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Abstract

Motivation: Critical evaluation of methods for protein function prediction shows that data integra-

tion improves the performance of methods that predict protein function, but a basic BLAST-based

method is still a top contender. We sought to engineer a method that modernizes the classical ap-

proach while avoiding pitfalls common to state-of-the-art methods.

Results: We present a method for predicting protein function, Effusion, which uses a sequence

similarity network to add context for homology transfer, a probabilistic model to account for the

uncertainty in labels and function propagation, and the structure of the Gene Ontology (GO) to best

utilize sparse input labels and make consistent output predictions. Effusion’s model makes it prac-

tical to integrate rare experimental data and abundant primary sequence and sequence similarity.

We demonstrate Effusion’s performance using a critical evaluation method and provide an in-

depth analysis. We also dissect the design decisions we used to address challenges for predicting

protein function. Finally, we propose directions in which the framework of the method can be modi-

fied for additional predictive power.

Availability and implementation: The source code for an implementation of Effusion is freely avail-

able at https://github.com/babbittlab/effusion.

Contact: babbitt@cgl.ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Determining the function of gene products is necessary for under-

standing life, valuable for its applications in health and industry,

and a foundational problem in bioinformatics. The number of pro-

tein sequences, now greatly amplified by metagenomic sequencing

projects, continues to grow at a much faster rate than the number of

proteins with experimentally determined functions. As a result, com-

putational prediction of protein function is needed more than ever

(Friedberg, 2006).

A common approach for predicting the molecular function (MF)

of a given query protein is to search a sequence database of anno-

tated proteins and derive the predicted function from the annota-

tions of the most similar sequences found (Conesa et al., 2005;

Martin et al., 2004). Despite a number of caveats (Gilks et al., 2005;

Rost, 2002; Schnoes et al., 2009; Tian and Skolnick, 2003; Todd

et al., 2001), this approach remains popular due to the wide avail-

ability of sequence data, the speed at which a similarity search can

be conducted (Altschul, 1997; Buchfink et al., 2015), and the simpli-

city and robustness of the method.

As of March 17, 2017, UniProtKB (The UniProt Consortium,

2017) includes 80 758 400 protein sequences. BLAST (Altschul,

1997) and DIAMOND (Buchfink et al., 2015) can be used to quick-

ly search a database of such sequences for proteins that are similar

in sequence to a given query.

The Gene Ontology Consortium represents protein function

using a controlled vocabulary of terms, related hierarchically, where
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more general activities are ancestors of more specific activities. (The

Gene Ontology Consortium, 2017) The Gene Ontology (GO) mod-

els three distinct aspects of protein function: MF, biological process,

and cellular component. We focus on MF, which is defined as “the

biochemical activity (including specific binding to ligands or struc-

tures) of a gene product” (Ashburner et al., 2000). There are 10 885

GO terms in the MF ontology. About 8799 of these are leaves,

which have no child terms. A protein function can be represented by

a combination of these GO terms.

The Gene Ontology Annotation database (GOA) (Huntley et al.,

2009) contains a list of associations between UniProtKB identifiers

and GO terms. Each association is complemented with metadata,

including the date the association was made and an evidence code

indicating whether the annotation was assigned by a curator using

either experimental or computational analysis, or assigned automat-

ically. A positive annotation to a specific GO term implies a positive

annotation to any of its more general ancestor GO terms. Only

562 971 protein sequences in UniProtKB have an experimentally

determined annotation. As these annotations come from various

labs and genome annotation consortia, neither the proteins nor the

GO terms are studied uniformly.

An effective model for protein function prediction must take into

account several idiosyncrasies of protein function and the data avail-

able to use for its prediction. There are a tremendous number of pro-

tein sequences available, but very few are functionally characterized.

Experimental annotations, which usually describe a protein’s func-

tion in part or at a high level, are expensive to obtain, rare, and col-

lected with bias (Schnoes et al., 2013). Negative annotations, which

indicate that a given protein does not have a given activity, are near-

ly non-existent. The label space is large, and there is not a single pro-

tein that has a complete label in Gene Ontology Annotation (GOA),

with a positive or negative annotation for every functional term in

GO. Some GO terms also have few, or no, associated proteins,

thwarting typical classification algorithms that require many sam-

ples per class.

Although these characteristics complicate function prediction, a

method can be constructed to benefit from the constraints they im-

pose. For example, sequence similarity networks (SSNs) use unanno-

tated proteins to provide context for predicting MFs (Atkinson

et al., 2009; Davidson et al., 2018; Li et al., 2013; Martin et al.,

2013; Sharan et al., 2007). Visually, they show putative clusters of

conserved function, space between clusters with few proteins where

there may be a change in function, and unexplored regions of the se-

quence space. A semi-supervised classifier uses networks to guide

the drawing of functional boundaries between protein clusters.

As another example, a method that uses a separate classifier for

each GO term will likely have too few training samples for each

one, and the resulting predictions may be inconsistent with respect

to the GO hierarchy. However, viewing the problem as a structured

prediction problem will not only result in consistent output labels,

but will be able to take advantage of annotations throughout GO

(Barutcuoglu et al., 2006; Eisner et al., 2005; Jiang et al., 2008;

Obozinski et al., 2008; Sokolov and Ben-Hur, 2011).

