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Abstract: Rolling bearings act as key parts in many items of mechanical equipment and any abnor-
mality will affect the normal operation of the entire apparatus. To diagnose the faults of rolling
bearings effectively, a novel fault identification method is proposed by merging variational mode
decomposition (VMD), average refined composite multiscale dispersion entropy (ARCMDE) and
support vector machine (SVM) optimized by multistrategy enhanced swarm optimization in this
paper. Firstly, the vibration signals are decomposed into different series of intrinsic mode functions
(IMFs) based on VMD with the center frequency observation method. Subsequently, the proposed
ARCMDE, fusing the superiorities of DE and average refined composite multiscale procedure, is
employed to enhance the ability of the multiscale fault-feature extraction from the IMFs. Afterwards,
grey wolf optimization (GWO), enhanced by multistrategy including levy flight, cosine factor and
polynomial mutation strategies (LCPGWO), is proposed to optimize the penalty factor C and kernel
parameter g of SVM. Then, the optimized SVM model is trained to identify the fault type of samples
based on features extracted by ARCMDE. Finally, the application experiment and contrastive analysis
verify the effectiveness of the proposed VMD-ARCMDE-LCPGWO-SVM method.

Keywords: fault identification; variational mode decomposition; average refined composite mul-
tiscale dispersion entropy; multistrategy enhanced swarm optimization algorithm; support vector
machine

1. Introduction

The operating conditions of industrial equipment are complicated, and rolling bearings
are widely employed in the types of machinery that play important roles in industrial
systems, such as coal, petrochemical, electric power and other industries [1,2]. Rolling
bearings will inevitably cause damage to different degrees when running for a long time.
What is worse, a fault in the rolling bearings may result in mechanical failure, causing
economic loss and personal injury, and even inducing catastrophic accidents. However,
monitoring the health condition of the rolling bearings through appropriate indicators
and providing information can greatly reduce the occurrence of failures, and avoid major
accidents [3,4].

Generally, once the rolling bearings fail, it is accompanied by vibration and sound.
Therefore, using appropriate technology to process the collected vibration or acoustic
signals could well detect potential failures [5–7]. Feature extraction is a committed step
in identifying rolling bearing faults, but the vibration signals present nonlinear and non-
stationary characteristics resulting in a limitation in the ability of feature extraction. Since
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signals are generally affected by noise information, an excellent signal processing method
is necessary to eliminate the negative effects of these interferences [8–10]. Therefore, var-
ious time-frequency signal analysis approaches have been widely employed to extract
the features in the fault identification of rolling bearings, including empirical mode de-
composition (EMD) [11,12], local mean decomposition (LMD) [13], ensemble empirical
mode decomposition (EEMD) [14] and variational mode decomposition (VMD) [15,16].
Many scholars have conducted much research into these methods: EMD is efficient for
dealing with nonstationary signals, decomposing complex signals into a series of intrinsic
mode functions (IMFs) adaptively, while endpoint effect defects remain. Compared to
EMD, LMD has advantages in reducing iteration times and suppressing endpoint effect,
which can adaptively decompose signal into a sum of subcomponents [17]. Nevertheless,
LMD is complex in calculation and susceptible to sampling frequency, which affects the
decomposition errors. To overcome these limitations, EEMD adds a set of white noise
to help analyze the original signal [18]. However, the result impairs the purity of the
original signal in the feature extraction process. In contrast to the above methods, VMD
has excellent performance in signal processing, which avoids the mode mixing problem
in EMD, the influence of sampling frequency in LMD and noise effect in EEMD. Further-
more, the capability and advancement of VMD has already been confirmed by preceding
studies in engineering applications [19]. Thus, VMD was employed to decompose the
nonstationary fault signals here, which laid the foundation for fault pattern recognition in
rolling bearings.

It is key to extract fault features from the vibration signals in order to realize machinery
equipment fault identification [20,21]. On account of nonstationary signals being decom-
posed by VMD, fault feature extraction would be successful and effective in this study.
Entropy is a physical quantity, representing the regularity and complexity of a system
which can reflect the nonlinear characteristics of a vibration signal. For example, permuta-
tion entropy (PE) [22], sample entropy (SampEn) [23] and fuzzy entropy (FE) [24,25] are
all familiar entropies in the feature extraction of rolling bearing fault identification. The
PE concept computes simply and quickly, but the disparity between the signal amplitude
values is not adequately taken into account [26]. However, dispersion entropy (DE) [27,28]
has the advantages of less influence by mutation signals, which can solve the shortages of
slowing the calculation in SampEn and FE. Nevertheless, DE does not take into account
sufficiently the relationship information between neighboring amplitudes. Meanwhile, DE
is adept in analyzing time series at a single scale, but it may ignore the hidden valuable
fault information at other scales. To overcome the drawbacks, previous researchers have
made improvements, for example, GRCMMFDE was proposed by Zheng et al. [20] to
extract fault features. In this paper, a modified DE, namely average refined composite
multiscale dispersion entropy (ARCMDE) is put forward, which can not only preserve the
original data effectively, but also enhance the ability of multiscale fault feature extraction
of the IMFs by fusing average refined composite multiscale procedures.

