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Abstract: The plant hormone abscisic acid (ABA) modulates a number of plant developmental
processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen
species (ROS) production through the action of plasma membrane-associated nicotinamide adenine
dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been
performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about
the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM
of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry
and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that
are differentially expressed. We observed differential accumulation of proteins involved in the
tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both
H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to
both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched,
suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping
cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

Keywords: hydrogen peroxide (H2O2); abscisic acid (ABA); microsomal proteomics; quantitative
proteomics; mass spectrometry

1. Introduction

Plants, much like animals, are susceptible to oxidative damage by reactive oxygen species (ROS).
The production of ROS, and in particular hydrogen peroxide (H2O2), increases during exposure
to abiotic stress [1–3] and pathogen infection [4]. In pathogen infections, suppression of ascorbate
peroxidase and catalase during the hypersensitive response enhances pathogen-induced programmed
cell death [4]. The mitochondrial electron transport chain also synthesises a significant amount of
ROS, mainly in the form of superoxide [5] that can cause oxidative stress [6,7]. Previous studies have
shown that the oxidative stress imposed by H2O2 is a potent inhibitor of tricarboxylic acid (TCA)
cycle enzymes such as citrate synthase [8], aconitase, and succinyl CoA ligase [9–11]. However, at low
concentrations, H2O2 functions as a stress signal [12,13].
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It has been demonstrated that ROS production is required for abscisic acid (ABA) signal
transduction in guard cells [14,15]. In the guard cells, ABA is perceived by PYRABACTIN resistance
(PYR)/PYR-Like 1/Regulatory components of ABA receptors (RCAR) [16,17], which in turn induce the
production of ROS including H2O2, by nicotinamide adenine dinucleotide phosphate (NADPH)
-oxidase [18,19]. ABA also induces stomatal closure but interestingly, treating the guard cells
of ABA-insensitive mutants, abi1-1, with ABA did not induce ROS production but activation
of hyperpolarised-activated Ca2+ (ICa) channels and the induction of stomatal closure by H2O2,
suggesting that abi1-1 disrupts ABA signalling between ABA reception and ROS production [20].
Besides, ABA regulates many plant developmental processes and induces increased tolerance to
different stresses such as drought, salinity and low temperature [21]. ABA-induced ROS in the
mitochondria of root tip cells operates as retrograde signal that regulate meristem activity in
Arabidopsis [22]. In maize (Zea mays) leaves, water stress-induced ABA accumulation has been
detected to elicit an increased production of H2O2 [23,24]. Also, in rice (Oryza sativa) seedlings,
exogenous ABA has been observed to increase H2O2 content in leaves grown under potassium
sufficient conditions [25].

Despite the considerable body of information on role of ABA in stress responses, the
post-translational molecular targets at the microsomal level and particularly their relation with H2O2

is yet to be properly understood. Therefore, we set to find out whether H2O2 and ABA can induce
a common response at the microsomal proteome level. To do this, downstream microsomal protein
changes were investigated using label-free quantitative mass spectrometry analysis. Further, to find
out whether ABA induces H2O2 production or vice versa, we tested for H2O2 production upon ABA
treatment of Arabidopsis thaliana ecotype Columbia-0 cell suspension cultures or ABA production
upon H2O2 treatment. In this study we showed that H2O2 and ABA have common and independent
responses. The former is however, not surprising, as ABA has previously been shown to induce
production of H2O2, thus the common response suggests an H2O2-dependent response, which can
also be elicited via ABA.

2. Materials and Methods

2.1. Treatments of Arabidopsis Cell Suspension Culture

Cells derived from Arabidopsis thaliana (ecotype Columbia-0) roots were grown in Gamborg’s
B5 basal salt mixture (Sigma-Aldrich, St. Louis, MO, USA), as described in [26,27]. At Day 7
post-subculturing, three biological replicate flasks containing cells were treated with 50 µM ABA
or 50 µM H2O2 for 0 min (mock treatment), 5 min and 20 min. Cells were then harvested by draining
off the media using a Stericup® filter unit (Millipore, Billerica, MA, USA), immediately flash frozen in
liquid nitrogen, and stored at −140 ◦C until further use.

2.2. Microsomal Protein Isolation

Approximately 1 g of cells was ground to a fine powder in liquid nitrogen and subjected to
microsomal isolation, as described in [28]. The powder was incubated in a sucrose buffer (50 mM
Tris(hydroxymethyl)aminomethane (pH 8.0), 2 mM ethylenediaminetetraacetic acid (EDTA), 2 mM
dithiothreitol (DTT), 0.25 M sucrose and 1× protease inhibitor cocktail tablet (Sigma-Aldrich, St. Louis,
MO, USA)) and centrifuged at 8000× g for 15 min. The supernatant was subjected to ultracentrifugation
using an Optima™ L-100K ultracentrifuge (Beckman Coulter, Brea, CA, USA) at 100,000× g for 1 h.
The supernatant, representing the cytosolic fraction, was pipetted out. The pellet, the microsomal
fraction, at the bottom of the tube, was washed once in sucrose buffer and centrifuged at 100,000× g
for 1 h. The microsomal fraction corresponding to the final pellet was suspended in sucrose buffer,
aliquoted into separate tubes and either used immediately or stored at −80 ◦C.
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2.3. Trypsin Digestion and Protein Identification by Tandem Mass Spectrometry