Evaluation of protein function is also complex. The sample

labels used for training and for evaluation are derived from GOA, so

they are also structured, incomplete, and collected unevenly. The

use of basic evaluation methods and metrics is not always appropri-

ate, and it was difficult to compare results from more involved

evaluation protocols. To make progress on these issues, the protein

function prediction community conducts an experiment every few

years called the Critical Assessment of Function Annotation (CAFA)

(Radivojac et al., 2013; Jiang et al., 2016). This community effort

has identified methods, metrics, and baselines that better indicate

the extent to which prediction methods can automate function an-

notation. In this work, we make use of these best practices.

Most protein network–based probabilistic graphical models

(PGMs) focus on protein-protein interaction networks (Kourmpetis

et al., 2010), but some authors present or suggest a PGM based on a

SSN (Deng et al., 2004; Letovsky and Kasif, 2003). Carroll and

Pavlovic (2006) and Mitrofanova et al. (2011) additionally incorp-

orate the structure of GO into their PGM. We build on the ideas of

these methods, but use a model, parameters, and algorithm that are

better suited to the problem of predicting protein function.

Here, we propose and evaluate a new method, Effusion, that

uses a network of partially characterized sequences to suggest accur-

ate function predictions. The use of SSNs, the incorporation of GO,

and the application of PGMs has been previously reported.

However, our method, its model, and its parameters are the first to

integrate these features in a way that is accurate, practical, and ex-

tensible. Specifically, our model, inspired by network analysis in

computational biology (Atkinson et al., 2009; Barber and Babbitt,

2012; Brown and Babbitt, 2012, 2014), admits a highly interpret-

able set of parameters, which we can learn for each GO term and

from all experimental annotations, augment them with pseudo-

counts, and submit to general-purpose inference algorithms.

Evaluation of the predictions shows that our method can accurately

discern the MFs of a protein, even when faced with partial, autocor-

related samples and classes that are imbalanced and related

hierarchically.

2 Materials and methods

A graphical summary of the method is shown in Figure 1.

First, we build a protein network with edges of sequence similar-

ity. This network is quickly constructed by broadly BLASTing

(Altschul, 1997) sequence queries to collect homologs (Fig. 1a) and

using DIAMOND (Buchfink et al., 2015) to fill in the all-by-all se-

quence similarity edges of the network (Fig. 1b).

Second, we construct a tractable PGM based on this network

(Pearl, 1988). The network is first converted to a minimum spanning

tree (MST), pruned to query proteins or proteins with non-

electronic annotation, and directed outward from the query

(Fig. 1c). For each edge in the MST, we link the corresponding MF

terms from GO (Fig. 1d). Since the model is directed, the parameters

are simply conditional probabilities that can be calculated by count-

ing over all pairs of neighboring proteins that have experimental

annotations.

Finally, we perform inference using general-purpose, state-of-

the-art inference software and output the predictions. A network

view of the output predictions for two GO terms is shown in

Figure 1e. Since the method has a GO-structured model of protein

function, detailed predictions are given for every protein in the net-

work. We show the detailed predictions for the query in Figure 1f.

The details of the method follow.

2.1 Preprocessing
We downloaded the datasets for our analysis in early April, 2017.

• protein sequences: UniProtKB, compiled from SwissProt and

TrEMBL, version 2017_03
• experimental annotations: Gene Ontology Annotation Database,

version 2017-03-11
• controlled vocabulary: Gene Ontology, version 2017-03-31
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Fig. 1. Graphical Summary of Effusion, using cytochrome P450 CYP1C1 (UniProt Q4ZIL6) as an example. (a) Homologs of UniProt Q4ZIL6 collected by BLAST.

UniProt Q4ZIL6 has been experimentally annotated to a descendent of steroid hydroxylase activity (GO:0008395), but this annotation was one of the ones withheld

during the test phase, and it has no annotation to any arachidonic acid 14, 15-epoxygenase activity (GO:0008404), an annotation for a homolog of the query reported

by BLAST. (b) An SSN is built from the all-by-all edges computed via DIAMOND. The network is visualized with Cytoscape (Shannon, 2003) using Organic Layout. (c)

The reduced network. The layout is applied to all edges, but only the MST edges are used in the model. The resulting network is used as the topology of a PGM. (d)

The protein function of each node is represented by a subset of GO, with each GO term represented by a Bernoulli random variable. (e) Two views of the network fol-

lowing inference. The left figure is shaded according to the probability of GO:0008395. The right figure is shaded according to the probability of GO:0008404. (f)

Probabilities for a subset of terms for query UniProt Q4ZIL6. Probabilities are calculated for each candidate GO term for each node. Nodes are shaded from white

being 0% to black being 100%, except for the node representing GO:0008395, which is colored a shade of blue based on its posterior probability

444 J.M.Yunes and P.C.Babbitt



• sequence similarity: Computed by BLAST version 2.6.0+ for sin-

gle query searches, or via DIAMOND version 0.9.10 for all-by-

all calculations

We only included annotations to UniProtKB identifiers, exclud-

ing a smaller number of annotations linked to gene products in other

databases. As is standard in the field, we excluded Inferred from

Electronic Annotation (IEA) annotations (Gilks et al., 2005; Jiang

et al., 2016). For each positive annotation, we explicitly added posi-

tive annotations for each ancestor GO term for the same protein and

annotation metadata (i.e. date and evidence code). Similarly, a nega-

tive annotation for a protein to a GO term was considered a nega-

tive annotation for the same protein to every descendent GO term.

