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Abstract

We give exact Green’s functions in two space dimensions. We work in a scaled domain that

is a circle of unit radius with a smaller circular “inclusion”, of radius a, removed, without

restriction on the size or position of the inclusion. We consider the two cases where one of

the two boundaries is absorbing and the other is reflecting. Given a particle with diffusivity D,

in a circle with radius R, the mean time to reach the absorbing boundary is a function of the

initial condition, given by the integral of Green’s function over the domain. We scale to a cir-

cle of unit radius, then transform to bipolar coordinates. We show the equivalence of two dif-

ferent series expansions, and obtain closed expressions that are not series expansions.

Introduction

Brownian motion is a common model of microscopic behaviour, such as that of intracellular

molecules [1–4]. Depending on whether the mathematical interest is in statistics of many par-

ticles, or in single-particle properties such as mean hitting times, the diffusion, Laplace, or

Poisson equation may need to be solved [5–8]. Absorption or reflection at surfaces is expressed

in terms of boundary conditions. Green’s function is the key to analytical solutions because it

takes the shape of the domain and the boundary conditions into account. Quantities such as

mean hitting times are obtained from it by standard integration, for any initial distribution [9–

14]. It is also possible to model a surface with both absorbing and reflecting parts using Robin

boundary conditions [15–17].

The domain we consider here is a circle of unit radius with a smaller circular “inclusion”, of

radius a, removed. The centre of the inclusion is displaced from the centre of the circle of unit

radius by c, with 0� c� 1 − a. We consider the two cases where one circle is an absorbing

boundary, the other is reflecting (reflecting inclusion inside a circular domain with absorbing

boundary, and vice versa). In [14], the circle of unit radius was referred to as the cellular sur-

face and the inclusion as the cell’s nucleus. In two and three dimensions, Condamin et al. [18],

constructed approximate Green’s functions. Asymptotic and numerical methods can be used

when there are multiple targets of different shapes in a two-dimensional region [19–22]. They

are accurate when the targets are not too large, not too close to each other and not too close to

the cellular surface. The functions given here are, however, exact without restriction on the

size or position of the inclusion.
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We use bipolar coordinates, τ and σ (Fig 1); the circle of unit radius has τ = τ2 and the

boundary of the inclusion has τ = τ1, where

t1 ¼ log ðd=aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðd=aÞ2
q

Þ; t2 ¼ log ðd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2
p

Þ ð1Þ

and

d ¼
1

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ a2 � c2Þ
2
� 4a2

q

: ð2Þ

We calculate Green’s functions on the rectangular domain in bipolar coordinates τ2� τ� τ1,

0� σ� 2π; mean exit times are calculated by integrating over the coordinates (τ, σ) [14].

The transformation from Cartesian to bipolar coordinates, (x, y) to (τ, σ), is a type of con-

formal transformation employed, for example, to express the electric potential between two

parallel cylinders [5, 23]. Another example of a conformal transformation is the bilinear func-

tion

f ðzÞ ¼
z þ a
z þ b

;

where z = x + iy. Circles are mapped to circles and, with suitable choices of α and β, two non-

concentric circles can be mapped to two concentric ones. When one is the unit circle, αβ = 1

[24]. The bilinear transformation has been used to obtain solutions of Laplace’s equation with

absorbing boundaries on both circles [25, 26]. We may construct Green’s functions in

Fig 1. The domain is the interior of the unit circle (blue) with a circular inclusion (red). The initial position of a

diffusing particle, x0, has bipolar coordinates τ0, σ0. The dashed circle is the set of points with τ = τ0. The dotted arc is

part of the set of points with σ = σ0. G1(x0, x) is the solution of (4), constrained to be zero on the unit circle and to have

normal derivative on the inclusion. G2(x0, x) is the solution of (4), constrained to be zero on the inclusion and to have

normal derivative on the unit circle.

https://doi.org/10.1371/journal.pone.0265935.g001
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nonconcentric domains from those in concentric domains, ~G, which are also series expansions

[27], as ~Gðf � 1ðz0Þ; f � 1ðzÞÞ. However, the integrals needed to calculate mean exit times have

only been performed using bipolar coordinates [14].

