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Abstract: The Einstein–Podolsky–Rosen (EPR) steering is a subtle intermediate correlation between
entanglement and Bell nonlocality. It not only theoretically completes the whole picture of
non-local effects but also practically inspires novel quantum protocols in specific scenarios.
However, a verification of EPR steering is still challenging due to difficulties in bounding unsteerable
correlations. In this survey, the basic framework to study the bipartite EPR steering is discussed,
and general techniques to certify EPR steering correlations are reviewed.
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1. Introduction

The Einstein–Podolsky–Rosen (EPR) steering [1] depicts one of the most striking features in
quantum mechanics: With local measurements, one can steer or prepare a certain state on a remote
physical system without even accessing it [2,3]. This feature challenges one’s intuition in a way that the
set of prepared states in the EPR steering fashion cannot be produced by any local operations. Therefore,
a genuine nonlocal phenomenon happens in this procedure. Whilst EPR steering requires entanglement
as the basic resource to complete the remote state preparation task, the correlation implied by EPR
steering is not always enough to violate any Bell inequality. In this sense, EPR steering can be seen as a
subtle quantum correlation or quantum resource in between entanglement and nonlocality.

The discussion of EPR steering dated back to the emergence of quantum theory, when Einstein,
Podolsky, and Rosen questioned the completeness of quantum theory in their famous 1935’s
paper [4]. According to their argument on local realism, quantum theory allows a curious
phenomenon: the so-called “spooky action at a distance”. In the next year 1936, Schrödinger firstly
introduced the terminology “entanglement” and “steering” to describe such quantum “spooky action”.
Debates on whether quantum theory is complete and how to understand quantum entanglement lasted
for the following 20 years and were finally concluded by Bohm [5] and Bell [6,7]. The celebrated Bell
inequality [8] was provided in 1955 as a practical verification of such “spooky action” or equivalent
“non-locality”. Noteworthily, the experimental tests of nonlocality without loopholes due to the real
devices have been only carried out in recent years [9–12].

Strictly speaking, Bell inequalities test nonlocal correlations of general physical theories,
not necessarily the quantum theory [8]. This can be understood by that Bell inequalities are functions of
general probabilities and are independent of how to realize such probabilities. Thus, it is still a question
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on how quantum theory realizes such “spooky action” in its own context. As proved by Werner in
1989, entanglement is a necessary resource to exhibit nonlocality but not a sufficient one [13]. Note
that, in some physics research fields, e.g., condensed matters, “entanglement” is equivalently used as
“nonlocality” to discuss the genuine quantum phenomenon. In Werner’s paper [13], the disentangled
state is termed as the “classical correlated state”, when the terminology “separable state” was not often
used at that time. It, thus, drives physicists to consider under what conditions can entanglement show
nonlocal effects in the quantum context.

This problem was further addressed by Wiseman, Jones, and Doherty [1,14] in 2007. They showed
that there exists a set of bipartite entangled states, which can exhibit EPR steering properties but are
not sufficient to violate Bell inequalities. For such states, termed as “EPR steerable states”, one party
can remotely prepare certain quantum states on the other party, and such preparations can not be
replaced by any classical or quantum local operations. It, thus, represents another form of “spooky
action at a distance”. This “action” is in the quantum context in the sense that the description on the
other party is always quantum. Then, EPR steering stands as an intermediate between entanglement
and nonlocality, and they together form a relatively complete picture. On the one hand, EPR steering
can be seen as a certification of entanglement. On the other hand, EPR steering exhibits a weaker form
of nonlocality in specific scenarios.

The significance of studying EPR steering follows from important applications of entanglement
and nonlocality. The entanglement and nonlocality have been proved to be important resources for
many quantum information tasks, from quantum communications to quantum computation. As an
intermediate but subtle resource, EPR steering may help to reduce the difficulty of such tasks and
helps to inspire new protocols. For instance, nonlocality offers the strongest security in quantum
cryptography. Nevertheless, the realization of nonlocality is based on violating Bell inequality,
which is experimentally difficult. Simultaneously, violating EPR steering inequality is relatively
applicable [15–17], and the realization of EPR steering also provides a different communication
security for specific tasks [18].

Numerous results have been concluded in recent years. To certify EPR steering, there
have been many approaches to witness EPR steerable correlations. Besides the basic linear
inequality [19,20], local uncertainty relations [21–23], entropic uncertainty relations [24], fine-grained
uncertainty relations [25], the CHSH-type inequality [26], covariance matrices [27], the semidefinite
programming method [28], the all-versus-nothing fashion [29,30], and other methods, have
been adopted in formulating inequalities and equations to verify EPR steering. As for
understanding EPR steering, the asymmetric property [31,32], the super-activation of EPR steering
correlation [33,34], the quantization of EPR steering [34–37], the negativity of steerable states [38],
steering in the presence of positive operator valued measure (POVMs) [39], the resource theory
description [40], the multipartite case [41,42], etc. are deeply investigated. In addition, relations
between EPR steering and the uncertainty principle [23,24,43,44], joint measurability [45,46],
sub-channel discrimination [47], etc. have also been discussed in the literature. Experimentally,
EPR steering has been tested on various physical systems and platforms [16,19,48–53].

Noteworthily, comprehensive reviews [21,22,28] have given a complete picture of EPR steering.
In Reference [21], the EPR steering is introduced based on the EPR Gedankenexperiment [4],
while proposals to realize EPR steering test are reviewed from both the theoretical and experimental
perspectives. The experimental friendly criteria for certifying EPR steering is thoroughly investigated in
Reference [22]. In particular, the characterization of EPR steering is reviewed through the semidefinite
programming method [28], which can be explicitly used to tackle the complicated numerical problems
in detecting EPR steering. Recently, the EPR steering test is further generalized to a unified framework
where classical, quantum, and post-quantum steering can be investigated [54]. The black box
framework in that paper is the same with the framework adopted here.

In this paper, we will mainly focus on the basic techniques to certify the bipartite EPR steering
and related quantum correlations, and show how to certify EPR steerable correlation in different
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fashions. This survey is organized as follows. In Section 2, the basic notations and the box framework
combined with trust/untrust scenarios will be introduced. After a brief discussion of entanglement
and nonlocality in such a framework, EPR steering as well as other equivalent descriptions will be
introduced in Section 3. In Section 4, the systematic method to formulate the criteria for certifying EPR
steering will be discussed. Two types of criteria, (a) linear EPR steering inequality and (b) criterion
based on uncertainty relations, will be studied in detail. Their performances on some typical states
will also be given. Finally, a summary will be given in Section 5.

2. Preliminaries and Notations

In this paper, we will focus on the bipartite correlation P (ab|xy) with input parameters x, y and
output parameters a, b and discuss, under certain assumptions, whether the correlation can be certified
as EPR steerable. Before the discussion, we firstly introduce the basic terminology and the notations
that will be used throughout the paper.

