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SUMMARY

Shift workers and many other groups experience irregular sleep-wake patterns.
This can induce excessive daytime sleepiness that decreases productivity and el-
evates the risk of accidents. However, the degree of daytime sleepiness is not
correlatedwith standard sleep parameters like total sleep time, suggesting other
factors are involved. Here, we analyze real-world sleep-wake patterns of shift
workers measured with wearables by developing a computational package that
simulates homeostatic sleep pressure – physiological need for sleep – and the
circadian rhythm. This reveals that shift workers who align sleep-wake patterns
with their circadian rhythm have lower daytime sleepiness, even if they sleep
less. The alignment, quantified by the sleep parameter, circadian sleep suffi-
ciency, can be increased by dynamically adjusting daily sleep durations according
to varying bedtimes. Our computational package provides flexible and personal-
ized real-time sleep-wake patterns for individuals to reduce their daytime sleep-
iness and could be used with wearables to develop smart alarms.

INTRODUCTION

In our modern 24-h society, approximately 20% of the working population is engaged in shift work but more

than 80% of the population has a shift work-like lifestyle with artificial light exposure (Sulli et al., 2018). Irreg-

ular sleep-wake patterns cause shift work disorder with symptoms including fatigue, sleepiness, insomnia,

and poorer mental agility (Drake et al., 2004; Foster, 2020). In particular, excessive daytime sleepiness (EDS)

reduces performance efficiency, increases the risk of work-related injuries, and is a significant public health

problem (James et al., 2017; Slater and Steier, 2012). One way to reduce EDS could be to increase sleep

duration since longer sleep leads to less sleepiness for non-shift workers with regular sleep-wake patterns

(Liu et al., 2000; Ohayon, 2012; Queiroz et al., 2020). However, significant correlations between sleep du-

rations or the other standard sleep parameters, including sleep efficiency (SE) and sleep latency (SL),

with daytime sleepiness of shift workers have not been identified (Gumenyuk et al., 2015; Kato et al.,

2012). Furthermore, there have also been no connections identified between EDS and broader clinical fea-

tures or features measured by polysomnography, i.e., in-depth sleep studies (Eiseman et al., 2012). This

suggests the involvement of other, unknown factors in mediating the effects of irregular sleep-wake

patterns.

The effect of irregular sleep-wake patterns on sleepiness has also been investigated with mathematical

models (Abel et al., 2020; Van Dongen, 2004). While the details between the models differ, they are mainly

based on the two-process model (Borbély, 1982), which simulates sleep-wake patterns according to inter-

actions between homeostatic sleep pressure (the physiological need for sleep, which appears to be mainly

determined by the level of somnogens such as cytokines, prostaglandin D2, and adenosine (Shi and Ueda,

2018; Skeldon et al., 2017)) and the circadian (�24 h) rhythm of the master clock in the suprachiasmatic nu-

cleus. By simulating homeostatic sleep pressure and the circadian rhythm, the models successfully pre-

dicted subjective sleepiness and fatigue measured during long-lasting sleep deprivation in laboratory

studies (Daan et al., 1984; Postnova et al., 2018; Puckeridge et al., 2011; Van Dongen, 2004), and irregular

real-world work schedules (Moore-Ede et al., 2004; Van Dongen, 2004). While these model predictions sug-

gested work schedules avoiding strenuous activities during times of high sleepiness to improve perfor-

mance and minimize risks (Moore-Ede et al., 2004; Postnova et al., 2014), their widespread application is
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challenging without continual reinforcement (i.e., forcing a specific schedule) (Czeisler et al., 1982). Impor-

tantly, shift workers even with similar work schedules have dramatically different sleep-wake patterns and

thus different daytime sleepiness (Vetter et al., 2015). This demonstrates a need for personalized and flex-

ible sleep-wake schedules to prevent EDS.

Here, we analyzed the relationship between daytime sleepiness and real-world sleep-wake patterns of in-

dividual shift workers measured by wearable wrist actigraphy. Specifically, to analyze the complex individ-

ual sleep-wake patterns by simulating underlying homeostatic sleep pressure and the circadian rhythm, we

developed a publicly accessible user-friendly computational package based on a physiologically based

mathematical model of sleep-wake cycles (Phillips et al., 2010; Skeldon et al., 2017; Swaminathan et al.,

2017). This analysis revealed that as sleep-wake patterns became more aligned with an individual’s circa-

dian rhythm, daytime sleepiness decreased, even if total sleep times (TSTs) were similar. To effectively

investigate this relationship, we developed a sleep parameter that we call circadian sleep sufficiency

(CSS). CSS was strongly correlated with daytime sleepiness, unlike other standard sleep parameters.

CSS can be increased by adaptively adjusting daily sleep duration according to the personal choice of

bedtime day-by-day rather than by forcing a specific work and sleep-wake pattern, thus providing a flexible

and personalized solution to reduce daytime sleepiness. The personalized sleep-wake patterns can be pro-

vided in real-time when the user-friendly computational package developed in this study is linked with

wearable devices.