We refer to the resulting set of annotations as preprocessed

annotations.

The dataset for the discovery phase included all preprocessed

annotations through 2015. Annotations from January 1, 2016 on-

ward were withheld for all purposes until final evaluation and

analysis.

2.2 Building the protein network
For a given query protein, we build a SSN, where nodes represent

proteins and edges represent pairwise sequence similarity. This net-

work is quickly constructed by collecting homologs with BLAST,

and then using DIAMOND to calculate the all-by-all sequence simi-

larity scores to fill in the edges of the network. BLAST is run with a

permissive E-value threshold (1� 10�8), but limited to sequences

that cover 90% of the query, and filtered to sequences with a bit

score per residue of at least 0.25. The requirement for 90% query

cover is intended to avoid transferring functions for a domain in the

subject that does not exist in the query. We use the resulting sequen-

ces to format a DIAMOND DB, and search each resulting sequence

against this DB using DIAMOND (E-value ¼ 1� 10�8, query cover

¼ 90%, subject cover ¼ 90%, max target seqs ¼ 1000, minimum

bit score per residue of 1:4� 0:25). The all-by-all calculation uses

more restrictive parameters to limit the number of edges for reasons

of computational practicability. This heuristic usually provides the

MST edges we need for building the model without wasting space

and time (see Section 3.2).

2.3 Constructing a tractable probabilistic graphical

model
The protein network is first reduced to make it more amenable to

learning and inference. To get the reduced network, we convert the

protein network to a MST (edge weight ¼ �bit score per residue,

negated for maximum spanning tree of highest scoring edges), direct

it outward from the query, and prune it to query proteins or proteins

with non-electronic annotation (evidence code not IEA). The goal of

this network reduction was to imbue local factors with a global

probabilistic interpretation, which facilitates parameter learning.

Another benefit of this reduction is that it results in inference run-

ning more quickly, by removing tight loops in SSNs, and allowing

pruning. However, we note that the PGM is still not a tree because

variables generally still have multiple parents, coming from GO and

from the corresponding term of the parent protein in the reduced

network. Therefore, iterative, approximation algorithms are needed

for inference.

2.3.1 Protein template

Each protein in the reduced network generates a subgraph in the

PGM, by instantiating a copy of the protein template. The protein

template models the MF of a protein. It has the topology of a sub-

graph of the Gene Ontology Consortium’s MF ontology. Each node

in the subgraph is a candidate GO term. These are chosen by collect-

ing every GO term for which there is a positive or negative prepro-

cessed annotation in the SSN. Each candidate GO term, for each

protein, is modeled as a Bernoulli random variable, and we eventu-

ally calculate marginal posterior probabilities for each of them

(Section 2.6).

We implemented and evaluated two models for relating the GO

terms within a protein template: a top-down model and a bottom-

up model. Each model has its own advantages and disadvantages.

In a top-down model, the parent(s) of a variable representing

a GO term t for protein i include the parents (more general

terms) in GO, so the factors wðxi
t;paðxi

tÞÞ are Pðxi
tjpaðxi

tÞÞ ¼
Pðxi

tjxi
GO parentsðtÞ; other model parentsðxi

tÞ
Þ. It is more common to model a

PGM in a top-down fashion, because PGMs that limit factor sizes,

in particular those that have only a single parent per node, admit

more tractable PGM inference.

However, a top-down model has limitations for modeling pro-

tein function. If, for example, a protein is annotated as a DNA poly-

merase, then that protein has an implied annotation to polymerase

in general, and that will give the protein a high probability of any

type of polymerase, such as an RNA polymerase. In this scenario,

the posterior probability for RNA polymerase could be higher than

the posterior probability for any specific DNA polymerase.

To address this, we added supplementary negative evidence as

follows. For each protein with evidence, if the weighted contingency

table (Section 2.5) shows that a particular unobserved term is un-

likely (< 50%) given the observed values of its sibling terms, then

we infer a negative annotation for that sibling. For the example

above, since an annotation for RNA polymerase is unlikely to co-

occur with an annotation for DNA polymerase, then a protein with

a positive annotation for DNA polymerase and no annotation for

RNA polymerase would have a supplementary negative annotation

for RNA polymerase.

As these supplementary negative annotations are considered as

evidence, they are deemed certain. Since they are not always correct,

the necessity of negative annotations is a limitation of the top-down

model. For example, a query which is known to have transferase ac-

tivity (GO:0016740) in its training data will be given no chance of

having hydrolase activity (GO:0016787), because the two terms are

siblings, and PðhydrolasejtransferaseÞ ¼ 25:3% < 50%. However,

our data show that the terms were co-annotated to the same protein

834 times.

In our example above, we would prefer that our model

were powerful enough to allow evidence for DNA polymerase to ex-

plain-away our belief in RNA polymerase. Therefore, we also

experimented with a bottom-up model, where the parents of a

variable representing GO term t for protein i include the children

(more specific terms) in GO: wðxi
t; paðxi

tÞÞ :¼ Pðxi
tjpaðxi

tÞÞ ¼
Pðxi

tjxi
GO childrenðtÞ;other model parentsðxi

tÞ
Þ.