Green’s function G(x0, x) is a symmetric function of two positions x0 and x, where x0 is

taken to be the position of a point charge or the initial condition of a diffusing particle. As a

result, G(x0, x) is proportional to − log |x − x0| as x! x0. Writing it as a sum of singular and

regular parts, and expressing both in bipolar coordinates [5, 28], Heyda was able to find a

series expression for Green’s function with absorbing boundaries. A different approach to the

same problem [29], because the transformed domain is rectangular, is to expand Green’s func-

tion in trigonometric eigenfunctions. The resulting series solution can be summed to yield an

explicit expression involving Jacobi Theta functions [29]. Heyda’s method has recently been

applied to the problem where one circular boundary is absorbing and the other is reflecting

[14]. Explicit exact solutions are useful, even when they are series, because they can be inte-

grated to yield mean transport times, or expanded in small parameters to yield simple expres-

sions, depending on the geometry and dynamics of the context of diffusion in confined

geometries [8, 30–35].

Given a particle with diffusivity D, in a circle with radius R, the mean time to reach an

absorbing boundary is a function of the initial condition, given by the integral of Green’s func-

tion over the domain. Given R, we firstly scale to a circle of unit radius, then transform to bipo-

lar coordinates. With the Jacobian factor of the transformation, d2/(cosh τ − cos σ)2, the

integral is written as

Tðx0Þ ¼
R2

D

Z t1

t2

Z 2p

0

Gðx0;xÞd2

ðcosh t � cos sÞ2
dsdt: ð3Þ

Green’s function satisfies

DxGðx0;xÞ ¼ � dðx � x0Þ x 2 C; ð4Þ

with conditions on the boundaries of C. We consider two cases.

• G1(x0, x) is the solution of (4), constrained to be zero when τ = τ2 and to have normal deriva-

tive zero when τ = τ1. The corresponding time obtained from (3) is the mean time for a dif-

fusing particle to reach the boundary of the circle of radius R, when the boundary of the

inclusion is reflecting.

• G2(x0, x) is the solution of (4), constrained to be zero when τ = τ1 and to have normal deriva-

tive zero when τ = τ2. The corresponding time obtained from (3) is the mean time for a dif-

fusing particle to reach the inclusion, when the boundary of the circle of radius R is

reflecting.

In terms of (τ, σ), the bipolar coordinate representation of x, and (τ0, σ0), the representation

of x0, we define τA = min(τ, τ0) − τ2, τB = τ1 − max(τ, τ0) and θ = |σ − σ0| − π, where −π< θ�
π.

Equivalence of series

Two different series expressions exist for G1 and G2. Based on the form used by Heyda [36], we

can write [14]

2pG1ðx0;xÞ ¼ tA þ
X1

m¼1

2

m
sinhmtA coshmtB
coshmðt1 � t2Þ

cosmy ð5Þ
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and

2pG2ðx0;xÞ ¼ tB þ
X1

m¼1

2

m
sinhmtB coshmtA
coshmðt1 � t2Þ

cosmy: ð6Þ

A different summation, developed by Liemert [29], may be modified to the case of one absorb-

ing and one reflecting boundary to yield

2pG1ðx0;xÞ ¼
X1

n¼0

4

2nþ 1

sin ðlnðt � t2ÞÞ sin ðlnðt0 � t2ÞÞ

sinh lnp
cosh lny; ð7Þ

and

2pG2ðx0;xÞ ¼
X1

n¼0

4

2nþ 1

sin ðlnðt1 � tÞÞ sin ðlnðt1 � t0ÞÞ

sinh lnp
cosh lny; ð8Þ

where

ln ¼
ð2nþ 1Þp

2ðt1 � t2Þ
: ð9Þ

Our first aim is to demonstrate that these two expressions, superficially very different, are

equivalent. To do so, we seek to write (5) in the form

2pG1ðx0;xÞ ¼
X1

l¼0

Al sinðllðt � t2ÞÞ;

where

Al ¼
4p

t1 � t2

Z t1

t2

G1 x0;xð Þ sin llðt � t2Þð Þdt:

Thus

Al ¼
8

p

ll
2l þ 1

1

2l
2

l

þ
X1

m¼1

cosmy
l

2

l þm2

 !

sin llðt0 � t2Þ:

Using

cosh lmy
sinh lmp

¼
2lm
p

1

2l
2

m

þ
X1

n¼1

cos ny
l

2

m þ n2

 !