2.1. The Box Framework

A typical experiment of testing a bipartite correlation can be described by the box framework,
as shown in Figure 1. Suppose two parties, Alice and Bob, are in their closed labs to do the experiment.
The lab is sketched as the doted rectangle, inside which there is an experimental device sketched as the
solid rectangle. In each run of the experiment, Alice and Bob are distributed with a bipartite state W
from a source, which may be unknown. In their own labs, combined with the subsystem they received,
Alice and Bob can input x and y to the device and obtain outputs a and b, respectively. Such a run is
repeated enough times so that, after the experiment, Alice and Bob can obtain the correlation P (ab|xy)
by announcing their input and output results. Depending on different descriptions and mechanics of
the source and device, the correlation may have different structures and properties. The aim of the
box framework is then to characterize the dependence of the correlation on descriptions of sources
and devices.

𝒙

𝒃𝒂

𝒚
Alice Bob𝑾

Source

𝑃 𝑎𝑏 𝑥𝑦;𝑊 = ?

Figure 1. The box framework: The source distributes state W to Alice and Bob. In their own closed
labs, Alice and Bob make operations on received local states. Alice’s operations are labeled by inputs
x, with outputs labeled by a. Bob’s operations are labeled by inputs y, with outputs labeled by b.
After the experiment, Alice and Bob publicize their results and the corresponding statistics are denoted
by probability distribution {P (ab|xy; W)}. According to such a distribution, the local property of W
can be inferred.



Entropy 2019, 21, 422 4 of 22

In general, there is no restrictions on the source, inputs, and outputs. For instance, the source W;
inputs x, y; and outputs a, b can all be quantum states, with the devices being quantum instruments.
In this case, the box framework characterizes general local quantum operations on bipartite quantum
states. In this paper, we will restrict the device to be the typical measurement device in labs. That is,
the inputs x, y represent different measurement settings on the received subsystem and the outputs a, b
represent different outcomes. Physically, x, y, a, b can be described by natural numbers 0, 1, 2, . . .
and corresponding sets are denoted as X ,Y ,A,B, respectively. In the scenario of steering and
nonlocality, there are some common assumptions.

2.1.1. The No-Signaling Principle

Roughly speaking, the no-signaling principle describes that Alice and Bob cannot communicate
with each other during the test [55,56]. In the above box framework, this principle guarantees the
independence between Alice and Bob such that the correlation P (ab|xy) is faithfully generated by the
state W and measurements but not any other statistics shared before or during the test. Mathematically,
the no-signaling principle has the following form,

∑
a

P (ab|xy; W) = P (b|xy; W) = P (b|y; W) , ∀x ∈ X , (1)

∑
b

P (ab|xy; W) = P (a|xy; W) = P (a|x; W) , ∀y ∈ Y . (2)

Therefore, the no-signaling principle denies the possibility that Alice and Bob can guess each
other’s measurement setting y or x based on their local statistics P (a|x; W) or P (b|y; W), respectively.

Experimentally, this principle is guaranteed by Alice and Bob being separated far away (space-like
separation) and by both of them choosing measurement settings independently and randomly.
The no-signaling principle is then guaranteed by two hypotheses. Firstly, two parties in the space-like
separation cannot communicate with each other. Secondly, the random number generators [57]
in Alice’s and Bob’s labs should be truly independent and random.

In the test of nonlocality and EPR steering, we suppose that the no-signaling principle has
been guaranteed.

2.1.2. Trust and Untrust

If the description of boxes is restricted as quantum or classical, we can further define if a device is
trusted or not for the sake of practice. A device is said to be trusted if it is believed that the function of
the device is exactly what we expect. This definition comes from the sense that, without the assistance
of other resources, it is, in principle, impossible to verify how an unknown device really functions
based solely on statistics of measurement results. Particularly, in the rest of the paper, the device is
trusted if it is a quantum device and the accurate quantum mechanical description is known.

Therefore, if we say some devices are trusted, we actually make additional assumptions.
For instance, we say a measurement device is trusted if its measurement can be exactly described
by a known set of POVMs

{
Ey

b

}
, where y is the measurement settings and b is the measurement

outcome. On the contrary, we say a measurement device is untrusted if we can, at most, describe the
measurement results by a probability distribution P (b|y).

The scenario is device-independent if all devices and the source are untrusted. Particularly,
the scenario is measurement-device-independent if all measurement devices are untrusted.
If some but not all measurement devices are untrusted, we say the corresponding scenario as
semi-measurement-device-independent.
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2.2. Entanglement and Nonlocality

In the box framework, we can discuss entanglement and nonlocality in an operational manner.
Let λ label different hidden states in W and pλ be its probability such that

∫
dλpλ = 1. The correlation

can be written as
P (ab|xy; W) =

∫
dλpλP (ab|xy, λ) . (3)

The local realism argues that, for any hidden variable λ, P (ab|xy, λ) can be localized such that
P (ab|xy, λ) = P (a|x, λ) P (b|y, λ). We say the correlation P (ab|xy; W) is a local correlation if all
hidden states in Equation (3) can be localized.

The nonlocality is defined as the failure of local realism, usually modeled by local hidden variable
(LHV) models. The main property of LHV models is that, if two parties are no longer interacting
(guaranteed by space-like separation), their measurements should be local, i.e., a should be independent
on y and b (similarly for b). Thus, for each hidden variable λ, the LHV models produce a localized
correlation P (ab|xy, λ) = P (a|x, λ) P (b|y, λ). The nonlocal correlation is defined as correlations that
cannot explained by the local correlation

PLHV (ab|xy; W) =
∫

dλpλP (a|x, λ) P (b|y, λ) , (4)

where P (a|x, λ) and P (b|y, λ) are arbitrary probabilities. If the statistic of the experimental results
cannot be explained by Equation (4), then the correlation is nonlocal and we say the source W
is nonlocal.

The Bell inequality is indeed a linear constraint on all local correlations. This is based on the
fact that all local correlations from Equation (4) form a convex subset. There are some correlations
produced by quantum mechanics outside this subset. Precisely, in the probability space, points of local
correlations form a polytope, while all probabilities produced by quantum mechanics form a superset
of the polytope [8]. Thus, one can distinguish a specific nonlocal correlation from all local correlations
by a linear equation. Additionally, since Alice’s and Bob’s measurement results are described by
general probabilities, the problem of nonlocality corresponds to the device-independent scenario.

The entanglement is defined as the failure of description in the form of separable states.
The separable states have a clear definition that ρSEP is separable if ρSEP = ∑k pkρA

k ⊗ ρB
k with ρA

k and
ρB

k being some local quantum states and ∑k pk = 1. Usually, the decomposition of a separable state is
not unified and the verification of a separable is not a easy task. However, if the source W distributes
separable states in the box framework, then the correlation is in the form of

PSEP (ab|xy; W) =
∫

dλpλPQ (a|x, λ) PQ (b|y, λ) , (5)

where PQ (a|x, λ) = tr
[
Ex

a ρA
λ

]
and PQ (b|y, λ) = tr

[
Fy

b ρB
λ

]
are probabilities yielded by quantum

measurements. Here ρA
λ and ρB

λ are local hidden quantum states which may be unknown to Alice and
Bob, while Ex

a and Fy
b are POVMs that Alice and Bob know well. If the statistic of experimental results

cannot be explained by Equation (5), then the correlation is non-separable, i.e., entangled, and we say
the source W is entangled.

