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Objectives: The intracellular NLRP3 inflammasome is an important regulator of sterile
inflammation. Recent data suggest that inflammasome particles can be released into
circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-
like protein (ASC) particles and their effects on endothelial cells are not known.

Methods: We established a flow cytometric method to quantitate extracellular ASC
specks in human serum. ASC specks were quantitated in 52 marathon runners
24–72 h before, immediately after, and again 24–58 h after the run. For mechanistic
characterization, NLRP3 inflammasome particles were isolated from a stable mutant
NLRP3 (p.D303N)-YFP HEK cell line and used to treat primary human coronary artery
endothelial cells.

Results: Athletes showed a significant increase in serum concentration of circulating ASC
specks immediately after themarathon (+52% compared with the baseline, p < 0.05) and a
decrease during the follow-up after 24–58 h (12% reduction compared with immediately
after the run, p < 0.01). Confocal microscopy revealed that human endothelial cells can
internalize extracellular NLRP3 inflammasome particles. After internalization, endothelial
cells showed an inflammatory response with a higher expression of the cell adhesion
molecule ICAM1 (6.9-fold, p < 0.05) and increased adhesion of monocytes (1.5-fold,
p < 0.05).

Conclusion: These findings identify extracellular inflammasome particles as novel
systemic mediators of cell–cell communication that are transiently increased after acute
extensive exercise with a high mechanical muscular load.
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INTRODUCTION

Vascular diseases are the leading cause of mortality and disability
worldwide (Roth et al., 2020). In addition to the classic risk factors
such as dyslipidemia, diabetes mellitus, and arterial hypertension,
vascular inflammation is recognized as a driver of endothelial
dysfunction and target of therapy (Daiber et al., 2017). Clinical
studies have provided promising data on risk reduction using
anti-inflammatory strategies (Ridker et al., 2017; Tardif et al.,
2019; Nidorf et al., 2020).

An important cytokine for the inflammatory pathogenesis of
cardiovascular diseases is interleukin-1 (IL-1) (Devlin et al., 2002;
Bhaskar et al., 2011; van Tassell et al., 2013). IL-1 is processed by
caspase-1 after the formation and activation of the NLR family
pyrin domain containing 3 (NLRP3) inflammasome complex
(Geng and Libby, 1995; Martinon et al., 2002). The intracellular
NLRP3 inflammasome has been identified as an important
component of the pathology of several inflammatory diseases
(Rheinheimer et al., 2017; Zhao et al., 2020). These diseases range
from directly inflammasome-associated diseases such as the rare
cryopyrin-associated periodic syndrome, the Muckle–Wells
syndrome, or the familial cold autoinflammatory syndrome to
metabolic disorders with high prevalence such as type 2 diabetes,
atherosclerosis, obesity, and gout (Hoffman et al., 2001; Frenkel
et al., 2004; Sun et al., 2017). Upon activation, NLRP3 nucleates
with apoptosis-associated speck-like protein (ASC) to form an
ASC speck, leading to caspase-1-mediated proteolytic activation
of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and the
induction of inflammatory, pyroptotic cell death. Recent
evidence shows that pyroptotic cells can subsequently release
ASC specks into the extracellular space where they may
perpetuate inflammation (Gaul et al., 2021). Extracellular ASC
specks have been described in chronic obstructive pulmonary
disease, septic patients, and myelodysplastic syndrome (Franklin
et al., 2014; Basiorka et al., 2018; Martínez-García et al., 2019).
However, the regulation and importance of circulating ASC
specks are incompletely understood.

In cardiovascular diseases, the NLRP3 inflammasome is
associated with endothelial dysfunction, the progression of
atherosclerosis, and damage caused after reperfusion of
ischemic myocardial tissue (Paramel Varghese et al., 2016;
Gong et al., 2018). In the vascular wall, the NLRP3
inflammasome can be activated by pathogens such as
cholesterol crystals, hypoxia, and hypercholesterolemia
(Janoudi et al., 2016; Koka et al., 2017; Jiang et al., 2020).
Interestingly, a genetic variant of NLRP3 with an intrinsic
higher activity is associated with a higher prevalence of
coronary artery disease (Schunk et al., 2021). The effects of
other stressors, such as acute exercise with a high mechanical
muscular load, on the inflammasome are not known.