RESULTS

Daytime sleepiness is not significantly correlated with standard sleep parameters

We measured the activity and light exposure of 21 rotating nurses from Samsung Medical Center (SMC)

every 2-min over 13 days using wrist activity monitors (Figure 1A and Table S1). Then, in each 2-min epoch,

the status of the participants was categorized as either wake and active, wake and rest, sleep and active, or

sleep and rest with Actiware-Sleep software whose accuracy has been validated previously (Edinger et al.,

2004; Kushida et al., 2001). This allowed us to calculate six major standard sleep parameters: time in bed

(TIB), SL, TST, wakefulness after sleep onset (WASO), number of awakenings (#Awak) and SE. We expected

that as daily sleep duration (i.e., TST) increased, shift workers would be getting as much sleep as they

needed, and this would decrease their daytime sleepiness, which was measured by the Epworth sleepiness

scale (ESS). However, TST was not significantly correlated with daytime sleepiness (P = 0:50; Figure 1B). In

particular, the daytime sleepiness of shift workers who had similar TST (6-7 h) differed dramatically. The

other sleep parameters were also not significantly correlated with daytime sleepiness (Figures 1C and

1D, and S1A-S1D). The partial correlation between the standard sleep parameters and daytime sleepiness

controlling for demographics of nurses (e.g., Age, BMI, and the number of shift schedules) is also not sig-

nificant (Table S1 and Figure S1E). Similarly, a previous study has also reported that the standard sleep pa-

rameters may not have a strong correlation with the daytime sleepiness of shift workers (Kato et al., 2012).

This indicates the need for a different approach to analyze dynamic and complex sleep-wake patterns of

shift workers.

A mathematical model is adopted to analyze dynamic sleep-wake patterns

To analyze the sleep-wake patterns of shift workers systematically, we modified a physiologically-based

mathematical model of human sleep-wake cycles (Phillips et al., 2010; Skeldon et al., 2017; Swaminathan

et al., 2017) (see STAR Methods). In the model, the activity of sleep- and wake-promoting neurons, and

thus sleep timing and duration, are determined by the interaction between the homeostatic sleep pressure

and the circadian rhythm (Figures S2 and S3). The homeostatic sleep pressure describes the physiological

need for sleep, which increases during wake and dissipates during sleep (black line; Figure 2A). The circa-

dian rhythm, entrained to the external day-night cycle, determines the sleep and wake thresholds (yellow

lines; Figure 2A). When the homeostatic sleep pressure increases above the circadian sleep threshold, the

transition from wake to sleep is triggered (Figure 2A (i)). Thus, the model would naturally fall asleep when-

ever the homeostatic sleep pressure is higher than the circadian sleep threshold (i.e., in the gray ‘‘sleep re-

gion’’; Figure 2A). To simulate wakefulness in the sleep region, similar to when shift workers work through

the night, we modified the model to incorporate a ‘‘forced wakefulness’’ (Figures 2A (ii) and S4) (Phillips and

Robinson, 2008; Postnova et al., 2014). When the homeostatic sleep pressure passes below the circadian

sleep threshold (i.e., in the white ‘‘potential wake region’’; Figure 2A), the transition from sleep to wake

can occur naturally without forced wakefulness (Figures 2A (iii) and S5). When the homeostatic sleep pres-

sure further decreases below the circadian wake threshold (Figure 2A (iv)), the transition from sleep to wake
2 iScience 24, 103129, October 22, 2021



Figure 1. No significant correlation between standard sleep parameters and daytime sleepiness of shift workers

(A) Using activity (black vertical lines) and light exposure (yellow line) measured by the wrist actigraphy, the status of

participants over time was categorized as either wake and active (black shade), wake and rest (pink shade), sleep and

active (gray shade), or sleep and rest (blue shade) with Actiware-Sleep software, and then the six standard sleep

parameters were calculated. TIB: time in bed; SL: sleep latency; TST: total sleep time; WASO: wakefulness after sleep

onset; #Awak: number of awakenings; SE: sleep efficiency.

(B and C) Scatterplots of TST (B) and SL (C) versus ESS of shift workers (n = 21). See Figures S1A–S1D for scatterplots of the

other sleep parameters. Shift workers with similar TST (e.g., 6-7 h; B) had dramatically different daytime sleepiness. The

line represents the least-square fitting line. r and P denote the Spearman’s rank correlation coefficient and p value of

Spearman’s rank correlation test, respectively.

(D) Correlations between the six standard sleep parameters and daytime sleepiness of shift workers were weak and not

significant.

See also Figure S1 and Table S1.
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is actively triggered. To simulate sleep (e.g., oversleeping or nap) in this case when the model would be

naturally awake, we modified the model to incorporate a ‘‘forced sleep’’ (Figures 2A (v) and S4) (Phillips

and Robinson, 2008; Postnova et al., 2014). Note that due to the lower level of the circadian sleep threshold

during the night compared with the day (Figure 2A), falling asleep during the night occurs at a lower level of

homeostatic sleep pressure (i.e., easier to sleep).