Approximately 0.2 mg of total microsomal protein extract was reduced with 5 mM DTT for 2 h
at 37 ◦C and cooled. The sample was then alkylated with 14 mM iodoacetamide for 30 min at room
temperature in the dark. Unreacted iodoacetamide was quenched by increasing DTT concentration
to 10 mM and incubated for 15 min at room temperature in the dark. Proteins were incubated
at 50:1 ratio with sequencing-grade modified trypsin (Promega, Madison, WI, USA) overnight at
37 ◦C with gentle agitation. Protein digestion was stopped by acidification of the mixture to pH
2.0 with trichloroacetic acid. Peptides were desalted using Sep-Pak Vac tC18 100 mg cartridges
(Waters, Milford, MA), as described previously [27]. After desalting, peptides were re-suspended
in 5% (v/v) acetonitrile and 0.1% (v/v) formic acid and analysed by the LTQ-Orbitrap Velos mass
spectrometer (Thermo-Scientific, Bremen, Germany) coupled with a nanoelectrospray ion source
(Proxeon Biosystems, Odense, Denmark) for nano-liquid chromatography tandem mass spectrometry
(LC-MS/MS) analyses as described in [29]. Five microlitres of the peptide mixtures was injected onto a
50 mm long × 0.3 mm Magic C18AQ (Michrom) column. A spray voltage of 1500 V was applied and
the MS scan range used was m/z 350 to 1600. The top 10 precursor ions were selected in the MS scan by
the Orbitrap with a resolution r = 60,000 for fragmentation in the linear ion trap using collision-induced
dissociation. Normalised collision-induced dissociation was set at 35.0 and spectra were submitted
to a local MASCOT (Matrix Science, London, UK) server and searched against Arabidopsis in the
Arabidopsis Information Resource (TAIR, Release 10), with a precursor mass tolerance of 10 ppm, a
fragment ion mass tolerance of 0.6 Da, and strict trypsin specificity allowing up to one missed cleavage.
Carbamidomethyl modification on cysteine residues was selected as fixed modification, and oxidation
of methionine residues as variable modification. Identified proteins were further validated with
Scaffold version 4.0.4 (Proteome Software, Portland, OR, USA). Identified proteins were considered
positive with a molecular weight search (MOWSE) score ≥32, number of peptides ≥2, a 95% protein
and peptide probability, and a false discovery rate (FDR) ≤1%. Label-free quantitative analysis was
performed using spectral counts with Scaffold software. Proteins were deemed responsive to treatment
when present in at least two replicates with a fold change (FC) greater or equal to |±2|, verified by
Student t-test (p-value ≤ 0.05) in comparison to the mock-treated samples. All proteomics methods are
extensively detailed elsewhere [26,29–31].

2.4. Intracellular ROS Assay and ABA Measurements

Cellular ROS levels were measured using OxiSelect™ intracellular ROS assay kit green
fluorescence (Cambridge Bioscience, Cambridge, UK) after 20 min of 50 µM ABA treatment.
The procedure used was according to the manufacturer’s protocol. ABA contents in samples treated
with 50 µM H2O2 for 5 and 20 min were measured using Phytodetek® immunoassay kit for ABA
(Agdia, Elkhart, IN, USA) according to the manufacturer’s instructions.

2.5. Bioinformatic Analyses

The gene ontology (GO) analysis toolkit in the database AgriGO [32] was used for the detection
of enriched cellular components, biological processes and molecular functions.

3. Results

To gain insight on the microsomal cellular responses to H2O2 and ABA, a comparative proteomic
analysis was undertaken. Microsomal proteins were isolated from Arabidopsis cell suspension cultures
pre-treated with 50 µM of either H2O2 or ABA for 5 min or 20 min, digested with trypsin and
analysed by MS/MS. Data was processed with MASCOT and Scaffold for identification and label-free
quantitation. A total of 906 proteins from the enriched samples were identified (Table S1). Of these,
86 proteins were significantly (p ≤ 0.05) responsive to H2O2 treatment (Table 1) and 52 proteins to ABA
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treatment (Table 2). A total of 21 responsive proteins were common to both ABA and H2O2 treatments
and majority of the proteins displayed similar response signatures (Table 3).

Table 1. Proteins responsive to H2O2 treatment.

Accession Number Protein Name ANOVA (p-Value) FC 5 min FC 20 min

1. Metabolism

AT1G17745 D-3-phosphoglycerate dehydrogenase 2 0.0089 0.1 0.1
AT5G26780 Serine hydroxymethyltransferase 2 0.036 2.1 13
AT3G61440 Cysteine synthase C1 0.00074 ns 5
AT4G14880 O-acetylserine (thiol) lyase isoform A1 0.015 0.1 7.9
AT5G23300 Pyrimidine d 0.013 0.2 ns
AT3G09820 Adenosine kinase 1 0.0042 0.1 14.0
AT5G17770 NADH:cytochrome B5 reductase 1 0.017 0.4 2.5
AT1G74790 Catalytics 0.045 5.7 4.6
AT4G23850 AMP-dep. synthetase and ligase protein 0.017 0.5 ns
AT1G65290 Mitochondrial acyl carrier protein 2 0.044 2.9 ns
AT3G47930 L-galactono-1,4-lactone dehydrogenase 0.019 0.2 ns