We use GO kin to refer to GO parents in the top-down model,

and GO children in the bottom-up model. As we continue the de-

scription of our method, model refers generally to both the top-

down and bottom-up model, except as specified.

2.3.2 Incorporating sequence similarity edges

When two proteins are similar in sequence and have an MST edge

between them, we connect the corresponding MF terms. Assuming

reasonable parameters, the factor associated with this edge induces

two proteins that are similar in sequence to have similar MFs.
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2.4 Information content (IC) of GO terms
The IC of a GO term g is calculated by

ICðgÞ ¼ � log 2ðPðgjGO parentsðgÞÞÞ

2.5 Parameter learning
Since the model is directed, the parameters have a global probabilis-

tic interpretation: each variable in the probabilistic model adds a

factor representing the conditional probability of that variable given

its parents.

For the model just presented, the parameters are Pðxi
tjxi

GO kinðtÞ;

x
BLAST parentðiÞ
t Þ, the probability of protein i having term t, given the

GO kin of GO term t for protein i, and the corresponding GO term

for the BLAST parent.

We can learn these parameters from all available experimental

data, not just the data in a network for a specific query. To do so,

we compare the label for each protein with a preprocessed annota-

tion to the label of the most similar protein with a preprocessed an-

notation. The similarity of the most similar protein must be below

the similarity thresholds specified above for building the network.

We count the number of times there was a gain of function, loss of

function, or other such events. We use thiolester hydrolase activity

(GO:0016790) as an example to show the contingency tables we use

for calculating the parameters. Table 1 shows the contingency table

of raw counts.

We note also that we learn parameters for each GO term. So, for

example, the probability of a hydrolase losing its ability to hydrolyze

ester bonds GO:0016788 over adjacent proteins is low (1.5%); the

probability of a hydrolase losing its ability to hydrolyze a thiolester

bond GO:0016790 is higher (4.3%).

Our contingency tables are based on preprocessed annotations

rather than inferred functions, so incomplete annotations result in a

model that make a gain or loss of function between neighboring pro-

teins very likely. We address this by weighting the count contributed

by each protein by the IC of the protein’s label ICðlabelÞ ¼P
g2label ICðgÞ. An example contingency table of weighted counts is

shown in Supplementary Table S1.

In order for our model to have a chance at predicting rare GO

terms, we added pseudocounts to our contingency tables. Our aim

was to add counts from contingency tables for similar terms,

but with more experimental evidence. Therefore, we transformed

each raw (or IC weighted) contingency table for GO term g,

Craw = weighted
g , with the recursion

Cpseudo
g :¼ 0:10� CMRCAðGO parentsðgÞÞ

Cg ¼ Craw = weighted
g þ Cpseudo

g

where MRCAð�Þ is the most recent common ancestor. A contingency

table with pseudocounts added to the raw counts are shown in

Supplementary Table S2.

2.6 Inference
Our models were complex enough that it was intractable to use

exact inference algorithms or standard approximate algorithms.

Fortunately, software implementations of algorithms that won the

recent Uncertainty in Artificial Intelligence (UAI) inference competi-

tion (Dechter,R. personal communication), namely variations on

adaptive inference and SampleSearch (Acar et al., 2012; Gogate and

Dechter, 2011), gave good results on our model. By default, we used

adaptive inference with conditioning (ai_cond) when evaluating our

test predictions.

Runtime and required memory depends on the number of pro-

teins in the pruned SSN, the number and topology of the candidate

GO terms, and the parameters given to the inference engine. Since

these numbers varied greatly per query, we selected an algorithm

that uses the maximum amount of time and memory given to it.

Specifically, we set a per query limit of 40 minutes of CPU time and

8 GB memory.

2.7 Post-processing
We applied the following post-processing uniformly to the raw pre-

dictions of all the methods that we evaluated.

We evaluate against some methods that do not use the structure

of GO, and these methods may be disadvantaged as a result of pre-

dicting a very general term with the same probability as a specific

term. We break ties in favor of more general terms by applying the

following transformation:

Pnew :¼ Praw � PðDepth ¼ GO term depthÞ
PðDepth ¼ GO term depthÞ :¼ 1� ��GO term depth

with � :¼ 0:0001.

Some methods used for evaluation predict the same GO term

more than once for a single protein. We resolve these by keeping

only the prediction with the highest probability.

2.8 Evaluation
We performed evaluation via temporal holdout (Greene and

Troyanskaya, 2012). The testing phase used annotations through

2015 for training, and withheld annotations from the start of 2016.

This reflects the methodology of the CAFA (Clark and Radivojac,

2013; Jiang et al., 2016), is reflective of the true task of automating

the manual process of characterization of protein function, and is

widely recommended (Greene and Troyanskaya, 2012).

All 2757 proteins with a new annotation to a GO term in the

MF ontology inferred by direct assay (evidence code IDA) were used

as the evaluation set. We evaluated all proteins and all terms with

this criterion. We did not limit our evaluation to proteins that had

no annotations in the training set. We included all GO terms in the

MF ontology, and we did not exclude GO terms that are rarely

observed, nor did we exclude proteins annotated only to rare GO

terms.