;

we find

Al ¼
4

2l þ 1

cosh lly
sinh llp

sin llðt0 � t2Þ;

which is consistent with (7). Similarly, (6) is equivalent to (8).
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Evaluation without series

To obtain closed expressions that are not series expansions, we rearrange the summand in (7),

using [29]

4 sin ðlnðt � t2ÞÞ sin ðlnðt0 � t2ÞÞ cosh lny

¼ <ðeið2nþ1Þb þ e� ið2nþ1Þb � eið2nþ1Þa � e� ið2nþ1ÞaÞ;

where <(z) is the real part of z,

a ¼
p

2

tþ t0 � 2t2 þ iy
t1 � t2

; b ¼
p

2

t � t0 þ iy
t1 � t2

; ð10Þ

and

sinh lnpð Þ ¼
1 � q2ð2nþ1Þ

2q2nþ1
where q ¼ exp �

p2

2ðt1 � t2Þ

� �

: ð11Þ

Then (7) is written [29]

2pG1 x0;xð Þ ¼
X1

n¼0

X1

k¼1

qð2k� 1Þð2nþ1Þ

2nþ 1
2< eið2nþ1Þb þ e� ið2nþ1Þb � eið2nþ1Þa � e� ið2nþ1Þa
� �

:

When |z| < 1,

2<
X1

n¼0

z2nþ1

2nþ 1

 !

¼ log
1þ z
1 � z

�
�
�
�

�
�
�
�:

Therefore

2pG1ðx0;xÞ ¼
X1

k¼1

log
1þ q2k� 1eib

1 � q2k� 1eib
1þ q2k� 1e� ib

1 � q2k� 1e� ib
1 � q2k� 1eia

1þ q2k� 1eia
1 � q2k� 1e� ia

1þ q2k� 1e� ia

�
�
�
�

�
�
�
�

¼
X1

k¼1

log
j1þ 2q2k� 1cosbþ q4k� 2j

j1 � 2q2k� 1cosbþ q4k� 2j

j1 � 2q2k� 1cosaþ q4k� 2j

j1þ 2q2k� 1cosaþ q4k� 2j

¼ logj
W3ðb=2; qÞW4ða=2; qÞ
W4ðb=2; qÞW3ða=2; qÞ

j;

ð12Þ

where ϑ3(z, q) and ϑ4(z, q) are Jacobi theta functions [29, 37]. Similarly,

2pG2 x0;xð Þ ¼ log
W3ðb2=2; qÞW4ða2=2; qÞ
W4ðb2=2; qÞW3ða2=2; qÞ

�
�
�
�

�
�
�
�; ð13Þ

where

a2 ¼
p

2

2t1 � t � t0 þ iy
t1 � t2

and b2 ¼
p

2

t0 � tþ iy
t1 � t2

:

In Fig 2, the dependence of G1(x0, x) and G2(x0, x) on x is shown, with x0 fixed, when c = 0.5

and a = 0.2. We use the closed expressions (12) and (13). Jacobi functions are available in

many software packages; we give an example in the S1 Code.
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If truncated at a finite number of terms, the series expressions (5)–(8) are not exact. To con-

sider the effect of only using a finite number of terms, we define

2pGH
1
ðx0;x; nÞ ¼ tA þ

Xn

m¼1

2

m
sinhmtAcoshmtB
coshmðt1 � t2Þ

cosmy ð14Þ

2pGL
1
ðx0;x; nÞ ¼

Xn

m¼0

4

2mþ 1

sin ðlmðt � t2ÞÞsin ðlmðt0 � t2ÞÞ

sinh lmp
cosh lmy; ð15Þ

and similary GH
2
ðx0; x; nÞ and GL

2
ðx0; x; nÞ. Fig 3 shows how the error is distributed on the

domain, when 20 terms in each series are used. Note that the error using (5) and (6), is largest

close to τ = τ0; the error using (7) and (8) is largest close to σ = σ0. In practice, evaluating mean

times by performing the integral (3) is most convenient using the forms (5) and (6).