2. Energy

AT1G79550 Phosphoglycerate kinase 0.0069 0.2 2.0
AT1G24180 Pyruvate dehydrogenase E1 comp. α-2 0.014 0.1 0.2
AT3G48000 Aldehyde dehydrogenase 2B4 0.022 4.3 7.1
AT3G60750 Transketolase 0.0087 0.5 4.5
AT2G05710 Aconitase 3 0.0002 2.5 12.0
AT2G20420 ATP citrate lyase 0.022 ns 5.0
AT5G08300 Succinyl-CoA ligase, alpha subunit 0.006 2.4 2.5
AT2G44350 Citrate synthase family protein 0.026 ns 5.9
AT1G65930 Cyt. NADP+-dep. isocitrate dehydrogenase 0.033 0.1 2.9
AT1G15120 Ubiquinol-cytochrome C reductase hinge 0.016 19 20
AT3G03100 NADH:ubiquinone oxidoreductase,17.2kDa 0.0029 0.5 ns
AT5G13430 Ubiquinol-cytochrome C reductase, Fe-S 0.02 0.2 ns
AT3G14610 Cytochrome P450, 72A, polypeptide 7 0.0026 0.1 5.4

3. Cell growth/division

AT5G52240 Membrane steroid binding protein 1 0.02 0.1 7.5
AT1G10930 DNA helicase (RECQl4A) 0.0036 4.6 0.1
AT3G44310 Nitrilase 1 0.023 2.9 ns

4. Transcription

AT1G14850 Nucleoporin 155 0.00094 ns 0.3

5. Protein synthesis

AT1G01100 60S acidic ribosomal 0.022 ns 0.4
AT3G48930 Nucleic acid-binding, OB-fold-like protein 0.024 2.1 ns
AT3G10090 Nucleic acid-binding, OB-fold-like protein 0.027 ns 0.3
AT3G09200 Ribosomal protein L10 0.012 2.9 ns
AT3G04400 Ribosomal protein L14p/L23e 0.0095 3.8 3.0
AT1G23290 Ribosomal protein L18e/L15 0.017 ns 0.5
AT4G02230 Ribosomal protein L19e 0.0089 ns 0.3
AT2G44120 Ribosomal protein L30/L7 0.027 ns 0.5
AT5G56710 Ribosomal protein L31e 0.013 4.6 ns
AT3G45030 Ribosomal protein S10p/S20e 0.03 ns 2.2
AT5G02960 Ribosomal protein S12/S23 0.016 2.3 ns
AT3G60245 Zinc-binding ribosomal protein 0.036 2.4 ns

6. Protein destination and storage

AT1G14980 Chaperonin 10 0.022 ns 2.9
AT3G02530 Chaperonin 60 family protein 0.045 2.2 0.4
AT3G03960 Chaperonin 60 family protein 0.041 2.1 ns
AT5G56030 Heat shock protein 81-2 0.012 0.4 ns
AT3G52140 Tetratricopeptide repeat-containing protein 0.04 5.3 ns

7. Transporters

AT4G38580 Farnesylated protein 6 0.017 0.4 ns
AT3G15660 Glutaredoxin 4 0.011 ns 6.0

AT1G27950 Glycosylphosphatidylinositol-anchored lipid
protein transfer 1 0.027 16.0 44.0

AT1G07670 Endomembrane-type CA-ATPase 4 0.0026 0.1 5.0
AT4G27500 Proton pump interactor 1 0.006 ns 2.4
AT4G39080 Vacuolar proton ATPase A3 0.0041 0.5 ns
AT3G58730 Vacuolar proton pump D subunit 0.044 0.4 ns
AT1G15500 TLC ATP/ADP transporter 0.0099 0.3 ns
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Table 1. Cont.

Accession Number Protein Name ANOVA (p-Value) FC 5 min FC 20 min

1. Metabolism

AT4G28390 ADP/ATP carrier 3 0.014 0.1 ns
AT5G60460 Preprotein translocase Sec, Sec61-β subunit 0.0081 4.7 4
AT3G51890 Clathrin light chain protein 0.019 ns 0.5
AT3G08530 Clathrin, heavy chain 0.0021 0.5 0.2
AT3G11130 Clathrin, heavy chain 0.00044 0.5 0.4
AT5G19760 Mitochondrial substrate carrier protein 0.038 ns 2.2
AT5G40810 Cytochrome C1 0.021 0.3 ns

8. Intracellular traffic

AT3G49560 Mit. import inner membrane translocase Tim17 0.0031 0.1 ns
AT1G61570 Mit. import inner membrane translocase 13 0.0044 17 23
AT1G27390 Translocase outer membrane 20-2 0.0015 0.1 2.1
AT3G60600 Vesicle associated protein 0.051 ns 3
AT4G34660 SH3 domain-containing protein 0.039 4.7 ns

9. Cell structure

AT5G09810 Actin 7 0.0038 0.5 ns
AT5G19770 Tubulin alpha-3 0.016 0.1 ns
AT5G62690 Tubulin beta chain 2 0.006 0.4 0.4
AT2G29550 Tubulin beta-7 chain 0.0034 0.3 0.4
AT4G14960 Tubulin/FtsZ family protein 0.036 0.4 0.5
AT3G08950 Electron transport SCO1/SenC protein 0.045 0.1 4.3