Low physical activity and a sedentary lifestyle are risk factors for
cardiovascular morbidity and mortality (Gibbs et al., 2015). The
positive effects of regular physical activity on the cardiovascular
system have been very well documented and are recommended as
the basis of vascular prevention (Kyu et al., 2016; Hussain et al., 2018;
Pelliccia et al., 2021). In contrast to regular moderate to high-
intensity exercise, excessive bouts of physical activities such as

marathon running have been associated with an acute
upregulation of the parameters of inflammation and oxidative
stress (Möhlenkamp et al., 2008; Breuckmann et al., 2009;
Armstrong et al., 2015; Lear et al., 2017). Based on these
observations, the “extreme exercise hypothesis” was proposed,
which states that adverse cardiovascular events may occur more
often following high-volume high-intensity exercise (Eijsvogels et al.,
2018). The mediators for these potentially negative effects are
incompletely understood.

FIGURE 1 | Gating strategy and validation of flow cytometric
measurements of ASC specks. (A,B) Depicted are dot plots of isolated ASC-
GFP particles which are labeled with ASC-B3-Alexa-647 antibodies in human
serum in the 488 and 640-nm channels. (C,D) Resulting gate in the
Alexa-647 channel is then used for the detection of ASC-specks in human
serum after staining with AS-B3-Alexa-647 antibodies. (E,F) One control
subject without prior exercise was measured ten times (intra-assay) and
another one on four different days (inter-assay) to test for accuracy of
measurements. COV, coefficient of variation.
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Therefore, the aim of this study was to establish a method to
quantitate ASC specks in human blood and to explore the effects
of marathon running on circulating ASC specks as mediators of
systemic inflammation and inflammasome activation. We
hypothesized that inflammasome particles may be taken up by
endothelial cells where they may induce a pro-inflammatory
phenotype.

METHODS

Flow Cytometric Analysis of
Apoptosis-Associated Speck-Like Protein
Specks in Human Serum
A total of 75 µl of human serum was diluted in 225 µl
phosphate-buffered saline (PBS) and centrifuged at 17,000x
g for 20 min at 4°C to isolate microparticles. After
centrifugation, the supernatant was discarded and the pellet
was resuspended in 300 µl PBS. The samples were then stained
using ASC-B3-Alexa-647 (sc-514414, Santa Cruz) for 1 h at
37°C. Afterward, 120 µl of the samples was measured using a
flow cytometer BDFacsLyric (BDscience). ASC-GFP specks
derived from THP1-ASC-GFP cells were labelled with an ASC-
B3-Alexa-647 antibody and added to human serum to serve as
a positive control for gating the samples. These were detected
in the 488-nm channel of the flow cytometer (Figure 1A) and
the identified population was then marked accordingly in the
640-nm channel (Figure 1B). The resulting gate was used to
identify extracellular ASC specks in the serum of the human
samples (Figures 1C, D). Results were then calculated as ASC
specks/µl by dividing the amount of ASC specks in the gate by
the volume of the probe measured accounting for dilution
during the centrifugation steps. The validation of the FACS
measurements was based on an established cell line—THP1-
ASC-GFP (Invivogen)—for the isolation of ASC specks
(Proske and Morgan, 2001). The measured particles in
human serum resemble the isolated specks in granularity,
size, and fluorescence intensity. Intra- and interassays on
the serum of the volunteers without prior exercise yielded
coefficients of variation of 21.5 and 17.2%, respectively
(Figures 1E,F).