Conclusion

Green’s functions are used to calculate mean hitting or exit times of Brownian particles in con-

fined domains whose boundaries are reflecting in some places and absorbing in others. We

give exact results in two dimensions when the domain is a circle (cellular surface) with a circu-

lar inclusion (cellular nucleus). Two different types of series expression emerge when using

bipolar coordinates. We sum the series to yield a closed expression involving Jacobi theta func-

tions. The methodology of this paper can be extended to three dimensions with bispherical

coordinates [27]. Transformations using bipolar and bispherical coordinates have only yielded

exact results when there is a single inclusion on a circular domain. Nevertheless, exact results

are useful complements to current numerical and analytical methods, accurate in certain lim-

its, for confined diffusion with narrow exits or multiple targets [18–20, 38].

Fig 2. Exact Green’s functions. Left: G1(x0, x). The boundary of the unit circle is absorbing, the boundary of the inclusion

is reflecting. Right: G2(x0, x). The boundary of the unit circle is reflecting, the boundary of the inclusion is absorbing. The

initial position of the diffusing particle, x0, is displaced by (0.5, 0.2) from the center of the unit disk; the inclusion has radius

0.2 and is displaced by (−0.5, 0). The value of the function at x is the occupation density of the diffusing particle, until

reaching the absorbing boundary. We use the closed expressions (12) and (13) that involve the Jacobi theta function.

Python code is provided in the S1 Code.

https://doi.org/10.1371/journal.pone.0265935.g002
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Fig 3. Dependence of truncation errors in Green’s functions on position x. The inclusion is the red disk, displaced

by (−0.5, 0) with respect to the centre of the unit circle, and the initial position x0 of the diffusing particle, is displaced

by (0.5, 0.2). Upper left: G1ðx0; xÞ � GH
1
ðx0; x; 20Þ. Upper right: G1ðx0; xÞ � GL

1
ðx0; x; 20Þ. Lower left:

G2ðx0; xÞ � GH
2
ðx0; x; 20Þ. Lower right: G2ðx0; xÞ � GL

2
ðx0; x; 20Þ.

https://doi.org/10.1371/journal.pone.0265935.g003

PLOS ONE Diffusion in a disk with inclusion: Evaluating Green’s functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0265935 April 14, 2022 7 / 9

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0265935.s001
https://doi.org/10.1371/journal.pone.0265935.g003
https://doi.org/10.1371/journal.pone.0265935


References
1. Berg HC. Random walks in biology. Princeton University Press; 1993.

2. Bressloff PC, Newby JM. Stochastic models of intracellular transport. Reviews of Modern Physics.

2013; 85(1):135. https://doi.org/10.1103/RevModPhys.85.135

3. Schuss Z. Brownian dynamics at boundaries and interfaces. Springer; 2015.

4. Grebenkov DS, Holcman D, Metzler R. Preface: new trends in first-passage methods and applications

in the life sciences and engineering. Journal of Physics A: Mathematical and Theoretical. 2020; 53

(19):190301. https://doi.org/10.1088/1751-8121/ab81d5

5. Morse PM, Feshbach H. Methods of theoretical physics. McGraw-Hill; 1953.

6. Schuss Z. Theory and applications of stochastic processes: an analytical approach. vol. 170. Springer

Science & Business Media; 2009.

7. Holcman D. Stochastic processes, multiscale modeling, and numerical methods for computational cel-

lular biology. Springer; 2017.

8. Grebenkov DS, Metzler R, Oshanin G. Effects of the target aspect ratio and intrinsic reactivity onto diffu-

sive search in bounded domains. New Journal of Physics. 2017; 19(10):103025. https://doi.org/10.

1088/1367-2630/aa8ed9

9. Barton G. Elements of Green’s functions and propagation: potentials, diffusion, and waves. Oxford Uni-

versity Press; 1989.

10. Redner S. A guide to first-passage processes. Cambridge University Press; 2001.

11. Stirzaker D, et al. Stochastic processes and models. OUP Catalogue. 2005.
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