A sleep parameter, circadian sleep sufficiency, is strongly correlated with daytime sleepiness

With the modified mathematical model, we developed a publicly accessible user-friendly computational

package (Figure S6) that simulates an individual’s homeostatic sleep pressure based on real-world

sleep-wake patterns (blue shade; Figure 2B) that were mainly estimated by the wrist activity monitor (see

STAR Methods). Specifically, for the individual illustrated in Figure 2, the simulated homeostatic sleep
iScience 24, 103129, October 22, 2021 3



Figure 2. Sleep episodes are categorized as either circadian sufficient or circadian insufficient with a

physiologically based mathematical model of sleep-wake cycles

(A) In the mathematical model, the homeostatic sleep pressure (black line) dissipates during sleep and increases during

wake. When it becomes higher than the circadian sleep threshold (yellow solid line), a transition fromwake to sleep occurs

(i). When the model would naturally fall asleep in the sleep region (gray region), forced wakefulness is needed to simulate

wakefulness (ii). On the other hand, when homeostatic sleep pressure falls below the circadian sleep threshold and thus

the model is in the potential wake region (white region), wakefulness can be simulated without forced wakefulness (iii).

When the homeostatic sleep pressure falls below the circadian wake threshold (yellow dotted line), a transition from sleep

to wake actively occurs (iv). In this case, forced sleep is required to simulate sleep (v). See Figures S2–S5 for details. Gray

and yellow shades on top indicate the night (22:00-6:00 h) and the day (6:00-22:00 h), respectively.

(B and C) The computational package based on the mathematical model simulated homeostatic sleep pressure (black

line; C) according to sleep-wake patterns (blue shade; B), which were estimated by measured activity (black vertical lines;

B). It also simulated the circadian variation of the sleep threshold (yellow line; C) by estimating the light signal reaching the

circadian clock based onmeasured light exposure (yellow line; B). Then, the minimum sleep duration required to wake-up

specifically in the potential wake region (i.e., the circadian necessary sleep; gray striped bars; C) was calculated for each

sleep episode. Compared with circadian necessary sleep, longer or shorter sleep episodes (black bars; C) are referred to

as circadian sufficient or circadian insufficient sleep, respectively. Gray and yellow shades on top of (B) indicate the night

(22:00-6:00 h) and the day (6:00-22:00 h), respectively.

See also Figures S2–S5.
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pressure increased and decreased during wake and sleep, respectively, as expected (black line; Figure 2C).

In particular, the homeostatic sleep pressure became extremely high after night shift work before the sec-

ond sleep episode. Furthermore, the computational package estimated the light signal transmitted to the

circadian clock based on the measured light exposures of the participant over time (yellow line; Figure 2B)

and then simulated the circadian variation of the sleep threshold entrained to these light-dark cycles

(yellow line; Figure 2C). The overall level of the simulated sleep threshold increased when exposed to light

during the day or during the night shift, which inhibits falling asleep.

Based on the homeostatic sleep pressure and the sleep threshold simulated with the computational pack-

age, the duration of necessary sleep needed to wake up without effort can be predicted. Specifically, when

people fall asleep, the computational package predicted how long they need to sleep so that their homeo-

static sleep pressure decreased below their sleep threshold (into the potential wake region; Figure 2C) and

thus they could wake up without effort (i.e., without forced wakefulness). We defined ‘‘circadian necessary

sleep’’ as the sleep episode with the minimum duration required so that awakening occurs in the potential

wake region (gray striped bars; Figure 2C). The duration of circadian necessary sleep depends on when in-

dividuals fall asleep and the subsequent intersection between their homeostatic sleep pressure and their

sleep threshold, which are linked with their circadian rhythm. In the example in Figure 2C, the duration of

the first sleep episode (black bar) is shorter than the duration of the predicted circadian necessary sleep

(gray striped bar). This represents a situation when the individual wakes up before his/her homeostatic

sleep pressure falls below the sleep threshold – i.e., forced wakefulness. We refer to this sleep episode

as ‘‘circadian insufficient sleep’’ throughout the study. In contrast, the duration of the second sleep episode

is longer than the duration of the predicted circadian necessary sleep for that cycle, meaning that the in-

dividual awakens several hours after their need for sleep has fallen below their sleep threshold. This is

referred to as ‘‘circadian sufficient sleep’’ throughout the study.

We hypothesized that having circadian insufficient sleep – i.e., sleep accompanied by forced wakefulness–

causes EDS. To investigate this, we compared the sleep-wake patterns during the whole monitoring period

(13–16 days) of three shift workers who had considerably different daytime sleepiness measured by ESS

despite having similar TST (6.65–6.98 h). Specifically, we categorized their daily sleep episodes (black

bars; Figure 3A) as either circadian sufficient sleep (blue shade; Figure 3A) or circadian insufficient sleep

(pink shade; Figure 3A) after comparing with their predicted circadian necessary sleep (gray striped

bars; Figure 3A). The fractions of circadian sufficient sleeps in total sleep episodes were dramatically

different between the three shift workers (from 81.25 to 69.23 to 50%) although they all had similar TST.

