h−1 n.a. [45]
Species of

Thermoanaerobacterium Xylose as CS Plastic carriers Up-flow anaerobic
packed-bed reactor (C) 1368 0.81 L-H2·L−1·h−1 n.a. [124]

Activated sludge Glucose as CS
Hollow-fiber membrane

module of
polytetrafluoroethylene

Liquid/gas membrane
bioreactor (C) 92 0.26 L-H2·L−1·h−1 n.a. [125]

Polyhydroxyalkanoates Bacillus sp. Mineral salt media with
date syrup PCS Stirred-tank reactor (B) b 30 a 0.195 1.4 [127]

Mixed microbial cultures Acetic acid and fermented
greenhouse residues Biofilm carriers Reactor tank 5400 35 mg·g substrate

−1·h−1 n.a. [128]

(S)-Styrene oxide Pseudomonas sp. strain
VLB120∆C

Glucose as CS and styrene
as BS Silicone membrane Tubular membrane

reactor (C) 1200 2.92 n.a. [126]

Styrene as BS Microporous ceramic
aeration unit

Biofilm membrane
reactor (C) 720 1.17 n.a. [40]

Dihydroxyacetone Gluconobacter oxydans Glycerol as CS and YE as NS Silicone-coated Ralu rings Packed-bed bubble column
reactor (FB) b 432 5.9 1.6 [41,129]

Poly(3-hydroxybutyrate) Alcaligenes eutrophus Glucose as CS Anion exchange resin Packed-bed reactor (C) 74 0.04 n.a. [130]

Carotene Blakeslea trispora Glucose and corn steep
liquor as CS Polypropylene disks Rotary biofilm reactor (C) 144 2.4 × 10−3 6 [48]

a batch duration; b repeated-batch or fed-batch mode; c Productivity increment corresponds to the productivity ratio between biofilms and suspended cell processes. When productivity
increment is not reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the maximum productivity obtained with planktonic cultures.
Abbreviations: B, batch culture; C, continuous feeding; FB, fed-batch culture; SC, semi-continuous feeding; CS, carbon source; YE, yeast extract; NS, nitrogen source; BS, biotransformation
substrate; PCS, plastic composite support; n.a., not applicable.
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3. Recombinant Proteins

Recombinant proteins (RPs) are a type of proteins obtained by the isolation and engi-
neering of the gene sequence that encodes the target protein, followed by its introduction
into a selected expression vector (Figure 2) [131,132].
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Figure 2. Production of recombinant proteins in biofilms: advantages and limitations.

The production of recombinant proteins requires the selection of an expression system,
which should consider transcriptional and translational issues [131,132], followed by the
selection of a suitable host between bacteria, yeast, filamentous fungi, mammalian, plant,
and insect cells [133,134]. Despite the variety of host cells available, the selection tends to be
narrowed to a few options as the host selection should take into consideration the intrinsic
protein properties, level of production, cell growth, scalability potential, regulatory issues,
and production cost when moving towards the industrial scale [12,135]. However, due to
the considerable differences in the physicochemical properties of proteins [136], it might be
difficult to predict if a target protein will be obtained in a high amount and in an active
form (for example, inclusion body formation or protein inactivity may impair the yield of
the target protein) [132], often requiring the development of new strategies for optimizing
the production of a recombinant protein. RPs have been used in different fields of everyday
life like biotechnological, food, and medical industries (Table 7).

Table 7. Recombinant proteins produced by biotechnological processes.

Protein Application Reference

GFP Biotechnology
Gene reporter [137–139]

Fusion tag [140,141]

β-galactosidase Food industry
Hydrolyzation of milk products [142,143]

Production of galacto-oligosaccharides [142]

mCherry Biotechnology
Gene reporter [137]

Fusion tag [144]

Insulin (humulin, humalog) Therapeutic (diabetes) [145]

Somatropin Therapeutic (growth) [145]
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The production of recombinant proteins has been mainly performed in suspended
cell cultures. However, some studies have revealed that biofilm reactors can be a more
attractive platform for their production [146–148]. The insertion of a gene into a multicopy
plasmid imposes an added metabolic burden on the host cell due to the metabolites and
energy required for the replication of plasmid DNA and the synthesis of recombinant
proteins [131,149]. In planktonic cells, these events often lead to a decrease in cellular
growth and biomass yields and, consequently, a decrease in the production level of the
target protein [149]. On the other hand, since cells in biofilms grow more slowly than their
planktonic counterparts [150], fewer resources are channeled towards replication, reducing
the metabolic burden associated with plasmid maintenance [148]. Additionally, an increase
in biofilm formation was evidenced due to the presence of expression vectors in bacterial
cells [146]. Since stress conditions can induce biofilm formation [151], the metabolic burden
related to recombinant gene expression may stimulate biofilm formation [146] and increase
the production of the target protein relative to planktonic cells [146,148,152].