It is virtually a pattern recognition issue for identifying rolling bearing faults. There-
fore, many pattern recognition methods have been employed in various engineering
application problems. For instance, artificial neural network (ANN) [29,30], Bayesian
decision [31] and support vector machine (SVM) [32] have been employed in identifica-
tion issues. Among the above methods, ANN has a strong capacity to deal with pattern
recognition problems, while it requires abundant samples and is time-consuming to adjust
the network structure parameters. Bayesian decision performs with notable capacity by
considering prior probability, yet good accuracy is premised on a prior model with ap-
propriate assumptions. Compared with above methods, SVM requires a small number
of samples for training, and has good generalization ability. What is more, it has par-
ticular advantages in dealing with nonlinear and multidimensional pattern recognition
problems [33]. It can satisfy the classification performance by means of finding an optimal
hyperplane. Meanwhile, SVM has been applied for pattern recognition combining with
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feature extraction in rolling bearing fault identification. Therefore, SVM is explored to
implement fault identification here.

The SVM model is easily affected by penalty factor C and kernel parameter g when
performing pattern recognition. To address this issue, many optimization algorithms
have been used to optimize the SVM model, for instance, Harris hawks optimization
(HHO) [34,35], whale optimization algorithm (WOA) [36], particle swarm optimization
(PSO) [37], moth−flame optimization (MFO) [38], differential evolution (DE) [39], sine
cosine algorithm (SCA) [40] and grey wolf optimization (GWO) [41]. Although these
intelligent optimization algorithms have achieved some favorable results, there are still
problems of premature convergence of different degrees. In order to improve convergence
precision, an enhanced GWO algorithm (LCPGWO) coupled with levy flight [42], cosine
factor and polynomial mutation [43] is proposed in this paper. Compared with PSO, GWO,
SCA, WOA, MFO and DE algorithms on 12 well-known benchmark functions, the results
show that the LCPGWO has greater advantages in finding the optimal solution, which is
employed to optimize the penalty factor C and kernel parameter g of SVM in this study.

In conclusion, firstly, the nonstationary original vibration signals were decomposed
into several IMFs by means of VMD. Afterwards, ARCMDE was proposed to construct the
feature vectors of different fault samples. Subsequently, the LCPGWO was explored to op-
timize the SVM model, which was employed to carry out the classification of different fault
samples. Lastly, VMD-ARCMDE-LCPGWO-SVM method was applied to compare with
other methods in terms of different locations and the motor speeds of rolling bearing faults.
The performance of the proposed method was proved to be perfect for the engineering
application problem. This study has the following contributions:

(1) Average refined composite multiscale dispersion entropy (ARCMDE) was proposed
to enhance the ability of fault feature extraction.

(2) A novel multistrategy enhanced swarm optimizer (LCPGWO) was proposed to cali-
brate the parameters of SVM, which made it an excellent fault identification model.

(3) The effectiveness of LCPGWO was verified by performance analysis with 12 well-
known benchmark functions.

(4) The superiority of the proposed fault identification method was ascertained by engi-
neering experiment and comparative analysis.

The rest of this paper is arranged like this. Section 2 contributes to the fundamental
theories about VMD and SVM. The proposed fault identification method according to
ARCMDE and LCPGWO optimization approach is presented in Section 3. Section 4 is
devoted to demonstrate the superiority of the proposed method in engineering application.
The conclusions are in Section 5.

2. Fundamental Theories
2.1. Variational Mode Decomposition

VMD is a nonrecursive signal preprocessing, which can adaptively decompose the
nonstationary signal into K band-limited intrinsic mode functions (IMFs) by setting the
mode number K previously. The core of the VMD method is employed to construct and
solve variational problems, which is established below:

min
mk ,ωk

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗mk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
mk(t) = f (t), k = 1, 2, . . . , K

(1)

where mk = {m1, m2, . . . , mk} and ωk = {ω1, ω2, . . . , ωk} represent the set of K mode
functions and central frequencies, respectively. The ∂t is the partial derivative of time t,
δ(t) is the unit pulse function and f (t) is the input signal of the given real value.
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The above variational problem can transform into an unconstrained problem, which
can be expressed as:

L(mk, ωk, β) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗mk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ f (t)−∑

k
mk(t)

∥∥∥∥2

2
+

〈
β(t), f (t)−∑

k
mk(t)

〉 (2)

where α represents the penalty factor and β(t) is the Lagrange multiplier [44].
Then mk and ωk can be optimized by Equations (3) and (4), respectively.

mn+1
k = min

α

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗mk(t)

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−∑
i

mi(t) +
β(t)

2

∥∥∥∥∥
2

2

 (3)

ωn+1
k = min

{∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗mk(t)

]
e−jωkt

∥∥∥∥2

2

}
(4)

The iterative equations in frequency domain are derived as follows:

m̂n+1
k (ω) =

f̂ (ω)−∑i 6=k m̂i(ω) + β̂(ω)
2

1 + 2α(ω−ωk)
2 (5)

ωn+1
k =

∫ ∞
0 ω|m̂k(ω)|2dω∫ ∞

0 |m̂k(ω)|2dω
(6)

The Lagrange multipliers are expressed in Equation (7).