Human Samples
Blood samples were collected from participants of the Berlin Beat
of Running study, a prospective, observational, and investigator-
initiated study conducted during the 38th Berlin marathon
(clinicaltrials.gov, NCT01428778) (Haeusler et al., 2012).
Inclusion criteria were completed for registration for the
marathon run: age 35–60 years, a marathon history of at least
two marathon runs within the last five years and self-reported
running for at least 40 km per week. Exclusion criteria included
known cardiac diseases or atrial fibrillation, known or newly
detected brain disease, contraindications for (brain) magnetic
resonance imaging, severe liver or kidney disease,
hyperthyroidism, pregnancy, or lactation. The study protocol
is in accordance with the Declaration of Helsinki and was

approved by the local Ethics Committee of the Charité-
Universitätsmedizin Berlin, Germany (EA4/042/ 11). All
participants gave their informed consent before their inclusion
in the study.

The baseline visit (t0) took place three days before the
marathon. Sociodemographics, cardiovascular risk factors, and
the level of physical activity were documented. Participants
underwent an assessment of vital parameters (heart rate and
blood pressure) and venous blood sampling (Sarstedt
Monovette). Within 30 min after the end of the marathon run
(t1), vital parameters were assessed and the second blood
sampling was done. The third blood sampling with the
aforementioned parameters and assessment of vital parameters
was done up to 58 h after the race (t2) (Haeusler et al., 2012; Herm
et al., 2017).

Cell Culture
Primary human coronary artery endothelial cells (HCAEC)
were purchased from Promocell (C-12221) and maintained
in EGM™ Endothelial Cell Growth Media (CC-3121) and
Single Quots™ Supplements (CC-4133). Human umbilical
vein cells (EA.hy926) were purchased from ATCC (CRL-
2922) and maintained in Dulbecco’s Modified Eagle Medium
(DMEM) high glucose (Gibco). Mutant NLRP3-YFP p.D303N
human embryonic kidney 293 (HEK) cells were used to isolate
overactive YFP-labelled NLRP3-inflammasome oligomers as
previously described (Martín-Sánchez et al., 2015). THP1-
ASC-GFP cells were maintained in RPMI1640. This cell line
was cultured in Dulbecco’s Modified Eagle Medium F-12
(DMEM/F-12) growth media in the presence of Geneticin
G418 (2 mg/ml) to maintain mutation (Baroja-Mazo et al.,
2014). Internalization of NLRP3-YFP particles in HCAEC
was determined by immunofluorescence staining with anti-
YFP and anti-rabbit Alexa-488 antibodies. Alexa Fluor™ 555
Phalloidin and DAPI were used for F-actin and nucleus staining,
respectively.

Isolation of Inflammasome Particles
Fluorescent p.D303N NLRP3-YFP inflammasome oligomers
were isolated and purified from 1 × 107 mutant NLRP3-YFP
(p.D303N) HEK cells and resuspended in 100 µl non-
denaturating CHAPS buffer following an established protocol
(Martín-Sánchez et al., 2015). Fluorescent ASC-GFP specks were
isolated and purified from THP1-ASC-GFP cells (Invivogen) and
resuspended in 100 µl non-denaturating CHAPS buffer following
the same protocol with the addition of a primer with LPS at 1 µg/
ml for 3 h and activation by Nigericin at 5 µM for 1 h before
isolation.

Cellular Imaging
HCAEC were treated with NLRP3-YFP particles for 24 h. Cells
were fixed with 4% paraformaldehyde, permeabilized and
incubated with an anti-YFP (GFP) antibody (#6556, Abcam),
anti-YFP Alexa555 antibody (A-31851, Invitrogen), anti-ICAM-
1 (#MA5407, Invitrogen), IgG isotype control (#RIgG, #MigG,
Dianova), goat anti-mouse Cy3 (#115-165-146, Dianova), donkey
anti-rabbit Alexa-488 (A-21206, Invitrogen), or goat anti-rabbit
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Alexa-647 secondary antibody (A-21245, Invitrogen) to analyze
the internalization of extracellular NLRP3-YFP oligomers or
ICAM-1 expression. DAPI, Hoechst, and F-actin Phalloidin
Alexa 555/ Alexa647 were used for nucleus and F-actin
staining, respectively (Gaul et al., 2021). Cells were visualized
on a ZEISS Axiovert 200 M fluorescent microscope. Z-stacking
(12 subsequently optical slices of 0.8 µm thickness) and 3D
reconstruction were performed with AxioVision LE Rel 4.4
software. A minimum of five randomly selected fields were
used. To analyze ICAM-1 expression, the evaluation of 8–10
immunofluorescence images per condition and experiment was
performed by ImageJR software. First, a gray scale image was used
to set a threshold from which the ICAM1 signal was considered
positive. This value was applied to all images. Then, the product
of the mean intensity and the area of the ICAM1 signal
(integrated density) were determined. This determined value
was normalized to the cell number, which was counted on the
basis of the intact cell nuclei. An ImageStreamX Mk II Imaging
Flow Cytometer was also used for internalization studies.