We used performance metrics that are revealing and critical, pro-

posed or suggested by (Clark and Radivojac, 2013), with minor

modifications. Weighted true positive (WTP) and weighted false

positive (WFP) are similar to the true positive count and the false

positive count, respectively, but weight the counts by the IC of the

GO terms to account for the imbalanced, hierarchically structured

label space. Dividing WTP by the IC of the predicted terms gives

weighted precision (WPr). Similarly, dividing WTP by the IC of

the terms in the standard gives weighted recall (WRc). In an attempt

to upweight high quality samples and down-weight low quality

samples, sample-weighted weighted precision (SW-WPr) and

Table 1. Raw contingency table for GO:0016790

Protein’s

annotation to

GO:0016788

(GO parent)

BLAST

neighbor’s

annotation to

GO:0016790

Count protein

annotation to

GO:0016790 is

negative or

unknown

Count protein

is positively

annotated to

GO:0016790

�/? �/? 41446 0

�/? þ 5 0

þ �/? 1453 5

þ þ 3 19
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sample-weighted weighted recall (SW-WRc) additionally use a

weighted average over the evaluation proteins, where the weight is

the IC of the true annotation. Neither recall nor its weighted var-

iants are expected to go to 100%, since, for some evaluation pro-

teins, withheld GO terms may not exist in any of the preprocessed

training annotations. Ne represents the number of proteins being

evaluated.

wtpðsÞ ¼ 1

Ne

XNe

i¼1

X

t2PiðsÞ\Ti

ICðtÞ

wfpðsÞ ¼ 1

Ne

XNe

i¼1

X

t2PiðsÞnTi

ICðtÞ

wprðsÞ ¼ 1

Ne

XNe

i¼1

P
t2PiðsÞ\Ti

ICðtÞ
P

t2PiðsÞ ICðtÞ

wrcðsÞ ¼ 1

Ne

XNe

i¼1

P
t2PiðsÞ\Ti

ICðtÞ
P

t2Ti
ICðtÞ

sw-wprðsÞ ¼
XNe

i¼1

ICðTiÞPNe

j¼1 ICðTjÞ

P
t2PiðsÞ\Ti

ICðtÞ
P

t2PiðsÞ ICðtÞ

sw-wrcðsÞ ¼
XNe

i¼1

ICðTiÞPNe

j¼1 ICðTjÞ

P
t2PiðsÞ\Ti

ICðtÞ
P

t2Ti
ICðtÞ

We also report Fb¼0:5 ¼ ð1þ b2Þ � precision�recall

b2 �precisionþrecall
, the harmonic

mean between precision and recall, where precision is twice as im-

portant as recall.

We compare our method to several others, including a standard

method, intuitive baselines, and state-of-the-art methods. Details on

their implementations and parameters can be found in

Supplementary Text S1.

We implemented a sequence-similarity-based method, referred

to in this paper simply as BLAST. BLAST is a high-performing

method and is used in CAFA evaluations and by many annotation

pipelines (Hamp et al., 2013). Since both Effusion and BLAST use

the same data, the results are highly interpretable.

We plot a baseline to convey relative scale. The Random BLAST

method is implemented the same as the BLAST method, using the

same parameters and thresholds, except that the preprocessed anno-

tations are transferred with a probability equal to a number chosen

uniformly at random. Note that this does not merely assign random

probabilities to all candidate GO terms— probabilities will remain

consistent with GO by construction.

A naı̈ve method ignores the particular query protein, and pre-

dicts the same GO terms for every query, based on the background

frequencies of the GO term in the dataset. Whereas in a balanced

binary classification setting it would be easy to intuit the value of a

performance metric or shape of a performance chart for a naive

method, this is more difficult in the case of a multi-classification

problem with unbalanced classes. In this work, we show the results

for a modified naive baseline, Naive+, which is more useful

when we are evaluating proteins that were partially annotated in the

training data.

We also compared Effusion to two methods based on the most

similar method described in the literature (Carroll and Pavlovic,

2006). Carroll2006 is a close implementation of the published

method, but shares Effusion’s process for collecting homologs, and

determining candidate functions. Carroll2006+ is a close implemen-

tation of Effusion, in that it uses our reduced network and other

modifications, but it uses the parameters described of the original

method, namely, the normalized BLAST scores.

We also compare Effusion to SIFTER (Engelhardt et al., 2011;

Sahraeian et al., 2015), for which there is full pipeline available, was

shown to be a top performer in CAFA (Jiang et al., 2016; Radivojac

et al., 2013), and although its goal is automated phylogenetic ana-

lysis, it is based on sequence data like Effusion. Although SIFTER

used the same evaluation datasets as the other methods, it uses a dif-

ferent method for gathering homologs.

3 Results

Effusion is a simple sequence-similarity only method that utilizes a

probabilistic model to account for the uncertainty in labels and func-

tion propagation, unlabeled protein data to add context for hom-

ology transfer, and the structure of GO to best utilize sparse input

labels and make consistent output predictions. It uses an MST re-

duction of the network so that parameters can be calculated from all

experimental data, weighted by the quality of the annotations, aug-

mented with annotations and pseudocounts derived from the data,

and used as input to general purpose PGM inference algorithms.

We provide an implementation of Effusion. The source code,

written in Python, is available online. We rely on software written

by others in C++ for the parts of Effusion that are computationally

intensive, namely the database software, similarity computations,

and inference engines.

We first analyze the predictions made by the method as a whole,

and then show the effects of the various components of the method.

3.1 Comparative analysis
The dataset for the test phase contained 2757 proteins that had an

Inferred from Direct Assay (IDA) annotation to the molecular func-

tion ontology dated in 2016. All of these were included for evalu-

ation, except where indicated otherwise.