10. Signal transduction

AT3G14840 LRR transmembrane protein kinase 0.025 ns 11
AT5G59840 Ras-related small GTP-binding protein 0.0084 0.1 2.7
AT3G51800 Metallopeptidase M24 0.0015 5.1 ns

11. Disease/Defence

AT3G57280 Transmembrane proteins 14C 0.014 0.1 ns
AT3G12500 Basic chitinase 0.035 ns 2.1
AT3G32980 Peroxidase superfamily protein 0.012 ns 3
AT4G36430 Peroxidase superfamily protein 0.015 0.1 ns

12. Unclassified

AT2G40765 Unknown protein 0.019 2 ns
AT2G46540 Unknown protein 0.033 ns 3.5
AT4G12590 Transmembrane protein, DUF106 0.033 0.3 ns
AT1G08480 Unknown protein 0.048 0.2 0.4
AT3G20370 TRAF-like family protein 0.0058 0.2 3
AT3G49720 Unknown protein 0.016 0.1 0.3
AT4G24330 DUF1682, unknown protein 0.0077 0.1 2.2
AT2G33585 Unknown protein 0.019 0.1 13

Notes: no significant change against the mock treated samples; dep.: dependent; comp.: component; cyt.: cytosolic;
ANOVA: Analysis Of Variance.

Table 2. Proteins responsive to abscisic acid (ABA) treatment.

Accession Number Protein Name ANOVA (p-Value) FC 5 min FC 20 min

1. Metabolism

AT2G26400 Acireductone dioxygenase 3 0.035 3.9 6.8
AT4G34200 D-3-phosphoglycerate dehydrogenase 1 0.017 0.5 ns
AT1G17745 D-3-phosphoglycerate dehydrogenase 2 0.029 0.1 0.2
AT4G13940 S-adenosyl-L-homocysteine hydrolase 0.028 2.5 2.0
AT3G17820 Glutamine synthetase 1.3 0.023 3.7 3.5
AT5G17770 NADH cytochrome B5 reductase 1 0.046 2.3 2.3
AT3G15730 Phospholipase D α 1 0.014 3.2 3.8

2. Energy

AT2G01140 Aldolase superfamily protein 0.0075 5.0 5.1
AT5G43940 GroES-like zinc-binding dehydrogenase 0.014 4.5 5.2
AT4G34870 Rotamase cyclophilin 5 0.0015 3.1 2.7
AT2G05710 Aconitase 3 0.035 8.0 9.9
AT1G15120 Ubiquinol-cytochrome C reductase hinge 0.041 15.0 11.0
AT2G33220 GRIM-19 protein 0.017 2.9 7.1

3. Cell growth/division

AT5G43070 WPP domain protein 1 0.042 0.4 0.2
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Table 2. Cont.

Accession Number Protein Name ANOVA (p-Value) FC 5 min FC 20 min

1. Metabolism
4. Transcription

AT2G18740 Small nuclear ribonucleoprotein 0.02 7.7 4.3
AT5G40480 Embryo defective 3012 0.0084 5.6 7.9
AT1G14850 Nucleoporin 155 0.0058 0.1 0.2

5. Protein synthesis

AT1G08360 Ribosomal protein L1p/L10e 0.037 3.1 ns
AT4G10450 Ribosomal protein L6 0.00092 12.0 >0.1
AT5G08180 Ribosomal protein L7Ae 0.022 11.0 8.7
AT3G04400 Ribosomal protein L14p 0.016 3.5 2.6
AT3G14600 Ribosomal protein L18ae 0.033 3.4 3.3
AT3G45030 Ribosomal protein S10p/S20e 0.0041 2.3 ns
AT5G47930 Zinc-binding ribosomal protein 0.027 8.6 7.0
AT4G00810 60S acidic ribosomal protein family 0.042 0.4 0.4
AT1G01100 60S acidic ribosomal protein family 0.045 0.4 0.4
AT5G47700 60S acidic ribosomal protein family 0.0085 0.3 0.4

6. Protein destination and storage

AT1G14980 Chaperonin 10 0.0061 2.5 3.0
AT3G16420 PYK10-binding protein 1 0.017 0.3 0.5
AT5G56030 Heat shock protein 81-2 0.0038 0.4 0.5
AT1G03220 Eukaryotic aspartyl protease 0.0045 2.3 2.5

7. Transporters

AT3G53420 Plasma membrane intrinsic protein 2A 0.031 0.3 ns
AT3G42050 Vacuolar ATP synthase subunit H 0.045 4.4 4.2
AT4G27500 Proton pump interactor 1 0.0048 ns 2.3
AT2G34250 SecY protein transport 0.011 2.5 3.9
AT3G08530 Clathrin, heavy chain 0.0019 0.2 0.4
AT3G11130 Clathrin, heavy chain 0.00054 0.3 0.4

8. Intracellular traffic

AT2G29530 TIM10 zinc finger protein 0.021 6.0 5.0
AT1G61570 Mit. import inner membrane 13 translocase 0.042 19.0 11.0