The production of recombinant proteins using biofilm platforms has been scarcely
studied in recent decades. It predominantly resorts to bacterial cells, such as Escherichia
coli [148,153,154] or Bacillus subtilis [155], fungal cells, such as A. niger [140] or A. oryzae [141],
and proteins such as β-galactosidase [156–158] and enhanced green fluorescent protein
(eGFP) [146,147,152] (Table 8).

The production of recombinant proteins in biofilms was evaluated using different
platforms: microplates [144,155], parallel-plate flow cell (PPFC) systems [156–158], and a
modified Robbins device [146,153]. Microplates are regularly used for screening assays as
they are easy to handle, high-throughput platforms, and can be used in static or controlled
shaking conditions [159,160]. PPFC systems enable in situ and real-time visualization of
cell adhesion and biofilm formation, and require a lower medium volume when compared
to modified Robbins devices; however, PPFCs have lower throughput when compared to
microplates and modified Robbins devices [161]. The Robbins device was first developed
to monitor biofilm formation in water systems, and since then, several modifications have
been introduced, wherein some used a custom-made and semi-circular flow cell with a set
of characterized hydrodynamic features [160].

Recombinant protein synthesis in biofilms was first described in bacterial biofilms
in 1992 by Huang et al. [156]. They tested the production of β-galactosidase in the E. coli
DH5α strain using a PPFC system. The production of β-galactosidase was only quan-
tifiable when isopropyl β-D-1-thiogalactopyranoside (IPTG) induction was performed,
with the maximum production being obtained 24 h after induction with yields of 0.08, 0.1,
and 0.12 pg·cell−1 for IPTG concentrations of 0.17, 0.34, and 0.51 mM, respectively [156].
Huang et al. [157] continued to study the production of β-galactosidase with another plas-
mid using the same host and cultivation and induction conditions. This study revealed
that β-galactosidase production reached its peak for 0.17 and 0.34 mM IPTG with 0.027
and 0.036 pg·cell−1, respectively, after 36 h of induction, and 0.050 pg·cell−1 for 0.51 mM
IPTG after 48 h of induction. Moreover, β-galactosidase mRNA synthesis rates increased
4-fold under 0.17 mM IPTG, and almost 12-fold under 0.34 and 0.51 mM IPTG after 36 h
of induction. Nevertheless, the production of β-galactosidase did not follow the same
ratio of mRNA synthesis rate, suggesting that mRNA was less stable at higher expression
levels [157].
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Table 8. Synopsis of the published work on the production of recombinant proteins in bacterial biofilms.

Recombinant
Protein

Host
Cultivation Conditions

Production Levels Productivity Increment c Ref.
Reactor Surface Material Culture Medium Temp.(◦C) Hydrodynamics Time (Days) Induction

β-galactosidase

Escherichia coli
DH5α

(pMJR1750) PPFC Glass M9 minimal 37
Laminar flow

(Re = 20) 4–5
IPTG

(0.17–0.51 mM)

0.08–0.12
pg·cell−1 0.25 [156]

Escherichia coli
DH5α

(pTKW106)

0.027–0.050
pg·cell−1 n.a. [157]

eGFP

Escherichia coli
ATCC 33456 PPFC Glass LB 37 Laminar flow

(Re = 32) 6 - 0.01–0.16 g·L−1 n.d. [148]

Escherichia coli
JM109(DE3)

Flow cell PVC

Nutrient
medium a

30
Turbulent flow

(Re = 4600)

12 - 5.8 fg·cell−1 30 [146]

DM and LB 12 - 5.7–12 fg·cell−1 10 [154]
LB 11 IPTG (2 mM) 17 fg·cell−1 n.a. [147]

LB and M9ZB 10 - 1.51–15.96
fg·cell−1 4 [162]

TB

Transient flow
(Re = 2300) and
Turbulent flow

(Re = 4600)

7 - 8.8–21.5 fg·cell−1 4 [163]

D-Amino acid
oxidase

Escherichia coli
TOP10

Static and
shaken reactors

-
HSG4 30

Static conditions
7 IPTG (0.1 mM)

1.2 U·g−1 n.a.
[164]Cellulose

nanofibers 170 rpm 2.1 U·g−1 n.a.