Notably, as the fraction of circadian sufficient sleeps decreased, daytime sleepiness measured by ESS

increased from 4 to 9 to 15 (Figure 3A).

To investigate this further in all the data recorded from the SMC participants, we developed a sleep param-

eter, circadian sleep sufficiency (CSS), defined as the fraction of circadian sufficient sleeps in total sleep

days during the study period. Indeed, over all the individuals, although there was some variation, CSS

was significantly correlated with daytime sleepiness (P = 0:02; Figure 3B) unlike the other standard sleep

parameters (Figures 1B–1D and S1A–S1D). To the best of our knowledge, CSS is the first statistically signif-

icant sleep parameter for daytime sleepiness. Furthermore, CSS had a higher correlation with daytime

sleepiness (r = � 0:50) than any other standard sleep parameter previously discussed (Figures 1B–1D

and S1A–S1D). In particular, in 9 participants, despite having similar TST (6-7 h), as CSS increased, daytime

sleepiness decreased (gray dots; Figure 3B).
Sleep-wake patterns aligned with the circadian rhythm increase circadian sleep sufficiency

The duration of predicted circadian necessary sleep changed dramatically depending on the sleep onset

time and previous sleep history (gray striped bars; Figure 3A). Thus, we further investigated how circadian

necessary sleep was determined so that we could identify the sleep-wake patterns increasing CSS and thus

decreasing daytime sleepiness. After regular 7-h sleep-wake patterns between 23:00 h and 06:00 h, we

considered sleep onset occurring at the usual time (23:00 h; solid line; Figure 3C) compared to sleep onset

delayed by 12 h (11:00 h; dotted line; Figure 3C). Despite a dramatically increased homeostatic sleep pres-

sure, the mathematical model predicted that the duration of circadian necessary sleep needed after the

delayed sleep onset (patterned bar; Figure 3C) is much shorter than the duration of circadian necessary

sleep needed after regular sleep onset (striped bar; Figure 3C). This shorter duration of circadian necessary

sleep was due to the higher level of the sleep threshold during the day compared to the night, which is
iScience 24, 103129, October 22, 2021 5



Figure 3. CSS is significantly correlated with the daytime sleepiness of shift workers

(A) Sleep-wake patterns of shift workers with similar TST but different ESS. Daily sleep episodes (black bars) whose duration is longer or shorter than the

duration of circadian necessary sleep (gray striped bars) are categorized as either circadian sufficient sleep (blue shade) or circadian insufficient sleep (pink

shade), respectively. As the fraction of circadian sufficient sleeps (i.e., CSS) decreased, daytime sleepiness (ESS) increased. D, E, N, and O denote the day

shift (7:00-15:30 h), the evening shift (15:00-23:30 h), the night shift (23:00-7:30 h), and days off, respectively.

(B) CSS had a strong and significant correlation with ESS. The line represents the least-square fitting line with the slope of a. r and P denote the Spearman’s

rank correlation coefficient and p value of Spearman’s rank correlation test, respectively.

(C) After regular 7-h sleep-wake patterns between 23:00 h and 6:00 h, simulations of sleep onset occurring at the usual time (23:00 h; solid line) compared with

12-h delayed sleep onset (11:00 h; dotted line). The duration of circadian necessary sleep needed after the delayed sleep (patterned bar) is much shorter than

the duration of circadian necessary sleep needed after the regular sleep (striped bar).

(D) As sleep onset is delayed from 23:00 h to 11:00 h, the duration of the predicted circadian necessary sleep gradually decreases by �3.6 h.

See also Figure S6 and Tables S2–S5.

ll
OPEN ACCESS

6 iScience 24, 103129, October 22, 2021

iScience
Article



Figure 4. Sleep-wake patterns aligned with the circadian rhythm increase CSS and reduce daytime sleepiness

(A and B) Model simulations of three 6-h sleep episodes across three days regardless of sleep onset time (fixed sleep; A)

and three sleep episodes with durations adjusted according to the circadian phase of sleep onset (circadian sleep; B).

Although these two sleep-wake patterns have the same TST, two circadian insufficient sleeps (denoted as I) occur with the

fixed sleep (A), but only circadian sufficient sleeps (denoted as S) occur with the circadian sleep (B). As a result, time awake

in the potential wake region (patterned bars) is longer in the circadian sleep simulation (B) than in the fixed sleep

simulation (A).

(C) Quantification of the time awake in the potential wake region.

(D and E) Alignment of sleep-wake patterns with the circadian rhythm of shift workers having similar TST (6-7 h) from SMC

data (D and E; n = 9). The group without EDS (ESS%10; blue dots; n = 5) show a much stronger negative dependence of

sleep duration on the sleep onset time, compared with the group with EDS (ESS>10; red dots; n = 4). The number of

analyzed main sleep episodes which were the longest sleep episodes of each day (noon-to-noon) were 45 (D) and 36 (E),

respectively. The line represents the least-square fitting line with the slope of a. r and P denote the Spearman’s rank

correlation coefficient and p value of Spearman’s rank correlation test, respectively.