9. Cell structure

AT4G30270 Xyloglucan endotransglucosylase 0.045 ns 3.0
AT3G18780 Actin 2 0.016 0.3 ns
AT5G09810 Actin 7 0.00073 0.5 0.5
AT5G19770 Tubulin alpha-3 0.044 0.5 0.3
AT5G62690 Tubulin beta chain 2 0.003 0.3 0.4
AT2G29550 Tubulin beta-7 chain 0.0072 0.3 0.4
AT4G14960 Tubulin/FtsZ family protein 0.019 0.4 0.3

10. Signal transduction

AT3G14840 LRR transmembrane protein kinase 0.014 8.3 14.0
AT3G51800 Metallopeptidase M24 0.027 3.4 ns

11. Disease/Defence

AT1G78850 D-mannose binding lectin protein 0.0013 14.0 18.0
AT2G43610 Chitinase family protein 0.05 ns 0.3
AT4G38740 Rotamase CYP 1 0.02 2.6 ns
AT1G20620 Catalase 3 0.0064 3.5 2.1

Notes: no significant change against the mock treated samples.

3.1. H2O2-Responsive Microsomal Proteins

Of the 86 H2O2-dependent significantly changing proteins, 24 proteins increased and 42 proteins
decreased in abundance at 5 min, while, 38 proteins increased and 18 proteins decreased in abundance
at 20 min. These proteins were classified into 12 major functional categories [31] (Table 1, in depth
detail in Table S2). The most represented functional categories include transporters (17%), energy
(15%) and protein synthesis (14%) (Table 1). Gene ontology (GO) analysis of the H2O2 responsive
proteins revealed enrichment in biological processes such as ‘cellular process’, ‘metabolic process’,
‘response to stress’ and ‘transport’ (Table S2). In addition, enriched molecular function categories
included ‘structural molecule activity’, ‘transporter activity’ and ‘oxidoreductase activity’ (Table S2).
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Further, we performed metabolic pathway analyses using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database to find out if any pathways were represented. The ‘purine metabolism’
(13 proteins), ‘thiamine biosynthesis’ (11 proteins), and ‘citrate cycle (TCA cycle)’ (six proteins)
(Table S2) were the most represented. The abundance of five of the six proteins associated with
the TCA cycle increased, particularly at 20 min after H2O2 treatment (Figure 1). The responsive
proteins included pyruvate dehydrogenase (AT1G24180), an essential precursor that links glycolysis
to the TCA cycle, citrate synthase (AT2G44350), aconitase 3 (AT2G05710), isocitrate dehydrogenase
(AT1G65930), succinyl-CoA ligase, alpha subunit (AT5G08300), and ATP citrate lyase/succinyl-CoA
synthetase (AT2G20420), an enzyme that cleaves citrate to oxaloacetate and acetyl CoA in the presence
of ATP and CoA, and is implicated in carbohydrate metabolism and production of fatty acids (Table 1;
Figure 1). Citrate synthase catalyses the first committed step in the TCA cycle, and has been shown
to decrease in activity by 54% upon oxidation by H2O2 [8]. Site-directed mutagenesis of six cysteine
residues of citrate synthase showed that the mutant proteins could convert acetyl CoA to oxaloacetate
with decreased efficiencies compared to the unmodified citrate synthase. The Cys108Ser and Cys325Ser
had their activities decreased by 98%, suggesting that the Cys108 and Cys325 are important for citrate
synthase activity. These two nearly inactive forms showed high insensitivity to H2O2, while other
mutants just like the unmodified citrate synthase had decreased activities upon H2O2 treatment [8].
Similar to the observed change in citrate synthase upon H2O2 treatment [8], we observed citrate
synthase together with pyruvate dehydrogenase significantly decreasing in abundance, particularly
20 min after treatment. Furthermore, it has been shown that pyruvate dehydrogenase and the TCA
enzymes, including citrate synthase and aconitase, are sensitive to H2O2 [9]. Of these, aconitase
is the most sensitive to the H2O2 effect [9]. Aconitase is one of the five enzymes that exerted the
most influence on controlling the TCA, with a control coefficient of 0.964 (the control coefficient is
the measure of the ratio of relative change in flux and the relative change in enzyme amount [33]),
the second highest after malate dehydrogenase (1.76) [34]. Other enzymes identified that changed
in response to H2O2 had a lower control coefficient; for example citrate synthase −0.4, isocitrate
dehydrogenase −0.123 and succinyl CoA ligase 0.0008 [34]. Aconitase converts citrate to isocitrate
and contains a Fe-S cluster that is one of the primary target sites for ROS effect [35]. In animals,
aconitase activity is suppressed by treatment with 50 µM H2O2, that in turn causes reduced TCA
cycle activity in the cardiac cells [36]. In plants, aconitase affects superoxide dismutase transcription,
and has been implicated in regulating resistance to oxidative stress, cell death and salt stress in
Arabidopsis and Nicotiana benthamiana [37]. This phenomenal role of aconitase in regulating oxidative
stress was also supported by our data, in which the abundance of aconitase increased in response to
H2O2 as well as ABA (Table 2). The latter may have been an ABA-dependent response or potentially
an ABA-dependent H2O2 response. Aconitase has also been observed to increase in abundance in
response to cyclic guanosine 3′, 5′-monophosphate (cGMP), a second messenger that also showed a
time- and concentration-dependent ROS production [28]. It is important to note that the observed
increase in aconitase 3 did not necessarily reflect an increase in its activity that consequently could
lead to a TCA flux. This is so because it has been shown that aconitase activity is strongly reduced
by H2O2 [9–11]. Rather, the increase may have been channelled towards its role as RNA-binding
protein, where it regulates transcription and stability of mRNA transcripts, including its own [38,39].
Besides, the role of aconitase in RNA-binding and oxidative stress requires further analysis. Overall,
a total of 36 H2O2—responsive proteins were experimentally linked to potential RNA interaction,
including the other TCA cycle enzymes, isocitrate dehydrogenase, succinyl CoA ligase, and succinyl
CoA synthase, that increased in abundance at 20 min post H2O2 treatment [39]. Taken together, an
increase in the aconitase in response to ABA, cGMP or H2O2 may suggest a potential role of these
signalling molecules in modulating oxidative stress as well as energy supplies.
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Figure 1. Tricarboxylic acid (TCA) cycle highlighted proteins changing in abundance after H2O2 
treatment of cells. Maroon arrows represent proteins changing at 5 min after treatment and green 
arrows at 20 min after treatment. “−” signifies no change or a change of less than two-fold, “↑” 
signifies an increase in abundance, and “↓” signifies a decrease in abundance. Respective protein fold 
changes are indicated on top of each arrow. 