Iturin A Bacillus subtilis 24-well plates - LB 28 Static conditions 6 - 0.6 g·L−1 n.a. [155]

mCherry, EgTrp
and EgA31

(part of
fusion proteins)

Bacillus subtilis

Well plates with a
22 mm2 surface

area and
agar plates

- MSgg 30 Static conditions 3 - n.d. n.d. [144]

GFP (as part of
the GLA-GFP

fusion protein)
Aspergillus niger SFB and

RFB reactor

Cotton cloth
attached to a
stainless-steel

cylinder

Modified
Vogel’s medium 25

Static conditions
100, 400, and

600 rpm
33–34 - 0.1 g·L−1

0.8 g·L−1 n.a. [140]

GFP (as part of
the GLA-GFP

fusion protein)
Aspergillus oryzae BfR fungal reactor Stainless steel

packing
Complex
medium b 30 n.d. 3 - n.a. n.d. [141]

a Nutrient medium composed of 0.55 g·L−1 glucose, 0.25 g·L−1 peptone, 0.125 g·L−1 yeast extract, and phosphate buffer (0.188 g L−1 KH2PO4 and 0.26 g L−1 Na2HPO4), pH 7.0;
b Complex medium composed of 5 g·L−1 soluble starch, 5 g·L−1 casein peptone, and 5 g·L−1 yeast extract; c Productivity increment corresponds to the productivity ratio between
biofilms and suspended cell processes. When productivity increment is not reported, it was calculated as the ratio between the maximum productivity obtained with biofilms and the
maximum productivity obtained with planktonic cultures; Abbreviations: Temp., temperature; PPFC, parallel-plate flow cell; LB, Lysogeny broth; DM, Diluted medium; Re, Reynolds
number; IPTG, isopropyl β-D-1-thiogalactopyranoside; PVC, polyvinyl chloride; SFB, static fibrous bed; RFB, rotating fibrous bed; BfR, biofilm reactor: n.a., not applicable; n.d., not
described. Units: pg·cell−1, picogram of protein per cell; fg·cell−1, femtogram of protein per cell; U, activity unit.
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In 2007, O’Connell et al. [148] investigated the production of eGFP in a biofilm system.
An E. coli strain harboring a pEGFP plasmid was investigated in a PPFC reactor and the
authors studied the impact of ampicillin concentration on cell fluorescence, revealing that
low antibiotic concentrations (between 33 and 100 ppm) lead to 60% of strongly eGFP-
producing cells [148]. Further, the results revealed that the biofilm environment enhanced
plasmid maintenance and heterologous protein production when compared to planktonic
cells, in contrast to what was previously described by Huang et al. [156,157].

Since 2016, Gomes and collaborators have been studying the eGFP production in E. coli
JM109(DE3) strain, both in planktonic and biofilm cells [12,146,147,152–154,162,163]. All
studies were performed in a modified Robbins device with controlled temperature (30 ◦C)
and hydrodynamic conditions (turbulent flow, Reynolds number of 4600, and shear stress of
0.3 Pa) throughout the assays, except for Soares et al. [163] on which turbulent and transient
flow were compared. Initially, Gomes et al. [146] compared eGFP-specific production in
biofilms versus planktonic cells. Experiments revealed that specific eGFP production in
biofilms was about 30-fold higher than in the planktonic state, even without optimization of
cultivation conditions (5.8 and 0.18 fg·cell−1 in biofilm and planktonic state, respectively).
Afterward, Gomes et al. [154] compared eGFP production by using two different culture
media (Lysogeny Broth (LB) and Diluted Medium (DM)) combined with different antibiotic
concentrations (20 and 30 µg·mL−1 kanamycin). LB medium (composed of 10 g·L−1

tryptone and 5 g·L−1 yeast extract) has a substantial amount of carbon and nitrogen and is
a medium regularly used for the expression of recombinant proteins [165]; the DM medium
(composed of 0.55 g·L−1 glucose, 0.25 g·L−1 peptone, and 0.125 g·L−1 yeast extract) was
described as a suitable medium for biofilm development [166]. The eGFP expression was
higher in LB supplemented with 20 µg·mL−1 kanamycin with a specific production of
12 fg·cell−1, in opposition to 5.7 and 6.2 fg·cell−1 obtained with DM containing 20 and
30 µg·mL−1 kanamycin, respectively. Gomes et al. [154] concluded that eGFP production
was higher in the LB medium and that the antibiotic concentration had no effect on the
expression of eGFP. Subsequently, Gomes et al. [153] determined a set of techniques that
could be performed to monitor and quantify fluorescent recombinant protein expression
in biofilm cells. This study used LB medium and revealed that the biofilm population
became increasingly heterogeneous during the assay, which corroborates O’Connell’s
results [148]. Concerning the special distribution, eGFP-expressing cells were mostly
located in the external layers of the biofilm [153]. Gomes et al. [147] also investigated
the eGFP protein expression in non-induced and induced biofilms, resorting to chemical
induction with IPTG at a final concentration of 2 mM. The experiment revealed that eGFP
levels remained constant in the induced biofilm culture over the operation time, with a
specific concentration of around 17 fg·cell−1, whereas in the non-induced biofilms, the
eGFP production decreased by about 31%. Subsequently, Soares et al. [162] investigated the
influence of nutrient conditions on recombinant protein production in biofilms comparing
LB and M9ZB media. M9ZB favored biofilm development, but it had an inhibitory effect
on eGFP expression, possibly due to the presence of glucose in medium composition. On
the other hand, LB medium favored the number of eGFP-expressing cells and eGFP yield,
probably due to the higher nitrogen content compared to M9ZB. Recently, Soares et al. [163]
investigated the influence of hydrodynamics on biofilm formation and eGFP expression
using Terrific Broth (TB) medium. They compared a transient flow regime (Re = 2300)
with a turbulent flow regime (Re = 4600), revealing that higher biofilm eGFP production
was obtained at the higher flow rate with a maximum eGFP production of 21.5 fg·cell−1