See also Figure S7.
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determined by the circadian rhythm (yellow lines; Figure 3C). That is, during the day, even after a short

sleep, the homeostatic sleep pressure drops lower than the sleep threshold, and thus one can wake up

without effort. Indeed, as sleep onset was delayed from 23:00 h to 11:00 h (Figure 3D), the duration of

the predicted circadian necessary sleep gradually decreased by �3.6 h. This indicates that the circadian

rhythm is the key determinant of circadian necessary sleep. The importance of circadian rhythmicity has

also been shown in previous studies reporting a decrease in sleep duration after sleep deprivation (Åker-

stedt and Gillberg, 1981; Czeisler et al., 1980; Daan et al., 1984; Phillips and Robinson, 2008).

As circadian necessary sleep was mainly determined by the circadian rhythm, we hypothesized that sleep-

wake patterns aligned with the circadian rhythm increase CSS and thus reduce daytime sleepiness. To

investigate this, we simulated two different 3-day sleep-wake patterns. One follows three 6-h sleep epi-

sodes across three days regardless of sleep onset time, which is referred to as fixed sleep (Figure 4A). In

the other simulation, sleep duration was adjusted according to the circadian phase of sleep onset, which
iScience 24, 103129, October 22, 2021 7
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is referred to as circadian sleep (Figure 4B). Despite having the same average sleep duration and sleep

onset times, in the fixed sleep simulation only one sleep episode was categorized as circadian sufficient

sleep (Figure 4A), while in the circadian sleep simulation all sleep episodes were circadian sufficient sleeps

(Figure 4B). As a result, for the two circadian insufficient sleeps in the fixed sleep simulation, an awakening

occurred before the homeostatic sleep pressure decreased below the sleep threshold (i.e., forced wake-

fulness). In real life, this situation can occur for example when using an alarm clock, or be caused by a

disease, or stress (Foster, 2020; James et al., 2017; Skeldon et al., 2017; Van Dongen, 2004). Thus, after

awakening from a circadian insufficient sleep, it takes some time for the individual to reach their potential

wake region, where awakening would have occurred without effort (patterned bars; Figure 4A), and thus

they may feel increased daytime sleepiness. In contrast, an individual awakening from circadian sufficient

sleep is already in their potential wake region (patterned bars; Figure 4A). Furthermore, after circadian suf-

ficient sleep, the homeostatic sleep pressure was lower than after circadian insufficient sleep, and thus

these individuals could be awake for longer before reaching their sleep threshold (e.g. �32 min is longer

before the third sleep; Figures 4A and 4B). Thus, the time awake in the potential wake region was �8 h

longer in the circadian sleep simulation compared to the fixed sleep simulation despite having the same

average sleep duration (Figure 4C). Similar results were obtained for different sleep onsets times during

the shift schedule and different lengths of the shift schedule (Figure S7). This indicates that when the

sleep-wake pattern is aligned with the circadian rhythm, the actual wake time is more likely to be aligned

with the time of the potential wake region, and the duration of the potential wake region increases. As a

result, there is less need for forced wakefulness, which may reflect daytime sleepiness.

Sleep-wake patterns aligned with the circadian rhythm reduce daytime sleepiness

To investigate whether the better alignment of sleep with the circadian rhythm was associated

with reduced daytime sleepiness, we analyzed the sleep-wake patterns of the shift workers from SMC.

Specifically, we investigated whether a negative relationship between sleep onset time and sleep

duration, as predicted by the mathematical model (Figure 3D), was stronger in the group without EDS

(ESS%10) compared to the group with EDS (ESS>10). For this comparison, we considered data only

from shift workers having similar TST (6-7 h). Furthermore, sleep episodes before a day shift (7:00-15:30

h) whose wake onsets were usually triggered by an alarm clock, were excluded in this analysis to focus

on the dependence of sleep duration on the circadian rhythm rather than forced sleep restriction following

previous studies (Åkerstedt and Gillberg, 1981). As predicted, in the group without EDS, when sleep onset

was delayed, which occurs often in shift workers, sleep duration clearly decreased following the circadian

rhythm (a = � 0:69; Figure 4D). This relationship was weaker in the group with EDS (a = � 0:29; Figure 4E).

This indicates that shift workers who aligned their sleep duration with their circadian rhythm had reduced

daytime sleepiness (Figure 5). This provides personalized and flexible sleep-wake schedules reducing

daytime sleepiness (Figure 5).

DISCUSSION

We developed a user-friendly computational package that simulates the homeostatic sleep pressure and

the circadian rhythm according to activity and light exposure, measured by wrist actigraphy (Figures 2 and

S6). Using this package, we found that shift workers whose sleep-wake patterns were aligned with their

circadian rhythm had lower daytime sleepiness (Figures 3 and 4). Specifically, when they slept according

to the computed duration of circadian necessary sleep, which was mainly determined by the circadian

phase of bedtime, their sleep-wake patterns matched with their natural sleep-wake patterns (Figure 5).