Like the Bell inequality, one can use a linear constraint, the so-called entanglement witness,
to bound all separable correlations to certify an entangled correlation. Similar to the case of local
correlations, correlations produced by all separable states also form a convex set. Since all devices are
assumed to be quantum, here, the entanglement corresponds to the scenario where all measurement
devices are trusted.
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3. The EPR Steering

3.1. Definition

From the above introduction, it is easy to see that definitions of nonlocality and entanglement have
two similarities. Firstly, both of them are defined by the failure of corresponding local models in their
own contexts, i.e., LHV models and separable quantum states, respectively. Secondly, as for the two
local models, the descriptions on Alice’s and Bob’s systems are symmetric, i.e., general probabilities
P (a|x, λ) and P (b|y, λ) in LHV models and quantum probabilities PQ (a|x, λ) and PQ (b|y, λ) in
separable states. The only difference between the two definitions is whether the local descriptions are
both quantum. A natural equation would be “What if the local descriptions are asymmetric?” and
“Can this asymmetric property lead to novel correlations?”. The answer is yes. The corresponding local
model is called the local hidden state (LHS) model and its failure implies the main objective of this
paper, the correlation of EPR steering [1].

Definition 1 (EPR steering). In a box frame test, the experimental result statistics exhibits EPR steering
property, if it cannot be explained by the correlation of LHS models, i.e., the correlation cannot be written as

PLHS (ab|xy; W) =
∫

dλpλP (a|x, λ) PQ (b|y, λ) , (6)

where pλ is a probability distribution satisfying
∫

dλpλ = 1, P (a|x, λ) is an arbitrary probability distribution,

and PQ (b|y, λ) = tr
[

Fy
b σλ

]
is a probability distribution generated by POVM Fy

b on quantum state σλ.
It is said that the corresponding quantum state is EPR steerable if Equation (6) is violated.
The relationship among EPR steerable states, entangled states, and nonlocal states are sketched

out in Figure 2.

Figure 2. The set of quantum states: All quantum states form a convex set, with the boundary
being the pure state. The region I represents the convex subset of separable states. The complement
set, i.e., regions II, III, and IV, represent entangled states. Particularly, regions III and IV represent
Einstein–Podolsky–Rosen (EPR) steerable states, and the region IV represents nonlocal states. Region II
are entangled states which is neither EPR steerable nor nonlocal.

3.2. One-Sided Measurement Device Independence

The understanding of EPR steering can be more clear if we discuss it in the trust and untrust
scenarios. As has been discussed before, nonlocality defies a local correlation in the device-independent
scenario, while entanglement defies local correlations in the measurement-dependent scenario.
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Since EPR steering is defined as the failure of LHS models, where only one party is assumed to
be quantum, we have the following claim.

Remark 1. EPR steering defies all local correlations in the one-sided measurement-device-independent scenario.
This scenario corresponds to the real situation when users in the communication task need different levels of

security. For instance, in the communication task between banks and individuals, obviously it is easier for banks
to prepare their devices to be trustworthy. For individuals, however, due to limits of costs and environments,
their devices are hard to be guaranteed as trustworthy ones. In this case, let individuals be Alice and banks
be Bob, such that if EPR steering correlation is certified by the violation steering inequality, then the secure
quantum communications can be achieved [18].

Different scenarios corresponding to nonlocality, entanglement, and EPR steering are shown in
Figure 3.
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Figure 3. The box framework for nonlocality, entanglement, and EPR steering. The color black
represents untrusted, gray represents unknown, and white represents trusted. (a) The nonlocality
scenario, where the source is unknown and measurement devices are untrusted. (b) The entanglement
scenario, where source is unknown and measurement devices are trusted. (c) The EPR steering scenario,
where source is unknown and Alice’s measurement devices are untrusted while Bob’s are trusted.

3.3. Schrödinger’s Steering Theorem

As an equivalent definition, one can consider the assemblage. The assemblage is defined as the
collection of ensembles, denoted by

{
ρ̃a|x

}
a,x

, where ρ̃a|x are unnormalized quantum states satisfying

∑a ρ̃a|x = σ, ∀x. The definition of EPR steering can be applied on the assemblage
{

ρ̃a|x

}
a,x

instead of

correlations P(ab|xy). This equivalence is guaranteed by the Schrödinger’s steering theorem [2,3].
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Theorem 1 (Schroödinger’s steering theorem). The following two statements hold:

1. For any quantum state ρAB,, let {Ex
a}a be a complete set of POVMs satisfying ∑a Ex

a = I, ∀x.
Then, the conditional states ρ̃

a|x
B = trA [Ex

a ⊗ IρAB] for all x and a form an assemblage.

2. For any assemblage
{

ρ̃a|x

}
a,x

with ∑a ρ̃a|x = σ, there always exist a pure quantum state |ψ〉AB

satisfying trA [|ψ〉AB 〈ψ|] = σ and complete sets of POVMs {Ex
a} satisfying ∑a Ex

a = I for all x,
such that ρ̃a|x can be produced, i.e., ρ̃a|x = trA [Ex

a ⊗ I |ψ〉AB 〈ψ|].

Proof. For the first statement, it is straightforward to verity that, for all x,

∑
a

ρ̃
a|x
B = ∑

a
trA [Ex

a ⊗ IρAB] = trA

[
∑
a

Ex
a ⊗ IρAB

]
= trA [ρAB] = ρB.

For the second statement, write ρB in its diagonal form ρB = ∑i λi |i〉 〈i| with λi > 0 and let D
be the diagonal matrix D = diag

[√
λ1, . . . ,

√
λd
]
. Denote the generalized invertible matrix of D as

D−1. It can be verified that Ex
a = D−1ρ̃T

a|xD−1 and |ψ〉AB = ∑i
√

λi |ii〉 are required POVMs and the
quantum state, respectively.

Then, an assemblage
{

ρa|x

}
a,x

is said to be unsteerable if it can be produced by rearrangement on

an LHS model {pλσλ}, i.e., ρa|x = ∑λ px,λ (a) pλσλ with ∑a px,λ (a) = 1 for all x and λ. Particularly,

for two-qubit states, the steered states ρ̃
a|x
B form an ellipsoid in the Bloch sphere on Bob’s side [58].

The volume of such ellipsoid indicates the steerability of the bipartite state. If the assemblage cannot
be written in this manner, it is said to be EPR steerable. This EPR steering definition is equivalent
to Definition 1 on the condition that Bob is allowed to do the state tomography for each conditional
state ρa|x. Furthermore, in Reference [54] post-quantum steering is well-studied using no-signaling
assemblages. If Bob’s measurements are not sufficient to do the tomography, then it is hard for him to
obtain each ρa|x yet to verify the EPR steerability. In this case, however, the statistic of measurement
results P (ab|xy) is still useful. In the following discussion, Definition 1 will be mainly considered.