β̂n+1(ω) = β̂n(ω) + γ1( f (ω)−∑
k

m̂n+1
k (ω)) (7)

where γ1 represents an updating parameter.
The processes of VMD are the following:

Step 1: Initialize mk
1, ωk

1, β1, n = 1;
Step 2: Start loop, n = n + 1;
Step 3: Update mk and ωk on the basis of Equations (5) and (6);
Step 4: Update β according to Equation (7);

Step 5: If ∑
k

∥∥∥m̂n+1
k − m̂n

k

∥∥∥2

2
/
∥∥m̂n

k

∥∥2
2 < ε, stop the loop, else turn to Step 2 for next

iteration.

2.2. Support Vector Machine

SVM is designed for the two-classification issue, which can solve learning problems
with limited samples. For a given sample set {(xi, yi)|i = 1, 2, . . . , n}, it maps the sample
space to higher dimensions, and then a hyperplane is constructed, which can transform the
nonlinear problem of the sample space into the linear problem of the feature space to solve.
The hyperplane function is defined as follow:

v·x + b = 0 (8)

where v and b are weight vector and bias parameter, respectively. Equation v·x is the
inner product.
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For example, in order to correctly identify samples of a binary classification issue, all
samples demand the following conditions:

v·xi + b

{
> 1 f or yi = 1

< −1 f or yi = −1
(9)

The maximizing classification interval is 2/‖v‖2, which is obtained by minimizing
‖v‖2. Then the slack term ξ and penalty factor C are brought into Equation (9) to solve the
linear indivisibility problem of SVM model.

min f = 1
2‖w‖

2 + C
n
∑

i=1
ξi

s.t. yi(
→
v

T
·xi + b) ≥ 1− ξi, i = 1, 2, . . . , n

(10)

Lagrange function is introduced in Equation (10), which can be described as:

maxL =
n
∑

i=1
µi − 1

2

n
∑

i,j=1
µiµjyiyjK(xi, xj)

s.t.
n
∑

i=1
µiyi = 0, µi ≥ 0, i = 1, 2, . . . , n

(11)

where µi means the Lagrange multiplier, K(xi, xj) is the kernel function of SVM.
In this paper, the radial basis function (RBF) is selected as the kernel function of SVM.

Solving the dual problem of Equation (11), the optimal classification discriminant function
with RBF is defined as:

f (x) = sgn(
n

∑
i=1

µiK(xi, x) + b) (12)

Among them, RBF function is represented as:

K(xi, xj) = φ(xi)·φ(xj) = exp(−g
∣∣∣∣xi − xj

∣∣∣∣2) (13)

where g represents the kernel parameter, φ(x) is the nonlinear vector function.

3. Intelligent Fault Identification for Rolling Bearings Fusing the Proposed Method
3.1. Average Refined Composite Multiscale Dispersion Entropy
3.1.1. Dispersion Entropy

For a given time series r = {ri, i = 1, 2, · · ·N}, which length is N. ri is normalized by
mean of employing a mapping function [27].

yi =
1

σ
√

2π

∫ ri

−∞
e
−(s−µ)2

2σ2 ds (14)

where σ represents the variance of the normal distribution and µ represents the expectation
value. The time series r is normalized to y = {y1, y2, · · · yn}, yi ∈ (0, 1). Subsequently, the
phase space is reconstructed into a matrix for y:

ym
j = [yj, yj+td , . . . , yj+(m−1)td

] (15)

where j = 1, 2, · · · , N − (m − 1)td, m is embedding dimension, td is time delay, ym
j is

mapped to the scope [1, c]:
zc

i = round(c·yi + 0.5) (16)

zm,c
j = [zc

j , zc
j+td

, . . . , zc
j+(m−1)td

] (17)
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where zc
j represents the j-th member of class sequence zm,c

j , and round is rounding. Each zm,c
j

corresponds to a dispersion pattern πv0v1 ...vm−1 with zc
j = v0, zc

j+d = v1, . . . , zc
j+(m−1)τ =

vm−1.
The frequency of πv0v1 ...vm−1 can be deduced as:

p =
Number

{
j
∣∣j ≤ N − (m− 1)td, πv0v1 ...vm−1

}
N − (m− 1)td

(18)

where Number
{

j
∣∣j ≤ n− (m− 1)td, πv0v1 ...vm−1

}
is the emergence number of each πv0v1 ...vm−1

that corresponding to zm,c
j :

The dispersion entropy is defined as:

DE(r, m, c, td) = −
cm

∑
π=1

p· ln(p) (19)

There is a linear negative correlation between DE value and time series. The larger the
DE value, the more irregular the time series.