3.2. ABA-Responsive Microsomal Proteins 

A total of 52 proteins showed differential accumulation in response to ABA and 26 of these 
proteins have been identified as either RNA-binding proteins or candidate RNA interactors [39]. 
Abundance of 31 proteins increased and 18 decreased at 5 min after treatment with ABA, while at 20 
min, 28 proteins increased and 17 proteins decreased (Table 2). The 52 proteins were classified into 
11 functional categories [31], and the most represented functional categories were protein synthesis 
(19%), metabolism (13%), cell structure (13%), and energy (12%) (Table 2; extended summary in 
Table S3). A functional enrichment analysis of the ABA-responsive proteins revealed significant 
enrichment of biological processes, including ‘primary metabolic process’, ‘developmental process’, 
‘response to stress’, ‘transport’, and ‘translation’ (Table S3). In addition, the molecular functions 
were also enriched, and these included ‘structural molecule activity’ and ‘transporter activity’ (Table 
S3). A metabolic pathway analysis was also performed on the ABA-responsive proteins using 
KEGG, and ‘purine metabolism’ (seven proteins), ‘thiamine metabolism’ (six proteins), and 
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3.2. ABA-Responsive Microsomal Proteins

A total of 52 proteins showed differential accumulation in response to ABA and 26 of these
proteins have been identified as either RNA-binding proteins or candidate RNA interactors [39].
Abundance of 31 proteins increased and 18 decreased at 5 min after treatment with ABA, while at
20 min, 28 proteins increased and 17 proteins decreased (Table 2). The 52 proteins were classified into
11 functional categories [31], and the most represented functional categories were protein synthesis
(19%), metabolism (13%), cell structure (13%), and energy (12%) (Table 2; extended summary in
Table S3). A functional enrichment analysis of the ABA-responsive proteins revealed significant
enrichment of biological processes, including ‘primary metabolic process’, ‘developmental process’,
‘response to stress’, ‘transport’, and ‘translation’ (Table S3). In addition, the molecular functions were
also enriched, and these included ‘structural molecule activity’ and ‘transporter activity’ (Table S3).
A metabolic pathway analysis was also performed on the ABA-responsive proteins using KEGG, and
‘purine metabolism’ (seven proteins), ‘thiamine metabolism’ (six proteins), and ‘methane metabolism’
(four proteins) were the most represented pathways (Table S3).

Fifteen proteins decreased in abundance at both 5 and 20 min after ABA treatment, and these
included six cytoskeleton-associated proteins (Table 2). Three of these were transporter-associated
proteins namely clathrin, heavy chains (AT3G08530 and AT3G11130) and a plasma membrane intrinsic
protein 2A (PIP2A, AT3G53420). The latter has been linked to other stress-responses, including
temperature and salt [40,41], in addition to a potential role in mRNA binding [39]. The abundance
of PIP2A, in particular, has been shown to decrease in response to salt stress [41,42], and much like
in the current study, the abundance of PIP2A decreased after 5 and 20 min (although at 20 min it
was only 0.6 fold change, and hence less than the cutoff of two-fold) of ABA-treatment. PIP2A is a
member of the PIP2 subfamily proteins. PIP2A has water transport activity as depicted in Xenopus
laevis oocytes [43], and facilitates the diffusion of H2O2 into cells of yeast [44]. Exposing of Arabidopsis
roots to 0.5 mM H2O2 has been observed to induce significant depletion of PIP homologs in the
plasma membrane fractions after 15 min. In addition, in late endosomal compartments, H2O2 has
been shown to cause oxidative stress-induced redistribution of AtPIP2.1 [45]. On another hand, an
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ABA-dependent phosphoproteomics analysis detected four members of the aquaporin family including
PIP2 decreasing in phosphorylation state at a carboxyl-terminal serine that is anticipated to instigate
closure of the water-transporting aquaporin gate [46]. PIP2 dephosphorylation prevents rehydration
during ABA-regulated seed germination and dormancy, and decreases water flux in response to
drought [46]. Arabidopsis knockout mutants lacking the PIP2:1 aquaporin have a stomatal closure
defect particularly in response to ABA [47]. In pip2:1 plants, ABA treatment induced an increase
in osmotic water permeability of guard cell protoplasts while abolishing accumulation of ROS [47],
supporting the involvement of aquaporins in ABA-dependent stomatal movements. The work by
Grondin et al. [47] implies that PIP2:1 does significantly contribute to guard cell water permeability
in the presence of ABA. Moreover, just like Kline et al. [46], Grondin et al. [47] showed that PIP2
phosphorylation is critical for responses to ABA, in particular in guard cell movements. In the current
study, differential analysis of microsomal proteins showed that accumulation of PIP2 decreased in the
presence of ABA, suggesting a potential direct or indirect regulation of aquaporins in ABA signalling.
This may correlate with the decrease in phosphorylation of PIP2 upon ABA treatment [46].