Steroid Hormone Analysis
Steroid hormones in serum, which include cortisol, cortisone,
testosterone, androstenedione, 17-hydroxyprogesterone (17-
OHP), dehydroepiandrosterone sulfate (DHEAS),
progesterone, and estradiol, were simultaneously quantified
using liquid chromatography-tandem mass spectrometry
(LC–MS/MS) as described (Bae et al., 2019).

Monocyte Adhesion
Monocyte adhesion was assessed by calcein red-orange staining
(7.5 µM) of THP1 monocytes and fluorometric analysis (Ex571/
Em596) of monocytes on HCAEC. For this purpose, HCAEC
were treated with extracellular NLRP3-YFP particles for 24 h and
then incubated with stained THP1 monocytes for 4 h. Adherent
cells were analyzed fluorometrically and normalized to
untreated cells.

TABLE 1 | Study population.

Parameter Unit Value (N = 52)

Age years 48.8 ± 5.5
Male No. 52
Body mass index kg/m2 23.8 ± 2.0
Heart rate bpm 62 ± 8
Systolic blood pressure mmHg 131 ± 15
Diastolic blood pressure mmHg 85 ± 8

Training status
Marathon runs in total No. 22 ± 50
Marathon runs <5 years No. 9 ± 8
Current weekly running distance km 66 ± 17
Regular weekly running distance km 44 ± 14

Cardiovascular risk factors
Hypertension % (n) 9.6 (5)
Diabetes mellitus % (n) 0 (0)
Hyperlipidaemia % (n) 3.8 (2)
Current smoking % (n) 9.6 (5)

FIGURE 2 | Extracellular ASC speck concentration increases after
performing a marathon run and decreases again in the days after. (A)
Extracellular ASC specks weremeasured using flow cytometry. Samples were
collected 24–48 h before (t0) (N = 52), immediately after (t1) (N = 52), and
2–3 days after the marathon run (t2) (N = 52). Absolute values of ASC specks
per microliter serum and the individual fold change to t0 are depicted. (B–D)
Subgroup analysis of the quartile with the lowest ASC speck concentration at
t0 (B), the middle group (C), and the quartile with the highest (D) ASC speck
concentration at t0. Data are expressed as mean +standard deviation *p <
0.05; **p < 0.01. Mixed-effects analysis and the post-hoc Tukey test were
used to analyze the data.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8669384

Kogel et al. Extracellular Inflammasome Particles After Marathon

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Data Analysis
Analyses were performed with the Graph Pad Prism (version 7),
ImageJ 1.52a, and FlowJo v10. The significance level was set at p <
0.05. Multiple groups were analyzed using a mixed-effect analysis
and the Tukey post-hoc test. Two groups were analyzed by a two-
sided Student´s t-test. Data are expressed as mean ± standard
error of the mean (SEM) if not stated otherwise. A correlation
analysis was performed using JASP 0.14.1 (JASP Team, 2020).
CorelDraw2018 was used to create the artwork. Statistical outliers
were identified using the ROUT method with Q = 1%.

RESULTS

Marathon Running Increases Extracellular
Apoptosis-Associated Speck-Like Protein
Specks in Human Serum
Baseline characteristics are shown in Table 1. Performing a
marathon run resulted in a significant 1.5-fold increase in
circulating ASC specks immediately after the run compared with
the baseline assessment (p < 0.05). The absolute number of ASC
specks increased from 11 ± 7 ASC specks/µl to 15 ± 9 ASC specks/µl

serum. After the marathon, the concentration decreased toward
baseline levels to 11 ± 6 ASC specks/µl (p < 0.01) (Figure 2A).