(2.5-fold more than under transient flow conditions).
Although GFP protein production has been mainly studied in bacterial biofilms, some

research has been performed with fungal biofilms using GFP as a fusion protein. In
2005, Talabardon et al. [140] studied a recombinant A. niger strain containing a gene that
encodes the glucoamylase-GFP (GLA-GFP) fusion protein to study the glucoamylase and
GFP protein production in both suspension and immobilized biofilm cells. This study
compared a static fibrous bed (SFB) and a rotating fibrous bed (RFB) under different
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hydrodynamics conditions and found that the RFB biofilm was able to produce 0.8 g·L−1

of glucoamylase and GFP, about six times more than in an SFB reactor and ten times more
than in suspended cells.

Zune et al. [141] attempted the production of the GLA-GFP fusion protein in A. oryzae
using a biofilm reactor with a stainless steel packing, whereas one bioreactor was fully
immersed in the liquid medium and the other had a periodic immersion of the biofilm.
The results revealed that the GFP fluorescence was similar in suspended cell cultures and
biofilm reactors under high shear stress conditions. The production of the fusion protein in
the two different configurations of the biofilm reactor was evaluated, revealing that both
achieved similar yield values.

D-Amino acid oxidase (DAAO) is a native protein from Rhodosporidium toruloides and
its production was performed in E. coli TOP10 [164]. The experiment compared static and
shaken cultivation after IPTG induction, showing that DAAO protein production was
nearly 2-fold higher in shaken conditions compared with static conditions.

Although most recombinant protein production in biofilms is performed in Gram-
negative bacteria such as E. coli, some studies used Gram-positive bacteria such as B. subtilis
to produce iturin A [155] and the fusion protein TasA [144]. Rahman et al. [155] used the B.
subtilis 168 strain for the production of iturin A in biofilms at different temperatures, with
the best production (0.6 g·L−1) being obtained at 28 ◦C. Vogt et al. [144] also used B. subtilis
biofilms and engineered a fusion protein of TasA with the red fluorescent protein mCherry,
showing that the fusion TasA-mCherry was homogeneously and abundantly distributed
within the biofilm. In the same work, the production of TasA with Echinococus granulosus
antigenic peptides (paramyosin and tropomyosin) was performed, indicating that antigens
could be expressed in the biofilm state and were located in the biofilm matrix [144].

4. Overall Advantages and Limitations of Productive Biofilms

Biofilm reactors exhibit good operational stability with the possibility of long op-
eration periods, increased tolerance to toxic substrates and products, robustness of the
immobilized cells towards fluctuating process conditions, and high cell densities, increasing
the volumetric productivity rates of several products even on dilute feed streams. On the
other hand, productive biofilms may face limited oxygen and substrate diffusion and may
be prone to contamination in consecutive operations. Despite these limitations, biofilm
reactors have a high potential to be used in biotechnology/biotransformation processes.

Biofilm processes have been a recurring choice to produce bulk chemicals with a
low ecological footprint, employing agro-wastes and biorefinery residues for their bio-
conversion into valuable chemical and pharmaceutic compounds to meet economic process
sustainability. In this sense, productive biofilms could have a huge potential for application
in diverse areas, such as in the production of chemicals, biofuels, food additives, and
bioactive compounds. Regarding the production of chemicals, to the best of our knowledge,
this has only been reported at a bench and pilot scale, while the production of recombinant
proteins in biofilm platforms is in its initial stage.

5. Future Directions

Due to the advantages of biofilm platforms over suspended cell cultures, the biotech-
nology industry should consider the implementation of large-scale biofilm reactors. The
main advances are likely to come from the continuous development and optimization of
support materials, bioreactor configurations and operating conditions, the creation of in
situ biofilm monitoring strategies, and the development of suitable biofilm reactor scale-up
criteria and product recovery systems. Complementary strategies such as genetic engi-
neering of the producing microorganisms can also increase biofilm formation and even
specific production rates. However, it is necessary to consider that the behavior of biofilm
cultures can be hard to predict, and the lack of biofilm reproducibility can be an obstacle
to its industrial application. Consequently, a study on parameters for scale-up should be
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performed, such as culture conditions, mass and heat transfer constraints, kinetics, and
production modeling.
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