Among the microsomal proteins that increased in abundance after ABA treatment,
D-mannose-binding lectin protein (AT1G78850) and LRR transmembrane protein kinase
(LTPK, AT3G14840) (Table 2) showed the greatest increase specifically at 20 min. The two proteins
play a role in inmate immunity against microbial attack. D-mannose-binding lectin recognises certain
carbohydrate moieties on pathogen surfaces [48]. It is involved in the regulation of gene expression
and cellular activities in response to increasing levels of hormones such as ABA and jasmonate, or
biotic and abiotic (e.g., osmotic) stresses [49–53]. On the other hand, LTPK [also known as LYSM
RLK1-INTERACTING KINASE 1 (LIK1)], a plasma membrane localised protein, also increased in
abundance at 20 min after H2O2 treatment. Direct interaction between chitin elicitor receptor kinase
(AtCERK1) and LIK1, both in vitro and in vivo studies showed that LIK1 is directly phosphorylated by
AtCERK1 [54]. In Arabidopsis, AtCERK1 mutants show impairment in chitin responses including the
activation of a MAPK cascade, ROS production and expression of chitin-induced genes consequently
leading to failure of chitin-induced pathogen resistance [55,56]. Furthermore, Lik1 T-DNA mutant
plants produced significantly more ROS in response to chitin and showed an increased resistance to
Pseudomonas syringae pv. tomato [54]. The increase in abundance of LTPK in response to the ABA and
H2O2 treatments we observed was consistent with the role of LTPK in ROS responses for regulating
ROS accumulation that, if in excess, can facilitate necrotrophic infection and promotes programmed
cell death [57].

3.3. The Microsomal Proteome of the ABA and H2O2 Responses Show Similarity

A total of 21 proteins were common among proteins significantly changing in response to ABA
and H2O2 treatments. Ten of these proteins have been linked in RNA biology [39]. Changes in
abundance for most of these proteins were similar (Table 3). Expression of six of these proteins
increased in abundance at both 5 and 20 min post-treatment, while six decreased after either ABA or
H2O2 treatment (Table 3). The other nine proteins showed dissimilar regulation patterns between the
two treatments.
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Table 3. Comparison differential protein accumulation in response to ABA and H2O2.

Accession Number Protein Name H2O2 5 min H2O2 20 min ABA 5 min ABA 20 min

1. Metabolism

AT1G17745 D-3-phosphoglycerate dehydrogenase 2 0.1 0.1 0.1 0.2
AT5G17770 NADH:cytochrome B5 reductase 1 0.4 2.5 2.3 2.3

2. Energy

AT2G05710 Aconitase 3 2.5 12 8 9.9
AT1G15120 Ubiquinol-cytochrome C reductase hinge 19 20 15 11

3. Transcription

AT1G14850 Nucleoporin 155 ns 0.3 0.1 0.2

4. Protein synthesis

AT3G04400 Ribosomal protein L14p/L23e 3.8 3 3.5 2.6
AT3G45030 Ribosomal protein S10p/S20e ns 2.2 2.3 ns
AT1G01100 60S acidic ribosomal protein family ns 0.4 0.4 0.4

5. Protein destination and storage

AT1G14980 Chaperonin 10 ns 2.9 2.5 3
AT5G56030 Heat shock protein 81-2 0.4 ns 0.4 0.5

6. Transporters

AT4G27500 Proton pump interactor 1 ns 2.4 ns 2.3
AT3G08530 Clathrin, heavy chain 0.5 0.2 0.2 0.4
AT3G11130 Clathrin, heavy chain 0.5 0.4 0.3 0.4

7. Intracellular traffic

AT1G61570 Mit. import inner membrane 13 translocase 17 23 19 11

8. Cell structure

AT5G09810 Actin 7 0.5 ns 0.5 0.5
AT4G14960 Tubulin/FtsZ family protein 0.4 0.5 0.4 0.3
AT5G62690 Tubulin beta chain 2 0.4 0.4 0.3 0.4
AT2G29550 Tubulin beta-7 chain 0.3 0.4 0.3 0.4
AT5G19770 Tubulin alpha-3 0.1 ns 0.5 0.3

9. Signal transduction

AT3G51800 Metallopeptidase M24 family protein 5.1 ns 3.4 ns
AT3G14840 LRR transmembrane protein kinase ns 11 8.3 14