There is an interesting analog of the assemblage [59], from the perspective of the state-channel
duality [60]. If the set of local hidden state σλ is replaced with a set of POVMs {Gλ}, then the
assemblage of {Gλ} can be defined as jointly measurable observables. That is, a set of POVMs {Ex

a}
is jointly measurable if Ex

a = ∑λ px,λ (a) pλGλ, with px,λ (a) being probabilities. It has been proved

that a given assemblage
{

ρa|x

}
a,x

is unsteerable if and only if Alice’s measurements {Ex
a}a,x is jointly

measurable [45,46], which can be checked from the Proof of Theorem 1.

4. Criteria of EPR Steering

A natural question arises on how to certify the EPR steering correlation. It can be shown that
unsteerable correlations, i.e., correlations produced by LHS models, form a convex subset. According to
the hyperplane separate theorem, there always exists a linear constraint of all unsteerable correlations,
such that steerable ones can be witnessed [22].

Suppose that the box framework is fixed, i.e., X , Y , A, and B are all fixed. Then, the set
of probability distributions {P (ab|xy) |x ∈ X , y ∈ Y , a ∈ A, b ∈ B} can be seen as a point in the
probability space. All correlations yielded by LHS models in Equation (6) {pλσλ} form a subset
{PLHS (ab|xy) |x ∈ X , y ∈ Y , a ∈ A, b ∈ B}. This subset of usteerable correlations is convex.

Lemma 1. The unsteerable correlations {PLHS (ab|xy)} form a convex subset.
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Proof. For any two LHS models
{

p(1)λ σ
(1)
λ

}
and

{
p(2)µ σ

(2)
µ

}
, the correlation yielded by them are

P(1)
LHS (ab|xy) =

∫
dp(1)λ P(1) (a|x, λ) tr

[
Fy

b σ
(1)
λ

]
, (7)

P(2)
LHS (ab|xy) =

∫
dp(2)µ P(2) (a|x, µ) tr

[
Fy

b σ
(2)
µ

]
, (8)

respectively. Then, any linear combination of these two, i.e., tP(1)
LHS (ab|xy) + (1− t) P(2)

LHS (ab|xy) with
0 6 t 6 1, can always be written as the correlation yielded by another LHS model {qντν}, where

qν = tp(1)λ δνλ + (1− t) p(2)µ δνµ, (9)

τν = σ
(1)
λ δνλ + σ

(2)
µ δνµ. (10)

It is easy to verify that

P(3)
LHS (ab|xy) =

∫
dqνP (a|x, ν) tr

[
Fy

b τν

]
(11)

=t
∫

dp(1)λ P(1) (a|x, λ) tr
[

Fy
b σ

(1)
λ

]
(12)

+ (1− t)
∫

dp(2)µ P(2) (a|x, µ) tr
[

Fy
b σ

(2)
µ

]
(13)

=tP(1)
LHS (ab|xy) + (1− t) P(2)

LHS (ab|xy) . (14)

Therefore, the subset of all unsteerable correlation is convex.

Any convex subset can be bounded by a linear equation, which is guaranteed by the hyperplane
separation theorem [61].

Lemma 2. (Hyperplane separation theorem) Let A and B be two disjoint nonempty convex subsets of Rn.
Then, there exists a nonzero vector v and a real number c such that

〈x, v〉 ≥ c and 〈y, v〉 ≤ c

for all x in A and y in B, i.e., the hyperplane 〈·, v〉 = c and v the normal vector, separates A and B.

The proof can be found in many Linear Algebra textbooks (like Reference [61]) and is skipped
here. Based on these two lemmas, one can certify EPR correlations by linear inequalities [22].

Theorem 2. Any EPR steerable correlation can be verified by an inequality.

Proof. According to Lemma 2, let the set A be the set of all unsteerable correlations, which is proved
by Lemma 1. For any EPR steerable correlation PSTE (ab|xy), let B be a sufficient open ball containing
PSTE (ab|xy), such that the open ball is disjoint with the subset A. Then, there always exists a
hyperplane v (P (ab|xy)) = ∑abxy vxy

ab P (ab|xy) = c, such that v (PLHS (ab|xy)) > c holds for all
unsteerable correlations PLHS (ab|xy) while v (PSTE (ab|xy)) < c holds for the certain EPR steerable
correlation PSTE (ab|xy).

4.1. Linear EPR Steering Inequality

Perhaps the most straightforward criteria to verify EPR steering is the linear steering inequality.
The linear steering inequality to certify EPR steering is like the Bell inequality to nonlocality and the
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entanglement witness to entanglement. From the Proof of Theorem 2, the linear steering inequality has
a general from, i.e., for all unsteerable correlations, the following inequality holds:

I (P) = ∑
a,b,x,y

Vxy
ab P (ab|xy) 6 BLHS, (15)

BLHS = max
PLHS

∑
a,b,x,y

Vxy
ab PLHS (ab|xy) , (16)

where P = {P (ab|xy)} denotes the correlation {P (ab|xy) |a ∈ A, b ∈ B, x ∈ X , y ∈ Y}, Vxy
ab ∈ R are

some coefficients, and BLHS is the bound of all unsteerable correlations.
Then, if for a certain correlation Q = {Q (ab|xy)} satisfies I (Q) > BLHS, i.e., the linear steering

inequality in Equation (15) is violated, then it can be conclude that Q cannot be explained by any LHS
correlations, i.e., Q is EPR steerable.

In practice, the expectation value of the measurement results is usually considered for convenience
and clarity. Combined with the scenario of EPR steering where Alice’s and Bob’s measurement devices
are untrusted and trusted, respectively, denote Ax = {ax ∈ R} as the random variable corresponding to
Alice’s measurements and By = ∑b byFy

b as the general quantum measurement for Bob’s measurements,
with Fy

b being the POVM corresponding to the result by.
Suppose that, in an EPR steering test experiment, Alice and Bob randomly and independently

choose n pairs of measurements Ak and Bk, respectively, labeled by k = 1, 2, . . . , n. After the experiment,
the value of each pair of measurements is

〈AkBk〉 = ∑
ak ,bk

akbkP (ab|AkBk) . (17)

Then, the following linear steering inequality holds for all unsteerable correlations [19,20].

Theorem 3 (The linear EPR steering inequality). If the result of an EPR steering test violates the
following inequality

Sn =
1
n

n

∑
k=1

gk 〈AkBk〉 6 Cn, (18)

where gk are real numbers and Cn satisfies

Cn = max
ak∈Ak

{
λmax

(
1
n

n

∑
n=1

gkakBk

)}
, (19)

with λmax (·) the maximal eigenvalue of the matrix, then the correlation of the test shows EPR steering.
The corresponding quantum state ρAB is EPR steerable, and more precisely, Alice can steer Bob.

Proof. By definition, Sn 6 Cn is an EPR steering inequality when it holds for all unsteerable correlation
PLHS. PLHS has a general form as defined by Equation (6), i.e.,

PLHS (ab|xy) =
∫

dpλP (a|x, λ) tr
[

Fy
b σλ

]
.