In this way, they awoke in the potential wake region when they would feel less sleepy and thus have lower

daytime sleepiness (Figure 5). As these results were based on a retrospective study, it will be important to

perform a prospective study investigating whether improving the alignment of sleep-wake patterns with

the circadian rhythm reduces daytime sleepiness of individuals. The sleep-wake patterns aligned with

the circadian rhythm were highly variable depending on various personal factors including average sleep

duration, bedtime, and environmental light exposure (e.g., Figure 3A). Importantly, our computational

package can provide personalized and flexible sleep-wake schedules reducing daytime sleepiness.

With the computational package provided in this work, we were able to calculate the sleep parameter CSS.

As CSS quantifies the fraction of sleep episodes after which one can wake up without effort, it increases

when sleep-wake patterns are better aligned with the circadian rhythm (Figures 4A and 4B). The CSS

showed a strong correlation with daytime sleepiness (Figure 3B) unlike standard sleep parameters such

as TST and SL (Figures 1B and 1C). Such a different result appears to stem from the fact that the standard
8 iScience 24, 103129, October 22, 2021



Figure 5. A sleep-wake pattern leading to circadian sufficient sleep reduces daytime sleepiness

Due to the alteration among day, evening and night shifts, sleep onset times of shift workers dramatically change. If they sleep for the same duration

regardless of their sleep onset time, they frequently sleep less than the circadian necessary sleep, which is determined by their circadian rhythm

and homeostatic sleep pressure, i.e., they have circadian insufficient sleep (top panels). Circadian insufficient sleep can be prevented if they actively

change their sleep duration so their sleep-wake patterns match their natural sleep-wake cycle (bottom panels). As a result, they spend more time awake in

the potential wake region when they feel less sleepy (bottom right). In contrast, with circadian insufficient sleep, workers are awake in the sleep region,

which requires wake effort and increases daytime sleepiness (top right). Note that the circadian insufficient sleep reduces the duration of the potential

wake region as well.
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sleep parameters capture the average pattern of the entire sleep-wake patterns, but the CSS captures the

daily change in the sleep-wake patterns. This highlights that tracking the dynamic changes in the homeo-

static sleep pressure and the circadian rhythm is critical to understand the irregular sleep-wake patterns of

the shift workers. The importance of the circadian rhythm for understanding daytime sleepiness has also

been emphasized in previous studies (Mairesse et al., 2014; Postnova et al., 2018; Puckeridge et al.,

2011; Van Dongen, 2004). Importantly, the role of the circadian rhythm to understand complex aspects

of sleep can be conveniently investigated with CSS. For instance, CSS can be used to investigate whether

the circadian rhythm is a major source of inter-individual variations in sleep qualities and sleepiness de-

pending on work schedules (Czeisler et al., 1982; Dunster et al., 2018; Vetter et al., 2015) and chronotypes

(Vetter et al., 2015). Furthermore, the irregular sleep-wake patterns accompanied with the circadian

misalignment have been considered as a major risk factor for insomnia, obesity, and cancer (James

et al., 2017; Kecklund and Axelsson, 2016). How the risk of getting these diseases depends on sleep-

wake patterns can also be effectively investigated with CSS.

Recent advances in wearable technology enable accurate real-time tracking of sleep-wake pattern and

the circadian rhythm, which are critical components of our computational package (Cheng et al., 2021;

Forger and Walch, 2020; Kim et al., 2020). A plethora of wearables have been developed to track

sleep-wake patterns (Perez-Pozuelo et al., 2020). Recently, wearable devices measuring skin temperature

and rest-activity successfully track the individual circadian rhythm during daily routine (Komarzynski et al.,

2018). Even heart rate (Gao et al., 2014), hormonal changes (Bariya et al., 2018) and core body temper-

ature (Popovic et al., 2014), which are important factors for inferring the circadian rhythm, can also be

tracked with wearables. The incorporation of these wearables and recently developed personalized

sleep-wake mathematical models (Ramakrishnan et al., 2015) with our computational package can lead

to the development of a smart alarm (Perez-Pozuelo et al., 2020). This will provide real-time personalized

wake times, which align individual sleep-wake patterns with the circadian rhythm and thus reduce day-

time sleepiness for those most suffering from it, including shift workers (Kato et al., 2012), patients of

delayed sleep-wake phase disorder (Joo et al., 2017), Parkinson’s disease (Videnovic et al., 2017) or can-

cer (Sun et al., 2011).
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Limitations of the study

In this work, we developed the sleep parameter CSS which has a significant correlation with daytime sleep-

iness of shift workers which was measured by ESS. Although ESS is one of the most widely used metrics to

measure daytime sleepiness, it is a subjective metric. Future work will test whether CSS is still significantly

correlated with daytime sleepiness measured with objective metrics such as psychomotor vigilance task or

multiple SL test. Additionally, when CSS was calculated, we did not consider the degree of circadian sleep

sufficiency due to the relatively small size of the data (e.g., 1h and 3h shorter sleep than circadian necessary

sleep are considered as the same circadian insufficient sleep). It will be an important future work to identify

a function describing the relationship between daytime sleepiness and the degree of circadian sleep

sufficiency with large data. For this extension, the amount of the wake effort drive needed tomaintain wake-

fulness can also be used (Fulcher et al., 2010).