The BLAST-based method made non-root MF predictions for

75.2% (2072 / 2757) of the evaluation proteins. The remaining pro-

teins did not have a protein with positive preprocessed annotations

within the thresholds. Effusion (top down, adaptive inference with

conditioning) made non-root MF predictions for 72.1% (1989/

2757) of the total, and the bottom-up model made non-root MF pre-

dictions for 71.4% (1969 / 2757) of the total. Carroll2006 made

non-root MF predictions for 40.6% (1119 / 2757) of the queries.

Carroll2006+, which has Effusion’s optimizations, made non-root

MF predictions for 68.8% (1898 / 2757) of the queries. SIFTER,

which does not use the same restrictive thresholds as the above

methods, made non-root MF predictions for 76.3% (2103 / 2757) of

the queries.

Compared to BLAST, Effusion has additional steps that can fail

(e.g. inference) or result in a loss of proteins with evidence (i.e. the

MST heuristic). Therefore, we first looked at the performance of

Effusion (top-down and bottom-up, ai_cond) and the baselines over

all evaluation proteins, including those proteins for which the meth-

ods failed to make a prediction (Fig. 2; Supplementary Fig. S1). As a

more complex method, Effusion is disadvantaged for this mode of

evaluation, and this analysis gives a lower bound on Effusion’s real-

world performance. According to all metrics, Effusion generally per-

forms better than all the other methods.

The proteins where Effusion failed to make a prediction, but

BLAST was able to make a prediction, were usually due to the uni-

form constraints on time and memory applied to all evaluation pro-

teins (data not shown). In many cases, it would be possible for a

user with a special interest in a specific protein to get a prediction by

providing more resources. Therefore, we calculated an upper bound

on performance by evaluating the methods on the subset of evalu-

ation proteins for which every method being considered was
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successful in making a prediction. We call these proteins treated pro-

teins. The plots are similar to those of Figure 2 and Supplementary

Figure S1, and are shown in Figure 3 and Supplementary Figure S2.

As expected from the evaluation under the full set of evaluation pro-

teins, Effusion generally performed better than all the other

methods.

We performed a similar analysis on a per protein basis, essential-

ly comparing 1942 classifiers of Effusion (top-down, ai_cond) and

by BLAST. It is expected that Effusion and BLAST will predict the

same GO terms in the same order for many proteins; the methods

use the same data, and 538 / 1942 of the queries were associated

with a protein template with �1 candidate leaf terms, or a net-

work with �1 proteins with evidence. However, we identified 782

proteins where, for the GO terms predicted by both methods,

Effusion reordered the predictions made by BLAST and resulted in

a change in performance, according to area under the WFP versus

WTP curve (y versus x). In general, Effusion accumulated the same

bits of true positives, with fewer bits of false positives, for 53%

(418 / 782) of the queries (P¼0.03, binomial test with H0 ¼ 0:5).

The percentage increased to 61.9% (313 / 505) when we limited

the analysis to those queries where the query itself did not have

evidence.

We were especially interested about the ability of our method to

differentiate catalytic activities. This is an important and difficult

problem (Almonacid and Babbitt, 2011); in functionally diverse en-

zyme superfamilies, homologous members have evolved to catalyze

many different chemical reactions (Gerlt and Babbitt, 2001), and

these proteins are often misannotated in public databases (Schnoes

et al., 2009). We performed an additional evaluation constrained to

the subset of GO representing GO terms that are descendants of

catalytic activity (GO:0003824). 1160 of the evaluation proteins

had an annotation to a GO term in this catalytic subset.

Supplementary Figure S3 show plots the performance of our meth-

ods on the catalytic subset. The performance of Effusion (top-down,

ai_cond) and BLAST differed on 142 enzymes, according to area

under the WFP versus WTP curve. Effusion outperformed BLAST

on 64.1% (91 / 142) of the queries (P¼0.0005).

Figure 1 illustrates Effusion’s utility with a protein from the test

dataset, identified by cytochrome P450 CYP1C1 (UniProt Q4ZIL6)

in Zebrafish. One of the experimental annotations withheld from

the test dataset was for testosterone 6-beta-hydroxylase activity

(GO:0050649), which is a type of steroid hydroxylase activity

(GO:0008395). This protein is not experimentally annotated to ara-

chidonic acid 14, 15-epoxygenase activity (GO:0008404).

Effusion was able to combine evidence for GO:0008395 from

the surrounding network context of UniProt Q4ZIL6 (see Fig. 1c). It

correctly predicted GO:0008395 at 36.3% (Fig. 1e), at which point

Effusion predicted no false positives. Effusion also predicted

GO:0008404 lower at <1% (Fig. 1f). Supplementary Table S3

details the predictions for UniProt Q4ZIL6 made with Effusion.

BLAST, however, predicted this protein to have GO:0008404

with a probability of 20.0%, based on its proximity to O54750

(E-value ¼ 1.13045�10�86, total bit score 278.87, bit score per

residue ¼ 0.53, alignment length ¼ 488, query length ¼ 523, subject

length ¼ 488, identities ¼ 161, positives ¼ 259). Compared to

Effusion, BLAST accumulated 19 false positives (82.38 bits of

information), before predicting GO:0008395 at 17%, based on

hitting P13108 (E-value ¼ 2.62�10�78, total bit score 256.914,

bit score per residue ¼ 0.49, alignment length ¼ 502, subject

length ¼ 502, identities ¼ 167, positives ¼ 256). Predictions for

UniProt Q4ZIL6 made with BLAST are shown in Supplementary

Table S4.