It is straightforward to verify that
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Sn (PLHS) =
1
n

n

∑
k=1

gk ∑
ak

ak

∫
dpλP (ak|Ak, λ) tr [Bkσλ] (20)

6 max
ak∈Ak

1
n

n

∑
k=1

gkak

∫
dpλtr [Bkσλ] (21)

6 max
ak∈Ak

λmax

(
1
n

n

∑
k=1

gkakBk

)
(22)

= Cn. (23)

Here, the second line comes from ∑ak
akP (ak|Ak, λ) tr [Bkσλ] ≤ maxak∈Ak aktr [Bkσλ], and the third

line comes from

1
n

n

∑
k=1

gkak

∫
dpλtr [Bkσλ] = tr

[(
1
n

n

∑
k=1

gkakBk

) ∫
dpλσλ

]
6 λmax

(
1
n

n

∑
k=1

gkakBk

)
. (24)

Here, gk are flexible coefficients to help to form efficient inequalities.

Example 1. The 2-qubit Werner state [13].
As a simple example, one can consider the 2-qubit Werner state, which is an often-used bipartite quantum

states in quantum information processes. It can be constructed as the mixture of the maximally entangled state
|Ψ−〉 = (|01〉 − |10〉) /

√
2 and the white noise I/4, i.e.,

Wµ = µ
∣∣Ψ−〉 〈Ψ−∣∣+ (1− µ)

I
4

, (25)

where µ ∈ [0, 1]. It can be theoretically proved that Wµ is entangled when µ > 1/3 and is separable when
µ ≤ 1/3 [13]. When µ > 1/

√
2, there exists certain observables such that the CHSH inequality is violated [62],

i.e., Wµ is nonlocal when µ > 1/
√

2. When µ . 0.66, any measurement results of Wµ can be explained by
some LHV models, i.e., Wµ never exhibits a nonlocality when µ . 0.66 [63]. It is an open question of whether
Wµ is nonlocal when 0.66 . µ ≤ 1/

√
2.

It has been proved that µ > 1
2 is the critical bound for the EPR steerability of Wµ [1], i.e., any measurement

results of Wµ can be explained by LHS models when µ ≤ 1
2 .

It is easy to see that the performance of linear EPR steering inequality (Theorem 3) depends on the number
of Alice and Bob’s measurement pairs and Bob’s observables. Furthermore, from the symmetric property of the
2-qubit Werner state, when Bob’s k’th observable is Bk = nk · σ, where nk =

(
n(k)

x , n(k)
y , n(k)

z

)
is a unit vector

and σ =
(
σx, σy, σz

)
is the set of Pauli matrices, i.e.,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (26)

Alice can always choose her observable as Ak = −nk ·σ, such that the expectation value of the measurement
pair tr

[
Ak ⊗ BkWµ

]
= tr

[
−nk · σ ⊗ nk · σWµ

]
= µ. If we further let gk = 1, Sn = µ always holds

independent of the number of measurements.
The bound Cn, however, depends on n and the form of Bk. More precisely, when n = 2, let B1 = σx

and B2 = σy. The corresponding C2 = 1/
√

2 and, thus, Wµ is steerable when µ > 1/
√

2 ≈ 0.707. When
n = 3, let B1 = σx, B2 = σy, and B3 = σz. The corresponding C3 = 1/

√
3 and, thus, Wµ is steerable when

µ > 1/
√

3 ≈ 0.577. It can be proved that, for n = 2, 3, the above Bob’s observables are optimal [15,19].
When n = 4, it is a little complicated, but one can let B1 = σx, B2 = σy, B3 =

(
σy +

√
3σz

)
/2, and

B4 =
(

σy −
√

3σz

)
/2. The corresponding C4 =

√
5/4 and Wµ is steerable when µ >

√
5/4 ≈ 0.559. In
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this case, the observables {B1, B2, B3, B4} may not be optimal. It can be concluded that the larger the number of
measurement pairs, the lower bound of µ can be detected by the linear inequality. In principle, when n→ ∞,
which can be understood as the state tomography, one can image that the critical bound for the EPR steerability
can be finally found, i.e., µ > 1/2 [15,19].

This example shows the application of the linear EPR steering inequality, as well as its limitations.
Firstly, the linear inequality (Equation (18)) may not give the critical bound of the EPR steerability
when testing some kinds of quantum states. This makes sense as the linear inequality represents only
one hyperplane in the probability space, while the sufficient and necessary condition for the EPR
steerability usually requires numerous such hyperplanes. Secondly, the linear inequality (Equation (18))
closely relies on observables that would be chosen. Thus, in practice, a natural question is how to
choose Alice’s and Bob’s observables such that the detection of EPR steering is efficient. Thirdly,
as seen from the example, the more measurements, the better the performance of the linear inequality.
However, the complexity to compute Cn is also increasing when n becomes large. In fact, the method
in Equation (19) to calculate Cn needs to maximize all ak ∈ Ak for all k, which leads the complexity
of Cn exponentially increasing with n. Therefore, it is motivated to specify systematic techniques of
choosing proper observables and obtaining Cn more efficiently.

4.1.1. Optimal Observables for Alice

Usually, Bob’s observables {Bk} are fixed due to the measurement devices are trusted in his lab.
Here, the problem of how Alice chooses proper measurement settings according to Bob’s observables
is discussed. The main idea is that, to violate the linear inequality (Equation (18)) more obviously,
Alice should choose observables such that 〈AkBk〉 is larger when gk > 0 and 〈AkBk〉 is smaller when
gk < 0. In this sense, the value of Sn can be made as large as possible so as to violate the unsteerable
bound. This technique can be formulated based on the following lemma [64].

Lemma 3. For any two n× n-dimensional Hermite matrices A and B, the following equation holds,

max
U

tr
[

AU†BU
]
=

n

∑
i=1

αiβi, (27)

where U is an arbitrary unitary matrix and α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn are the eigenvalues
of A and B, respectively.

Proof. Write A = ∑ αiei and B = ∑ β j f j in the diagonal form, where {ei} and
{

f j
}

are specific bases

of the operator space, respectively satisfying tr
[
eie†

j

]
= δij = tr

[
fi f †

j

]
and ∑i ei = I = ∑j f j. Then,

max
U

tr
[

AU†BU
]
= max

U
∑
ij

αiβ jtr
[
UeiU†ej

]
(28)

= max
U

∑
ij

αiβ jtr
[
ẽiej
]
= max

D
∑
ij

αiβ jDij. (29)

Here,
{

ẽi = UeiU†} is another bases of the operator space, and it is straightforward to verify
that the transition matrix Dij = tr

[
ẽiej
]

is a doubly stochastic matrix, i.e., ∑i Dij = 1 and ∑j Dij = 1.
As the doubly stochastic matrix can always been written as the convex combination of permutation
matrices [61], the following equation holds:

max
D

∑
ij

αiβ jDij = max
σ

∑
i

αiβσ(i) = ∑
i

αiβi,

where σ is a certain permutation.