Three proteins, ubiquinol-cytochrome C reductase hinge (UQCRH, AT1G15120),
D-3-phosphoglycerate dehydrogenase (AT1G17745) and NADH:cytochrome B5 reductase 1 (Cytb5R,
AT5G17770), belonging to the molecular function category ‘oxidoreductase activity’ (Table S2), showed
differential accumulation in response to either ABA or H2O2 (Table 3). Oxidoreductase-related proteins
have been shown to control responses to calcium homeostasis in organelles such as endoplasmic
reticulum [58]. Besides, amongst the identified ABA and H2O2 –responsive proteins, UQCRH was
one of the proteins increasing in abundance the most at both time points. It is a component of the
mitochondrial respiratory chain complex III. Cytb5R is an integral membrane-bound flavoprotein that
is localised mainly in the endoplasmic reticulum and the outer mitochondrial membrane [59]. It is an
electron donor for Cytb5, a membrane-haeme-containing protein [60]. Non-cytotoxic concentration of
H2O2 (24 µM) has been shown to induce a significant up-regulation of Cytb5R, suggesting a redox
regulation [61]. However, in this study, we observed that a higher concentration of H2O2 (50 µM)
can cause a decrease of Cytb5R abundance as an early response, and an increase at 20 min. This may
suggest concentration-dependent redox regulation by Cytb5R in response H2O2 as well as ABA.

Within the common proteins set, the most represented functional category was the cell structure,
comprising of four tubulins and one actin. Tubulin/FtsZ protein (AT4G14960), an α-tubulin isoform
that is required for right handed helical growth, is part of the tubulin complex or structural constituent
of the cytoskeleton [62]. Tubulins showed differential expression in response to salt stress, for example,
abundance of tubulin β-chain 2 (AT5G62690) decreased after salt treatment [63]. Tubulin has also been
shown to regulate low nitrate-induced anthocyanin biosynthesis and plant nitrate response regulatory
network in collaboration with other signalling pathways including ABA and H2O2 [64]. The four
tubulins and actin 7 identified in the current study were all down-regulated in response to ABA and
H2O2, and showed reduction in transcriptional level during senescence suggesting that the cytoskeletal
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organization-related proteins are affected by oxidative stress. Further, the cytoskeleton has been shown
to be essential for mitochondrial morphology, movement and immobilization. The actin cytoskeleton,
for example, is involved in the immobilization of mitochondria at the cortex in cultured tobacco cells,
and the cytoskeleton may be critical for retaining mitochondria at sites of high ATP demand (for review
see [65]).

To further examine the mutual effect of ABA and H2O2, in particular to shed light on the common
protein cohort whether the ABA effect is a result of the H2O2 signalling initiated via ABA pathway,
we performed an ABA assay following H2O2 treatment of Arabidopsis cell suspension cultures and
vise-versa. We noted no significant change in ABA quantity at 5 and 20 min post-H2O2 treatment.
This may be attributed to the short treatment times aimed at observing early stimuli responses, or
potentially from the low concentration of H2O2 used. Previously, it has been revealed that treating
Arabidopsis guard cells with 100 µM H2O2 for 25 and 30 min induced an ABA-mediated nitric oxide
production, which in turn is dependent on ABA-induced H2O2 synthesis [66]. Furthermore, a ROS
assay was performed after treating Arabidopsis cell suspension cultures with 50 µM ABA. Here, we
observed an increase in ROS accumulation at 20 min when compared with the controls (collected at
0 and 20 min) (Figure 2). This observation is not new as previously, ABA has been shown to induce
H2O2 production through NADPH oxidase [67] and in guard cells of Vicia faba, ABA was also observed
to generate H2O2 [68]. Additionally, in Arabidopsis, ROS accumulation was noted to occur upon
ABA-induced stomatal closure [69]. Therefore, this suggests that ABA directly and/or indirectly
induce ROS production in the cells that may lead to the observed common regulation of downstream
processes with H2O2.
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Figure 2. Reactive oxygen species (ROS) assay. OxiSelect™ Intracellular ROS assay kit (Cell Biolabs,
Inc., San Diego, CA, USA) was used in the in vivo oxidation experiments using cultured Arabidopsis
(Col-0) cells according to the assay protocol provided by the manufacturer. Each bar represents data
from four biological replicates (n = 4) with a calculated standard error. Treatment of cells with ABA at
the final concentration of 50 µM induces a statistically significant increase in H2O2 production, p < 0.001
(represented by two asterisks (**) symbols) using a two-sample t-test.

4. Conclusions

Shotgun proteomics approaches can distinguish common and specific responses linked to ABA or
H2O2 treatments. The analysed proteomics data also revealed over 30 microsomal proteins associated
with RNA interaction [70]. Furthermore, amongst the common set of proteins, we detected three
proteins, namely aconitase 3, UQCRH, and inner mitochondrial membrane translocase 13, to be the
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most responsive and potentially as promising signatures for both ABA and H2O2 although they require
further investigation to determine their mode of action. Besides, the fact that most of the common
proteins changed in abundance in a similar manner is consistent with ABA-induced ROS production.
Finally, we also show that a significant protein subset responds specifically to either ABA or H2O2,
suggesting that these molecules also modulate independent complex intracellular responses.

Supplementary Materials: The following are available online http://www.mdpi.com/2227-7382/5/3/22/s1,
Table S2: H2O2 differentially expressed proteins and GO analysis, Table S3: ABA differentially expressed proteins
and GO analysis.
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