3.2 Creation and use of protein networks
Effusion networks were generated quickly using BLAST to collect

the homologs and DIAMOND to fill in the all-by-all edges that

could be used in the MST (Supplementary Table S5, Supplementary

Fig. S4). Effusion succeeded in making networks for 98.3% (2710 /

2757) of the queries. The median number of nodes in the protein

network was 268.5, the maximum was 71 286, and 31 networks

had only the query. The distributions for the number of nodes in the

protein network are shown in Supplementary Figure S5.

After reducing the network to the MST and pruning the protein

network to proteins that either had evidence or were queries, 899

networks had only the query remaining. This was due either to an

absence of proteins with evidence in the original network, or to the

more stringent threshold used for collecting the MST edges. The

mean number of nodes in the reduced network was 57, if we exclude

networks that contained only the query, with a maximum network

size of 3284 nodes. 1987 networks had at least one protein with

non-root positive preprocessed evidence. The distribution of the

number of proteins in the reduced network are shown in

Supplementary Figure S6, and the distribution of the number of pro-

teins with positive, non-root evidence is shown in Supplementary

Figure S7.

We compared Effusion to several baselines that do not use a

semi-supervised approach to measure the value of adding the net-

work context, shown in Supplementary Figure S8. The BLAST-like

method used Effusion’s probabilistic framework, but only included

network edges from the query to proteins with evidence. The super-

vised method also used Effusions’s probabilistic framework, but

completely unlabeled proteins were deleted from the protein net-

work and excluded from the subsequent model. The full network

version of Effusion, which used the most unlabeled proteins, per-

formed the best, and the BLAST-like version of Effusion, which used

the fewest unlabeled proteins, performed the worst.

Fig. 2. Performance plots over all proteins in the test set, regardless of

whether any of the methods failed to make predictions. (Left) Precision vs.

Recall (Right) Sample-Weighted Weighted Precision vs. Sample-Weighted

Weighted Recall

Fig. 3. Performance plots over treated proteins. Carroll2006 was not plotted

because of its low coverage. SIFTER was not plotted due to its effect on the

scale. (Left) Precision vs. Recall (Right) Sample-Weighted Weighted Precision

vs. Sample-Weighted Weighted Recall
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3.3 Candidate GO ontology effectively embedded within

each protein of the model
The candidate GO terms overlapped significantly with the terms for

the query that were in the standard (Supplementary Text S2), but

they did not overlap exactly. Methods that predicted all of the can-

didate terms would have incurred, on average, 8.25 true positives

(13.08 bits of information), but also have 7.80 false positives

(20.34 bits of information) and 4.79 false negatives (9.86 bits of

information).

The speed at which inference can be run is dominated by the

number of parents of a variable in the graphical model, which are

GO parents in the top-down model, or modeled GO children in the

bottom-up model. The distributions for the maximum of these per

query are shown in Supplementary Figure S9.

We compared the standard top-down method with supplemen-

tary negative evidence, the standard bottom-up, which does not re-

quire negative evidence, and the top-down method without the

supplementary evidence. The performance curves are in

Supplementary Figure S10. While the improvement seen here is

modest, it was crucial when experimenting with larger networks

that included non-homologous proteins (e.g. those found by search-

ing protein interaction databases, data not shown).

Q921C5 provides an example that exemplifies the difference be-

tween the models (Supplementary Fig. S11). Without supplementary

negative evidence, the top-down model incorrectly predicted

Q921C5 as having clathrin binding (GO:0030276) with a probabil-

ity of 26.4% that ranked it above a few correct GO terms

(Supplementary Table S6). This is because the query Q921C5 had

evidence for Rab GTPase binding (GO:0017137) and therefore

implied evidence for ancestor term protein binding (GO:0005515),

and PðGO:0030276jGO:0005515Þ is relatively high (11.0%).

However, we also have implied evidence for enzyme binding

(GO:0019899), and since GO:0030276 is unlikely (35.7%) to co-

occur with GO:0019899, we assume this protein does not have

GO:0030276. The full table of predictions is shown in

Supplementary Table S7. Notice that there were some correct GO

terms, such as macromolecular complex binding (GO:0044877),

that were also predicted at 0% due to incorrect supplementary nega-

tive evidence for the query. On the other hand, because the bottom-

up model has factors over all the child GO terms, it does not require

negative evidence. The bottom-up model predicted GO:0030276 at

only 19.6%. A table of predictions for Q921C5 using the bottom-up

model is shown in Supplementary Table S8.

3.4 Data-derived alterations of parameters
The added value of weighting counts by information content of the

sample is shown in Supplementary Figure S12. An example illustrat-

ing the effect of weighting is serine–tRNA ligase (UniProt P34945),

shown in Supplementary Figure S13. Without weighting, the prob-

ability of a protein being involved in binding (GO:0005488) given

its protein network parent has GO:0005488 is 90.7%. In the net-

work, the probability of correct function decreases quickly, and the

query is predicted at 32.6%. After weighting, PðxGO:0005488
i j

xGO:0005488
paðiÞ Þ increased to 95.2% and the probability for the query

having the term increased to 59.3%.