Entropy 2019, 21, 422 13 of 22

Then, the following technique to choose Alice’s observables {Ak} can be specified [20].

Theorem 4. When the quantum state ρAB is to be tested and Bob’s observables are fixed as {Bk}, 〈Ak ⊗ Bk〉 is
maximal if Alice’s observables satisfy the following conditions.

1. Ak and ρ̃k = trB [(IA ⊗ Bk) ρAB] are diagonalized in the same bases
{

eA
i
}

.
2. Eigenvalues of Ak and eigenvalues of ρ̃k = trB [(IA ⊗ Bk) ρAB] have the same order.

Then,
〈Ak ⊗ Bk〉 = ∑

i
a(i)k β

(i)
k ,

where α
(1)
k ≥ α

(2)
k ≥ · · · ≥ α

(n)
k and β

(1)
k ≥ β

(2)
k ≥ · · · ≥ β

(n)
k are eigenvalues of Ak and ρ̃k, respectively.

Proof. For any observables Ak and Bk on a quantum state ρAB, the expectation value of Ak ⊗ Bk is

〈Ak ⊗ Bk〉 = tr [Ak ⊗ BkρAB] = trA {AktrB [(IA ⊗ Bk) ρAB]} = tr [Ak ρ̃k] (30)

= tr
[
UkDkU†

k ρ̃k

]
= tr

[
DkU†

k ρ̃kUk

]
, (31)

where Uk is a unitary matrix, Dk is a diagonal matrix, and Ak = UkDkU†
k holds. From Lemma 3,

tr
[
UkDkU†

k ρ̃k
]

is maximized when Uk can diagonalize ρ̃k simultaneously, i.e., U†
k ρ̃kUk is a diagonal

matrix, and Dk has the same order of diagonal values with U†
k ρ̃kUk. In this case, 〈Ak ⊗ Bk〉 = ∑i a(i)k β

(i)
k

is the maximal over all Alice’s observables, where α
(1)
k ≥ α

(2)
k ≥ · · · ≥ α

(n)
k and β

(1)
k ≥ β

(2)
k ≥ · · · ≥ β

(n)
k

are eigenvalues of Ak and ρ̃k,respectively.

Note that, when ρk contains degenerate eigenvalues, the optimal Ak by this method are not
unique. As an example, we consider the 3× 3-dimensional isotropic state [23].

Example 2. The 3× 3-dimensional isotropic state.
The 3× 3-dimensional isotropic state has the following form

ρη = η
∣∣φ+

〉 〈
φ+
∣∣+ (1− η)

I
9

, (32)

where |φ+〉 = (|00〉+ |11〉+ |22〉) /
√

3. From the partial transpose criterion [65], ρη can be certified entangled
if η > 1/4. To detect its steerability, let Bob’s observables be the Gell–Mann matrices:

G1 = 1√
2

 0 1 0
1 0 0
0 0 0

 , G2 = 1√
2

 0 0 1
0 0 0
1 0 0

 , G3 = 1√
2

 0 0 0
0 0 1
0 1 0

 ,

G4 = 1√
2

 0 −i 0
i 0 0
0 0 0

 , G5 = 1√
2

 0 0 −i
0 0 0
i 0 0

 , G6 = 1√
2

 0 0 0
0 0 −i
0 i 0

 ,

G7 = 1√
2

 1 0 0
0 −1 0
0 0 0

 , G8 = 1√
6

 1 0 0
0 1 0
0 0 −2

 .

(33)

Then, from Theorem 4, Alice’s observables can be chosen as GA
k =

(
GB

k
)T , such that

〈
GA

k ⊗ GB
k
〉
= η/3

obtains its maximal value and Sn = η/3.
For the LHS bound Cn, we have the following results. When n = 3 and Bob chooses G1, G2, and G3,

the state is steerable if η > 0.8660. When n = 4 and Bob chooses G1, G2, G4, and G8, the state is steerable
if η > 0.7318. When n = 5 and Bob chooses G3, G4, G5, G6, and G7, the state is steerable if η > 0.6708.
When n = 6 and Bob chooses G1, G2, G3, G4, G5, and G8, the state is steerable if η > 0.6424. When n = 7 and
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Bob chooses observables from G1 to G7, the state is steerable if η > 0.6204. Finally, when n = 8 and Bob chooses
all Gell–Mann matrices, the state is steerable if η > 0.5748. Note that, in this case, when Bob chooses only two
observables from Gell–Mann matrices, the corresponding linear inequality will not detect any steerability of
the state.

4.1.2. A Flexible Bound on Unsteerable Correlations

As discussed above, the unsteerable bound Cn in the linear inequality from Equation (19) contains
a maximization over all Alice’s measurement results. The complexity to compute Cn is exponentially
increasing with the number of n. This property can also be concluded from the above two examples.
Therefore, when the number of measurements are large, a simpler bound is needed [66].

Theorem 5. If the result of an EPR steering test violates the following inequality

Sn =
1
n

n

∑
k=1

gk 〈AkBk〉 ≤ C′n = Λ1/2
A Λ1/2

B , (34)

where gk are some real numbers and ΛAΛB satisfies

ΛA =
n

∑
k=1

g2
k Ā2

k , ΛB = max
ρ

{
n

∑
k=1
〈Bk〉2ρ

}
, (35)

with Ā2
k = ∑ak

a2
k p (ak), then the correlation of the test is EPR steering. The corresponding quantum state ρAB

is EPR steerable, and more precisely, Alice can steer Bob.

Proof. Take in the definition of unsteerable correlation (Equation (6)),

PLHS (ab|xy) =
∫

dpλP (a|x, λ) tr
[

Fy
b σλ

]
.

Then

Sn =
n

∑
k=1

gk 〈Ak ⊗ Bk〉 =
∫

dpλ

n

∑
k=1

gk ∑
ak

akP (ak|Ak, λ) tr [Bkσλ] (36)

=
∫

dpλ

n

∑
k=1

gk
¯(Ak)λ 〈Bk〉λ (37)

≤
∫

dpλ

[
n

∑
k=1

g2
k

¯(Ak)λ
2
]1/2( n

∑
k=1
〈Bk〉2σλ

)1/2

(38)

≤
∫

dpλ

[
n

∑
k=1

g2
k

¯(
A2

k
)

λ

]1/2

max
ρ

(
n

∑
k=1
〈Bk〉2ρ

)1/2

(39)

≤
[

n

∑
k=1

g2
k

∫
dpλ

¯(
A2

k
)

λ

]1/2

Λ1/2
B (40)

=

[
n

∑
k=1

g2
k

¯(A2
k
)]1/2

Λ1/2
B = Λ1/2

A Λ1/2
B . (41)

Here, ¯(Ak)λ = ∑ akP (ak|Ak, λ) is the expectation value of Ak under the probability distribution
P (ak|Ak, λ) and ¯(

A2
k
)

λ
is the expectation value of A2

k under the probability distribution P (ak|Ak, λ).
The third line is based on the Cauchy–Schwarz inequality u · v ≤ |u| |v|, where we let u =(

. . . gk
¯(Ak)λ . . .