An exploratory analysis of quartiles of baseline ASC speck
concentrations at time t0 revealed that the exercise-induced
regulation correlates with the baseline levels. Athletes with low
baseline ASC speck levels showed a marked upregulation at t1
that persisted until t2. The middle group of athletes had a distinct
increase in circulating ASC specks after the run that recovered
until t2. In contrast, individuals with baseline ASC specks in the
highest quartile showed no additional upregulation after the
marathon. (Figures 2B–D).

Upregulation of Extracellular
Apoptosis-Associated Speck-Like Protein
Specks Correlates With Stress Hormones
but Not With Microparticles
Marathon running induces the upregulation of stress hormones
and cellular microparticles (Bae et al., 2019; Schwarz et al., 2018).
The ASC specks showed a significant positive correlation with
stress hormones such as cortisone (R = 0.22), cortisol (R = 0.19),
aldosterone (R = 0.24), and progesterone (R = 0.24) (Figures
3A,B) (Bae et al., 2019).

FIGURE 3 |Concentrations of circulating ASC specks correlate with steroid hormones and lymphocytes (A) Pearson correlation matrix of extracellular ASC specks
with various endothelial (EMP), platelet (TMP), and leukocyte (LMP) microparticles and steroid hormones, lymphocytes, leukocytes, and high-sensitivity troponin.
Significant correlations (p < 0.05) are marked in red. (B,1C) Exemplary scatter plots and linear regression of correlations of extracellular ASC specks with cortisone and
cortisol. The Pearson correlation coefficient was used to analyze the data.
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In addition, there was a significant negative correlation with
the number of circulating lymphocytes that are known to
decrease after severe endurance exercise (R = 0.27) (Santos
et al., 2013).

In contrast to the stress hormones, there was no correlation of the
concentration of extracellular ASC specks with circulating
microparticles. These included endothelial, platelet, and leukocyte
microparticles (Figure 3C) (Schwarz et al., 2018). The lack of
correlation between the ASC specks and the different types of
microparticles is an indicator of the specificity of the circulating
ASC particles as released by inflammasome activation rather than
more general cell damage.

Human Coronary Endothelial Cells
Internalize Extracellular NLRP3
Inflammasome Particles
To test whether extracellular NLRP3-YFP inflammasome
particles are taken up by human endothelial cells,
immunofluorescent staining of internalized YFP-tagged
NLRP3 inflammasomes and cell organelle staining were
performed (Figure 4A). Internalization of extracellular
NLRP3-YFP inflammasome particles into HCAEC was
analyzed by nucleus (DAPI) and cytoskeleton (F-Actin
Phalloidin) staining and the detection of intracellular
YFP-positive signal. The intracellular NLRP3-YFP
particles are located in the region around the nucleus
(Figures 4B–D).

Extracellular NLRP3-YFP Particles Induce a
Pro-Inflammatory Response in Human
Coronary Endothelial Cells.
Treatment of HCAEC with NLRP3-YFP particles (3 NLRP3-YFP
particles/cell for 24 h) increased the expression of the cell

FIGURE 4 | Extracellular NLRP3-YFP particles are internalized by
primary human coronary artery endothelial cells. (A) Schematic overview.
Mutant NLRP3 (p.D303N)-YFP HEK cells are used to isolate oligomeric
NLRP3-YFP inflammasome particles and treat primary human coronary
artery endothelial cells. (B) Internalization of extracellular NLRP3-YFP particles
in primary human coronary artery endothelial cells (HCAEC) after 4 h of
incubation and determined by immunofluorescent staining (N = 3) with a
primary fluorescently labeled anti-YFP-Alexa555 antibody (green) (scale bar:
50 µm). Alexa Fluor™ 647 Phalloidin (red) and DAPI (blue) were used for
F-actin and nucleus staining, respectively. Z-stacks with xz and yz focal planes
showing internalized NLRP3-YFP inflammasome particle. (C) Z-stacks were
used for 3D reconstruction (scale bar: 50 µm). (D) Two representative
ImageStream

®
analyses of HCAEC including bright field (BF), DAPI (Nucleus),

647/Cy5 Channel (Ex. NLRP3), and a merge of an internalized extracellular
NLRP3-YFP inflammasome are shown (scale bar: 10 µm).