To investigate sleep-wake patterns of shift workers with an indoor light profile, we modified the values of

three parameters among the original 28 parameters (Skeldon et al., 2017), which were validated under

various conditions (Robinson et al., 1997, 2004; Forger et al., 1999; Kronauer et al., 1999; Phillips and Rob-

inson, 2008; Phillips et al., 2010; Swaminathan et al., 2017; Stone et al., 2020; Murray et al., 2021). We modi-

fied the parameters to match the simulated sleep phases and dark phases after the entrainment of the

model under typical indoor light profiles (Figure S3). This modification appears to be critical for our study

because the CSS calculated with the original model was no longer significantly correlated with daytime

sleepiness (Table S2). However, the phase of the modified model is considerably advanced compared to

the original model (i.e., morning type). It would be interesting in future work to find a way to keep using

the original model with validated parameters to investigate daytime sleepiness by modifying the way of

calculating the CSS.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB R2020b MathWorks https://mathworks.com; RRID:SCR_001622

Actiware-Sleep software v3.4 Mini Mitter Co., Inc., (Bend, OR, USA) https://www.philips.com.au/; RRID:SCR_016440

Deposited data

Database: CSS Original Code https://github.com/Mathbiomed/CSS

Other

Actiwatch Spectrum Pro Philips Respironics, (Murrysville, PA, USA) https://www.philips.com.au/

Actiwatch 2 Mini Mitter Co., Inc., (Bend, OR, USA) https://www.philips.com.au/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Jae Kyoung Kim (jaekkim@kaist.ac.kr).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d SMC data supporting the findings of this study except for private information are available from the Lead

Contact upon request.

d The MATLAB codes of the computational package are available in the following Database: CSS (https://

github.com/Mathbiomed/CSS).

d Any additional information required to reanalyze the data study except for private information reported

in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

Activity and light exposure of 21 female rotating nurses who had done shift work for more than a year at a

metropolitan hospital (R2,000 beds; SMC) in Seoul, the Republic of Korea were analyzed. The information

of the participants was described in Table S1. This study was approved by the institutional review board

ethics committee of the hospital (Approval No. 2017-01-139). The written informed consent forms outlining

the details of the study and the confidentiality and privacy of personal information were obtained from all

participants before commencing the study.
METHODS DETAILS

Participants of SMC data

Activity and light exposure of female rotating nurses who had done shift work for more than a year at a

metropolitan hospital (SMC) in Seoul, the Republic of Korea weremeasured.We excluded participants dur-

ing the recruiting process if they were under the use of hypnotics or central nervous system stimulants, had

a history of psychiatric illness or major systemic disease, or didn’t have planned night shift schedules during

the study period. As a result, 27 participants were recruited fromMay 24 to September 27, 2017 whose shift

schedule was fast-rotating 8-h three-shift (day shift, 07:00-15:30 h; evening shift, 15:00-23:30 h; night shift,

23:00-07:30 h). During the recruiting period, the activity of each participant was recorded for 13�19 days.

Then, we analyzed sleep-wake patterns during the whole recorded period of 21 participants whose sleep
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onset and offset data were missing for less than three days during the study period and for less than two

days during the off schedules (See Table S1 for detailed information of the participants).
Daytime sleepiness and chronotype

Daytime sleepiness and chronotype of SMC data were measured by using self-reported questionnaires af-

ter the activity monitoring over 13 days. Specifically, daytime sleepiness was measured with the Korean

version of the ESS (Cho et al., 2010) which was translated from the ESS (Johns, 1991). Subjects with an

ESS score>10 are considered as having excessive daytime sleepiness (EDS). Chronotype was measured

by using the Korean version of Morningness–Eveningness Questionnaire (MEQ) (Park et al., 1996) which

was translated from the MEQ (Horne and Östberg, 1976). The MEQ scores range from 16 to 86. Subjects

with scores above 58, below 42, and from 42 to 58 were classified as morning, evening, and intermediate

types, respectively (Lee et al., 2014).
Sleep parameters

Six major sleep parameters of SMC data (Figure 1A) were estimated by tracking the sleep-wake patterns of

participants through the Actiwatch and sleep diary. Specifically, the activity and light exposure of each

participant were measured by using an Actiwatch Spectrum Pro (Philips Respironics, Murrysville, PA,

USA; n = 12) or Actiwatch 2 (Mini Mitter Co., Inc., Bend, OR, USA; n = 9) in two-min epochs for over

13 days. Participants were instructed to wear the watch throughout the study period, except while shower-

ing or swimming. The recorded activity was analyzed using Actiware-Sleep software (v3.4, Mini Mitter Co.,

Inc., Bend, OR, USA) to categorize the status of participants as either wake and active, wake and rest, sleep

and active, or sleep and rest (Figure 1A). This status was validated by the daily sleep diaries written by the

participants about their sleep onset, sleep offset and the time when the watch was removed. The validated

status was used to estimate the six major standard sleep parameters for each day (noon-to-noon) and then

their average during the study period was used (Figure 1A). When calculating the average, any days without

any sleep episode due to missing the actigraphy recording were excluded.
Sleep data processing for SMC data

To track the homeostatic sleep pressure with the computational package, sleep-wake patterns need to be

accurately tracked without any missing period. We used the Actiware-Sleep software to identify sleep in-

tervals. For various reasons (e.g., forget wearing the Actiwatch and recharge), missing periods can occur.