)
and v=(. . . (Bk)λ . . . ). The fourth line comes from ¯(Ak)λ

2 ≤ ¯(
A2

k
)

λ
and

∑n
k=1 〈Bk〉2σλ

≤ maxρ ∑n
k=1 〈Bk〉2ρ. The fifth line is due to the concavity of the function y = x1/2.
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Compared with the bound (Equation (19)) in the linear EPR steering inequality (Equation (18)),
here, the unsteerable bound C′n is simpler to compute and the complexity to obtain ΛA and ΛB increases
linearly with n. However, C′n may not as tight as Cn, i.e., some steerable states may be detectable by
bound Cn but not with bound C′n.

4.2. EPR Steering Inequality Based on Local Uncertainty Relations

For a random variable X = {xi}, the variance is defined as δ2 (X) = X2 − X2, where X2 =

∑i p (xi) x2
i is the mean of the square of X and X2

= (∑i p (xi) xi)
2 is the square of the mean of X.

For any random variable X, δ2 (X) ≥ 0 always holds. In quantum mechanics, the variance describes the
uncertainty of measurement results. For instance, consider the projective measurement M = ∑k mkΠk,
where Πk are projectors and mk are the corresponding outcome. The variance of measurement results
{mi} on a quantum state ρ is in the form of δ2 (M)ρ =

〈
M2〉

ρ
− 〈M〉2ρ, where 〈M〉ρ = tr [Mρ] is the

expectation value of measurement M on ρ and
〈

M2〉
ρ
= tr

[
M2ρ

]
is the expectation value of the square

of measurement M on ρ. In the following, the subscript ρ is omitted for simplicity. The uncertainty
relation can be described as, for a set of measurements {Mi|i = 1, . . . , n}, the sum of variances is
larger than a certain value, i.e., ∑i δ2 (Mi) ≥ CM with CM = minρ ∑i δ2 (Mi)ρ. In a nontrivial case,
where {Mi} has no common eigenvectors, CM is positive, i.e., CM > 0 [67–69].

In the EPR steering test, only Bob’s measurements are assumed to be quantum. Then, the local
uncertainty relations (LUR) on Bob’s side can help to certify EPR steering correlation [23].

Theorem 6 (Steering inequality based on LUR). If the result of an EPR steering test violates the following
inequality

n

∑
k=1

δ2 (αi Ai + Bi) ≥ CB, (42)

where αi are some real numbers and CB = minρ ∑i δ2 (Bi)ρ, then the correlation of the test is EPR steering.
The corresponding quantum state ρAB is EPR steerable, and more precisely, Alice can steer Bob.

Proof. Generally, for any two random variables X and Y, let p (xy) be the joint probability distribution
and p (y|x) = p (xy) /p (x) be the conditioned probability distribution. Then, the variance of Y satisfies

δ2 (Y) = ∑
y

p (y) y2 −
[
∑
y

p (y) y

]2

(43)

= ∑
y,x

p (x) p (y|x) y2 −
[
∑
y,x

p (x) p (y|x) y

]2

(44)

≥∑
x

p (x)

∑
y

p (y|x) y2 −
(

∑
y

p (y|x) y

)2
 (45)

= ∑
x

p (x) δ2 (y)x , (46)

where the third line comes from the concavity of function f (t) = t2 and δ2 (y)x is the variance of Y
under the distribution {p (y|x)}. Now, consider the definition of unsteerable correlation

PLHS (ab|xy) =
∫

dλpλP (a|x, λ) tr
[

Fy
b σλ

]
.
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One has

∑
i

δ2 (αi Ai + Bi) ≥∑
i

∫
dλpλδ2 (αi Ai + Bi)λ (47)

= ∑
i

∫
dλpλ

[
(αi Ai + Bi)

2
λ −

(
αi Ai + Bi

)2
λ

]
(48)

= ∑
i

∫
dλpλ

[
α2

i

(
A2

i − A2
i

)
+
(

B2
i − B2

i

)]
λ

(49)

= ∑
i

∫
dλpλ

[
α2

i δ2 (Ai)λ + δ2 (Bi)σλ

]
(50)

≥∑
i

∫
dλpλ

[
0 + ∑

i
δ2 (Bi)σλ

]
≥ CB, (51)

where trivial results δ2 (Ai)λ > 0 is used.

Here, {αi} are some flexible real variables. For a certain probability distribution {P (akbk|AkBk)}
generated from an EPR steering test, the optimal {αi} can be calculated such that the inequality
from Equation (42) is maximally violated. For each term in Equation (42), δ2 (αi Ai + Bi) =

α2
i δ2 (Ai) + 2αiC (Ai, Bi) + δ2 (Bi) holds where C (Ai, Bi) = 〈AiBi〉 − 〈Ai〉 〈Bi〉 is the covariance.

Therefore, δ2 (αi Ai + Bi) can be seen as a quadratic polynomial of αi, from which the optimal αi
can be obtained, i.e.,

αi =


−C (Ai, Bi) /δ2 (Ai) , if δ2 (Ai) 6= 0;

−δ2 (Bi) /2C (Ai, Bi) , if δ2 (Ai) = 0, C (Ai, Bi) 6= 0;

0, if δ2 (Ai) 6= 0, C (Ai, Bi) = 0.

It is noteworthy that, here, like the case in the linear inequality of Equation (34), the complexity to
compute unsteerable bound CB also increases linearly with the number of measurements n, better than
the case in inequality (Equation (18)), where the complexity increases exponentially with n.

Remark 2. The use of LUR in quantum correlations.
In the case of EPR steering, the inequality from Equation (42) shows that, for unsteerable correlations,

the uncertainty of the total system AB is always larger than that of one subsystem B. This conclusion is
consistent with the definition of LHS models, where only Bob has the quantum description. One property of EPR
steering is, thus, that the uncertainty of the correlated measurement results can be less than the uncertainty of
one subsystem. In this sense, the violation of LUR indicates the amount of quantum correlations.

Furthermore, if quantum entanglement is considered in this fashion, for any separable states σSEP
AB =

∑k pkσA
k ⊗ σB

k , it has been proved that

∑
i

δ2 (Ai + Bi)SEP ≥ CA + CB, (52)

where CA = minρ ∑i δ2 (Ai)ρ [70]. That is, in the case of quantum separable states, where both Alice and Bob
can be described as quantum but classically correlated, the uncertainty of the total system is always larger than
the sum of the local uncertainty relations of all subsystems.

However, for the nonlocality, the probability distribution of LHV models always satisfies

∑
i

δ2 (Ai + Bi) ≥ 0, (53)

which is a trivial result, and no violation can be detected. In fact, formulating a nonlinear form of Bell inequalities
is a difficult problem.
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It is noteworthy that in Reference [43], the violation of the CHSH inequality [62] can be restricted by the
so-called fine-grained uncertainty relations combined by a properly-defined steerability. Such a restriction holds
only when a specific form of the Bell inequalities are selected [44]. Different from the variance-based uncertainties
discussed here or entropies [24], the fine-grained uncertainty relation are described in a linear form of the set of
measurement observables, which can also be used as the certification of EPR steering [25] .