The value of adding pseudocounts to the contingency table is

shown in Supplementary Figure S14. An example from the top-

down model is serine protease 57 (UniProt Q6UWY2), which had

withheld experimental annotation of sulfur compound binding

(GO:1901681), is shown in Supplementary Figure S15. This GO

term is rarely observed experimentally, so the calculated statistic for

PðxGO:1901681
i jxGO:1901681

paðiÞ Þ was only 73.8%, the probability for this

term decayed quickly from the protein with evidence to the query

protein, and the query protein was predicted to have GO:1901681

at only 20.6%. After the addition of pseudocounts by the method

described above, the calculated statistic for PðxGO:1901681
i j

xGO:1901681
paðiÞ Þ increased to 92%, and the prediction for the query

increased to 56.2%. Pseudocounts were especially beneficial for the

bottom-up model, due to its sensitivity to probabilities at the leaves.

3.5 Inference on real-world protein data
Although inference using ai_cond (Acar et al., 2012) succeeded in

making predictions for most 97.7% (1942 / 1987) proteins with evi-

dence in the reduced network, the software still gave poor results on

some queries; for example, for eight queries, the software predicted

low probabilities for the root MF term.

Overall, the performance plots in Supplementary Figure S16

show two clusters of methods with similar performance. These clus-

ters correspond to the top-down model and the bottom-up model.

4 Discussion and conclusions

By engineering a method and model that accounts for the essential

idiosyncrasies of protein function prediction, we were able to make

predictions that are practical and more accurate than state-of-the-

art methods, using the same primary source of data.

We implemented and evaluated two constructions for the protein

template that generated models with different semantics. Our ana-

lysis revealed interesting tradeoffs between the two models.

Although the bottom-up model has the advantage that it does not re-

quire negative evidence, it has other limitations that offset its value.

Namely, it is sensitive to leaf probabilities, and since each factor typ-

ically depends on more variables than it does in the top-down

model, it is also less amenable to inference.

We also evaluated several inference algorithms for use with our

method. Although we could not get reasonable predictions for all

queries, even with heuristics, we had more success with a top-

performing inference software identified by the UAI competition.

We encourage further development of inference algorithms and soft-

ware, and encourage participation in critical assessments on real

world problems.

Effusion’s main similarities to the method described in Carroll

and Pavlovic (2006) and Mitrofanova et al. (2011) are the general

use of protein networks, modeling of GO, and a probability model.

However, there are fundamental differences with these works in

each aspect of our methods. The previous methods used a model

whose factors lack a global probabilistic interpretation, and since

learning maximum likelihood parameters on a per network basis

would have been infeasible, they used normalized similarity scores.

Effusion, on the other hand, has a model whose factors are simply

conditional probability functions, and therefore we can learn max-

imum likelihood parameters from all available experimental data.

Significantly, this allows us to incorporate parameters that are spe-

cific to each GO term, thereby giving us reasonable results on prob-

lems that have a wide range of GO terms, rather than limiting

predictions to only a few (i.e. < 10) GO terms. Additionally, our

formulation allows the incorporation of data derived pseudocounts,

inference with general purpose, rather than ad-hoc, inference algo-

rithms, and ranked probabilities for all GO terms, rather than set-

ting an arbitrary threshold for prediction. In contrast to Carroll, we

have shown that Effusion’s innovations enable accurate and prac-

tical prediction of protein function.

Effusion 449

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty672#supplementary-data


While it is common for labs to provide the algorithm for predict-

ing protein function, they rarely provide the pipeline necessary for

preparing the data and parameters, making it difficult to compare

methods on the same training and test data. Fortunately, the high-

throughput pipeline for SIFTER was available. This method is high-

ly relevant because it is based on sequence similarity, its aim is to

discern functions among relatively close homologs rather than pre-

dicting general functions from remote homologs, and it also uses a

Bayesian network. There are substantial differences, however.

Whereas Effusion and the other methods used BLAST to collect

close homologs, SIFTER searches Pfam and builds a phylogenetic

tree for each cluster found (Punta et al., 2012). SIFTER uses a con-

tinuous time Markov chain in its model for protein function evolu-

tion, but does not model GO. Whereas Effusion currently requires

edges to reflect alignment across the entire sequence, SIFTER com-

bines results from all the Pfam domains in a query protein. While we

have shown that Effusion outperforms SIFTER, our analysis indi-

cates this is largely due to SIFTER’s underperformance on query

proteins with evidence in the training data (Supplementary Fig.

S17). Although many former assessments exclude proteins with any

functional annotation in the training data from evaluation, we note

that this is an artificial restriction, since it is common practice to

study partially annotated proteins. Indeed, this restriction has been

relaxed in the most recent CAFA.

In this report, we describe the first version of Effusion, a simple,

high performing method that suggests specific protein function with

a model that uses protein networks and incorporates GO. Although

Effusion only uses sequences that are highly similar across their en-

tire lengths, and only models the MF aspect of GO, it is designed to

be extendable to model additional aspects of protein function, and

additional, more finely grained relationships between proteins and

GO terms. For example, by making use of resources such as

domain-centric GO (dcGO) (Fang and Gough, 2013), we could in-

clude sequences that align only over a domain, and propagate func-

tion at higher granularity.
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