FIGURE 5 | Treatment with extracellular NLRP3 inflammasome particles
induces inflammation in endothelial cells. (A) Immunofluorescent analysis of
ICAM-1 protein expression on coronary artery endothelial cells after 24 h
incubation with NLRP3-YFP particles (3 NLRP3-YFP particles/cell) and
stained with anti-ICAM1 Cy3 (scale bar: 50 µm). (B) Quantitative analysis of
ICAM-1 fluorescence (N = 4). (C) Calcein-stained THP-1 monocyte adhesion
on endothelial cells after incubation with NLRP3-YFP particles for 4 h
measured by a fluorometric analysis and normalized to untreated cells in the
culture medium (control). Two-sided unpaired t-test was used to analyze
the data.
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adhesion molecule ICAM-1 measured by immunofluorescent
staining by 6.9-fold (p < 0.05) (Figures 5A,B).

Additionally, monocyte adhesion on endothelial cells was
increased by the extracellular NLRP3-YFP particles by 1.4-fold
(p < 0.05) (Figure 5C).

DISCUSSION

The main findings of the study are the increase of circulating
extracellular ASC specks in human serum immediately after a
marathon run, the uptake of extracellular inflammasome particles
by endothelial cells, and the induction of endothelial cell
inflammation. Marathon running induces a marked but transient
increase of circulating ASC specks. Mechanistically, the data reveal
that cell-free extracellular inflammasome particles can be internalized
by human endothelial cells and promote an inflammatory response
characterized by the upregulation of ICAM-1 and increased
monocyte adhesion. The data show that extracellular ASC specks
represent markers of vascular inflammation.

Extracellular Apoptosis-Associated
Speck-Like Protein Specks After a
Marathon
Extracellular inflammasome particles are generated and released
when cells undergo pyroptosis. The number of these particles in
the blood reflects pyroptotic cell damage. The upregulation of
the ASC specks showed an inverse correlation with baseline
levels, the lower the baseline, the higher the marathon-induced
upregulation. These data suggest a maximum saturation of the
exercise-induced number of circulating inflammasome
particles. Further studies are needed to address whether
lower baseline ASC speck levels relate to individual
predisposition or the amount of exercise performed by
different athletes in the days before the marathon run. The
variance of baseline ASC speck levels may be attributed to
different lifestyles, pre-existing conditions or nutrition, and
the microbiome in the gut (Youm et al., 2015; Ding et al.,
2019). The number of ASC specks in the serum does not
correlate with endothelial, platelet, and leukocyte
microparticles as a correlate of cell damage. This observation
supports the importance of ASC specks as an independent
factor. The mechanical damage of myocytes induces the
release of typical inflammasome activators such as
extracellular ATP or reactive oxygen species which then
results in a cascade of inflammasome activation not only in
the surrounding muscles but also vascular cells (Bailey et al.,
2004; Bauernfeind et al., 2011; Heid et al., 2013; Panicucci et al.,
2020). The cell damage of myocytes is documented by the
release of typical proteins, miRNAs, and the clinical
presentation of muscle soreness after excessive bouts of
endurance exercise (Uhlemann et al., 2014; Bernat-Adell
et al., 2021). Therefore, the increased ASC specks after
marathon running may originate from skeletal muscle cells
that are subjected to high physical strain (Pincheira et al., 2021).

An increase of the circulation of ASC in plasma of cyclists
post-exercise using Western blot has already been shown; we see
similar results in marathon runners and also a similar variance in
our baseline values (Nieman et al., 2020). It is also known that
exercise results in an increased expression of NLRP3 indicating
that it is the relevant sensor protein to these ASC oligomers (Li
et al., 2015; Khakroo Abkenar et al., 2019).