Example 3. Bell diagonal states
Bell diagonal states has the following simple form,

ρc =
1
4

[
I+ ∑

j
cjσj ⊗ σj

]
, (54)

where
{

σj, j = x, y, z
}

is the set of Pauli matrices. In another form, ρc can be written in the diagonal form

ρc = t1
∣∣ψ+

〉 〈
ψ+
∣∣+ t2

∣∣ψ−〉 〈ψ−∣∣+ t3
∣∣φ+

〉 〈
φ+
∣∣+ t4

∣∣φ−〉 〈φ−∣∣ , (55)

where |ψ±〉 = (|00〉 ± |11〉) /
√

2 and |φ±〉 = (|01〉 ± |10〉) /
√

2 are four Bell states and ∑i ti = 1.
If three Pauli matrices are selected as the observables, the linear EPR steering inequality (18) can be

simplified as
∣∣∑i ωi

〈
σA

i ⊗ σB
i
〉∣∣ < √3 with ωi ∈ {±1}. Here, the absolute value and binary ωi suggest

that there are a set of linear inequalities. The violation implies that ρc is steerable if
∣∣cx ± cy ± cz

∣∣ >√
3. Nevertheless, the EPR steering inequalities (42) based on LUR can be optimized as ∑i δ2 (σB

i
)
−

C2 (σA
i , σB

i
)

/δ2 (σA
i
)
> 2, the violation of which implies ∑i c2

i > 1. As a comparison, it can be verified
that, in this example, the inequality based on LUR certifies a larger steerable region of Bell diagonal states than
the linear inequality [23].

4.3. Realignment Method

From the EPR steering inequality based on LUR, the realignment method for certifying
entanglement also works for the EPR steering case. Generally, the realignment criterion [71] or the
computable cross-norm criterion [72] are important techniques to certify bound quantum entanglement,
i.e., entangled states with a positive partial transpose. Mathematically, the realignment is a map on a
quantum state ρAB such that R (ρAB) : ρAB 7→ 〈m| 〈µ| R (ρAB) |n〉 |v〉 = 〈m| 〈n| ρAB |v〉 |µ〉. If ρAB is
separable, then the trace norm of the matrixR (ρ) is not larger than 1.

To obtain the norm of R (ρ), one can seek for the complete set of local orthogonal observables
(LOOs). A complete set of LOOs is a collection of observables {Gk} satisfying G†

k = Gk, tr [GkGl ] = δkl ,
and ∑k G2

k = I. Indeed, {Gk} forms a complete set of orthonormal bases for the corresponding operator
space. Then, a state ρ can be written as ρ = ∑k µkGk, where µk = tr [ρGk]. For example, in the case of
qubits, the identity matrix and three Pauli matrices form a complete set of LOOs, and in the case of
qutrits, the identity matrix and eight Gell-Mann matrices form a complete set of LOOs.

For any bipartite quantum state ρAB, suppose that the maximal dimension of Alice’s Hilbert space
and Bob’s Hilbert space is d. Let the complete sets of LOOs for Alice’s operator space and Bob’s operator
space be

{
G̃A

k
}

and
{

G̃B
k
}

, respectively. Then, ρAB can always be written as ρAB = ∑kl µklG̃A
k ⊗ G̃B

k ,
where µkl = tr

[
ρABG̃A

k ⊗ G̃B
k
]
. The singular value decomposition on the matrix µ = (µkl) yields

µ = SλTT, where λ = diag {λ1, . . . , λd2} is the diagonal matrix with λk ≥ 0, S =
(
sij
)
and T =

(
tij
)

are
two orthogonal matrices, i.e., SST = TTT = I. Take µ = SλTT into the expression of ρAB, and finally,
the Hilbert–Schmidt decomposition of ρAB can be obtained:

ρAB = ∑
k

λkGA
k ⊗ GB

k , (56)

where GA
k = ∑m smkG̃A

m and GB
k = ∑m tmkG̃B

m. It can be verified that
{

GA
k
}

and
{

GB
k
}

are another two
complete sets of LOOs, and λk = tr

[
ρABGA

k ⊗ GB
k
]
.
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In a certifying entanglement, if ρAB is separable, then the realignment [71,72] method
guarantees that

∑
k

λk 6 1. (57)

In certifying EPR steering, a similar result can be concluded [23].

Theorem 7 (Realignment for EPR steering). If ρAB = ∑k λkGA
k ⊗ GB

k satisfies

∑
k

λk >
√

d, (58)

then ρAB is EPR steerable. In this case, Alice can steer Bob and Bob can also steer Alice.

Proof. From the EPR steering inequality based on LUR, for a bipartite quantum state ρAB = ∑k λkGA
k ⊗

GB
k , let Alice’s and Bob’s observables be

{
GA

k
}

and
{

GB
k
}

and gk = −g. The violation of Equation (42)

implies g2d + d− 2g ∑k λk −∑k
(

g
〈

GA
k
〉
−
〈

GB
k
〉)2

< d− 1. A sufficient condition of this inequality
is omitting the quadratic term, i.e., g2d + d − 2g ∑k λk < d − 1. Finally, let g = ∑k λk/d, and the
inequality (58) is concluded.

Different from the linear inequality and the inequality based on LUR, the realignment method
does not require an EPR steering test. For any quantum state ρAB , there is a possibility that one can
know whether this state is EPR steerable or not, regardless of how to certify it in the test. A limitation is
that, as a corollary of the inequality, the realignment method will not perform better than the inequality.

In the entanglement case, where the state is entangled if the value ∑k λk is larger than 1.
Here, this quantity should be larger than

√
d to certify the EPR steerability. Although the realignment

method can certify positive partial transpose (PPT) entanglement, it remains an open question if it
can certify PPT EPR steering, i.e., EPR steerable states with PPT. Note that there have been numerical
results proving the existence of such states [73,74].

5. Summary

In this survey, the basic technique to discuss and certify EPR steering is discussed.
Particularly, the box framework and trust-untrust scenario is adopted. The linear criterion and
local-uncertainty-relation-based criterion are summarized. Both criteria are constructed in an
experimentally friendly manner, i.e., they can be directly applied in real experiments for arbitrary
measurement settings and arbitrary outcomes, with a reduced complexity to obtain the unsteerable
bound. Moreover, an analytical method for the optimization of EPR steering detection is also
maintained. Furthermore, from these criteria, LUR are shown to play an important role in the
correlation exhibition of quantum bipartite systems.

There have also been other useful criteria, as has been listed in Section 1. Most of them are
formulated in the same fashion as introduced in this survey. Therefore, the discussed techniques
to find a computable unsteerable bound and optimal observables can be directly applied. There
still remains an open problem of how much entanglement is sufficient for EPR steering and how
much EPR steering is sufficient for nonlocality. Solving this problem would technically advance
the realization of nonlocality-based quantum protocols and finally contributes to the application of
quantum information technologies.
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