To determine sleep-wake status during the missing periods, we used the self-reported sleep diaries that

participants were instructed to fill out every day. If the sleep record in the sleep diary was also missing,

we assumed that participates were in wake during working time. There are 219 short missing periods

(30 minG27) and four long missing periods (8 hG2) whose sleep interval cannot be determined by either

sleep diary or work schedule. For the short missing periods, we assumed that the sleep-wake patterns of

the first half and second half of the missing period follow the sleep-wake status before and after themissing

period, respectively. On the other hand, for the long missing periods, we excluded the whole 24-h sleep-

wake data including the long missing periods from our analysis.

Furthermore, to estimate pure sleep duration from the sleep interval, the WASO of every sleep was esti-

mated with the Actiware-Sleep software. When WASO data was missing (2 of 398 sleep episodes,

0.50%), it was determined as the mean WASO of the participant.

If there is more than one sleep episode during the day (noon-to-noon), we need to determine the main

sleep episode for calculating CSS. We defined the main sleep episode of each day (noon-to-noon) as

the sleep episode having the longest TIB among all sleep episodes in the day after finishing the work

schedule.

Furthermore, if there is another sleep episode which is very close to the main sleep episode, we integrated

the two sleep episodes as the main sleep to calculate CSS. Specifically, if the period with activity having a

non-zero value identified by Actiware-Sleep software during the wake period between the two sleep epi-

sodes is less than WASO of normal adults (42 min; 7 cases) (Fekedulegn et al., 2020), we integrated them

and treated the wake period with activity having a value of zero, between two sleep episodes as WASO.
14 iScience 24, 103129, October 22, 2021
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Light data processing for SMC data

Based on light exposure, the light signal transmitted to the circadian clock and thus the circadian rhythm

entrained to the light-dark cycles were estimated via our computational package. The light exposure was

recorded with the ‘‘white light’’ reading supplied by the Actiwatch Spectrum Pro or Actiwatch 2 (Figure 2B).

However, we decided not to use the light data from the Actiwatch 2 due to its significant incorrect measure-

ment of light exposure (e.g., only <50 lux was recorded a day after wearing the Actiwatch 2). Thus, the light

profiles of shift workers who wore the Actiwatch 2 were assumed as the intensity of 250 lux during wakeful-

ness and 0 lux during sleep because the typical light intensity during working hours in SMC is�250 lux (Choi

and Joo, 2016). Furthermore, the same assumption was made when the missing period longer than 3 h oc-

curs with the Actiwatch Spectrum Pro. When different levels of light between 100 and 700 lux were used

instead of 250 lux, the CSS changes slightly (Table S3), which shows that our results are robust to the choice

of the light intensity. When the missing period of the Actiwatch Spectrum Pro is shorter than 3 h, we

assumed that the light intensity of the first half and second half of the missing period are the same as

the light intensity before and after the missing period, respectively.
Mathematical model description

To simulate homeostatic sleep pressure and the circadian rhythm based on sleep-wake patterns and light

exposure, our computational package adopted a physiological based mathematical model of sleep-wake

cycles (Phillips et al., 2010; Skeldon et al., 2017; Swaminathan et al., 2017) (Figure S2 and Table S4). We

modified the mathematical model to investigate highly irregular sleep-wake patterns of shift workers

with an indoor light profile. This included the modification of values for 3 of 28 parameters (Figure S3

and Table S5) and the incorporation of forced wakefulness and forced sleep (Figure S4) and realistic atten-

uation of light (see Data S1).
Computational package

The computational package developed in this work provides an estimate of homeostatic sleep pressure

and the circadian rhythm based on sleep-wake patterns and light exposure (Figure S6). In particular, it

calculates the CSS of the provided sleep-wake patterns, which can be used to identify personalized

sleep-wake patterns with high CSS. The detailed manual for the computational package is described in

Data S2. The MATLAB codes of the computational package are available in the following Database: CSS

(https://github.com/Mathbiomed/CSS).
QUANTIFICATION AND STATISTICAL ANALYSIS

All the simulations were performed using ode15s solver in MATLAB (R2020b, MathWorks, Natick, USA). For

this study, Spearman’s rank correlation test and partial Spearman’s correlation test were performed with

MATLAB and SPSS, respectively. A p value of <0.05 was considered statistically significant.
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