The increase in the circulation of ASC particles after the
marathon is in agreement with the observation of upregulation
of circulating ASC in the plasma of cyclists (Nieman et al., 2020)
and an increased expression of NLRP3 post-exercise (Li et al.,
2015; Khakroo Abkenar et al., 2019). We used the flow cytometry
method to measure extracellular ASC specks. Compared with
Western blot (Nieman et al., 2020), flow cytometry has the
advantage that the particles are defined more precisely by
spiking experiments and that flow cytometry allows a high
turnover with highly standardized, parallel, and quantitative
measurements.

Effect of Extracellular Inflammasome
Particles on Cardiovascular Cells
The study shows for the first time that endothelial cells
internalize inflammasome particles leading to inflammation
exemplified by the increase of ICAM-1 expression and the
increase of monocyte adhesion. These data identify
extracellular inflammasome particles as a mechanism that
mediates inflammation from the site of damaged tissue to the
endothelium. Previous findings of our group demonstrated that
extracellular NLRP3 particles are also ingested by human
coronary artery smooth muscle cells and macrophages where
they induce pro-inflammatory and atherogenic signaling by
increasing the extracellular matrix production, promoting the
secretion of pro-atherogenic and inflammatory cytokines and
cell migration (Gaul et al., 2021).

Extensive exercise with a high mechanical muscular load can
mediate systemic inflammation via the release of extracellular
inflammasome complexes. We and others propose that these
pyroptosis-derived NLRP3 inflammasome particles exert pro-
atherogenic effects (Gaul et al., 2021; Sun et al., 2021).

Inflammation and Extreme Exercise
Hypothesis
According to the “extreme exercise hypothesis,” long-term
excessive training is associated with an increase in the overall
mortality (Eijsvogels et al., 2018). Marathon runners show a
higher prevalence of coronary artery calcification scores ≥100
Agatston units compared with the general population (36 vs.
22%) indicating coronary artery atherosclerosis (Möhlenkamp
et al., 2008). Champion athletes have more coronary calcifications
compared with sedentary men (44.3 vs 22.2%) (Merghani et al.,
2017). One critical factor for cardiovascular risk is endothelial cell
physiology (Souilhol et al., 2018). Therefore, the internalization of
circulating pro-inflammatory inflammasome particles into
endothelial cells and smooth muscle cells is likely relevant in
the progression of cardiovascular diseases.
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Interestingly, athletes havemore stable calcified plaque phenotypes
than controls and fewer mixed plaques (Merghani et al., 2017). This
could indicate different underlying pathomechanisms of
atherosclerosis in athletes and the general population. The role of
inflammation and immune cells in the development of various plaque
types is incompletely understood. Circulating inflammasome particles
may be an important component in this process by increasing
monocyte adhesion to endothelial cells (Waring et al., 2021).

Limitations
There are limitations to our study. Our study population included
only non-professional athletes who completed high-level
endurance exercises, so transferring the data to other
intensities or forms, such as strength exercise, is not possible.
Nevertheless, marathon runs at competitive levels are typical for
extremely intensive endurance exercise and are practiced
worldwide by an increasing number of individuals. The
studied population is large for a marathon study but addresses
a selected and homogenous population. Therefore, the results
may not apply to the general population. Measurements were
performed in human serum. Other tissues are not available.
Because the serum was stored for several years, the proteins
may have been degraded (Cuhadar et al., 2013). Since we are only
measuring one relevant protein and this should be changed in the
same way in all samples, this should not change the dynamic of
the ASC specks. This is also the reason why cytokines could not be
measured in this study, since cytokines are extremely dependent
on the storage time and conditions (Jager et al., 2009).

CONCLUSION

In conclusion, the data show the release of inflammasome particles
in response to extensive exercise with high mechanical muscular
load, endurance exercise, and their internalization in endothelial cells
as a novel mechanism causing vascular inflammation.
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