3.1.2. Average Refined Composite Multiscale Dispersion Entropy

As a single scale method, DE may result, in that much useful and significant in-
formation hides in multiple scales, which would limit the representation precision of
nonstationary fault signals. To solve the disadvantage, average refined composite multi-
scale dispersion entropy (ARCMDE) is proposed, which is utilized to extract multiscale
fault features from IMFs. Given time series r = {ri, i = 1, 2, · · ·N} with length N, the k-th
composite multiscale coarse-grained sequence u(τ)

k =
{

u(τ)
k,1 , x(τ)k,2 , · · ·

}
is defined as:

u(τ)
k,j =

1
τ

k+jτ−1

∑
i=k+(j−1)τ

ui, 1 ≤ j ≤
∣∣∣∣N

τ

∣∣∣∣, 1 ≤ k ≤ τ (20)

where τ is scale factor.
For each scale factor, refined composite multiscale dispersion entropy (RCMDE) is

expressed in Equation (21).

RCMDE(u, m, c, td, τ) = −
cm

∑
π=1

p(πv0v1···vm−1)· ln(p(πv0v1···vm−1))

p(πv0v1···vm−1) =
1
τ

τ

∑
k−1

p(τ)k

(21)

where p(πv0v1···vm−1) is mean probability of the dispersion pattern π of coarse-grained

sequence r(τ)k .
Finally, ARCMDE is expressed as average value of all RCMDE in the scale τ, such that:

ARCMDE(r, m, c, td, τ) =
1
τ

τ

∑
k=1

RCMDE(u, m, c, td, τ) (22)

3.2. GWO Coupled with Multiple Enhancement Strategies
3.2.1. Grey Wolf Optimization

Grey wolves are in a dominant position in the competitive natural environment
which have a strict social hierarchy and ingenious cooperative predation. According to the
behavior of grey wolves when they hunt, GWO is proposed to solve optimization problems,
where the grey wolves are graded into four levels [45]. The first level, called α wolf, may
not be the strongest wolf, but it is the best manager in the system and responsible for
overall planning. The β wolf on the second level is the best substitute for the α wolf. The δ
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wolf on the third level acts as the suboptimal solution. The ω wolf is the candidate solution
at the bottom and is responsible for balancing the internal relations of the wolf population.

The mathematical expression of grey wolves’ predation can be expressed as follows:

D =
∣∣C·Xp(t)− X(t)

∣∣ (23)

X(t + 1) = Xp(t)− A·D (24)

where D represents the distance between the wolf and the prey, X and Xp denote the
position of the grey wolf and prey, respectively, t is current iterations time.

The coefficient vectors A in Equation (23) and C in Equation (24) are expressed as
follows:

A = 2a·h1 − a (25)

C = 2·h2 (26)

a = 2− t ∗ 2
max

(27)

where a is convergence factor, which decreases linearly from 2 to 0, h1 and h2 are random
vectors in [0, 1], max is the maximum number of iterations.

In GWO algorithm, α, β and δ wolves to approach and surround the prey when the
prey is identified by the grey wolves. Therefore, the position of the prey can be determined
by the position of the grey wolves. The mathematical model for updating the position of
each wolf is as follows: 

Dα = |C1·Xα(t)− X(t)|

Dβ =
∣∣C2·Xβ(t)− X(t)

∣∣
Dδ = |C3·Xδ(t)− X(t)|

(28)


X1 = Xα − A1·Dα

X2 = Xβ − A2·Dβ

X3 = Xδ − A3·Dδ

(29)

where Dα, Dβ and Dδ represent distances of α, β and δ wolves from other individuals
respectively, X1, X2 and X3 denote the current position of α, β and δ wolves respectively.

The positional relationship between the grey wolf individual ω and the prey can be
determined as follows:

X(t + 1) =
X1 + X2 + X3

3
(30)

If |A| < 1, the wolves will attack the prey; otherwise, the wolves will search for the
prey. To sum up, the pseudocode of GWO algorithm is shown in Algorithm 1.

Algorithm 1. The algorithm pseudocode of GWO.

1. Initialize grey wolf population Xi(i = 1, 2, 3 · · · , n)
2. Initialize the parameters a, A and C
3. Evaluate the fitness of each wolf
4. Assign the best three grey wolves to Xα, Xβ, Xδ

5. while t < max iteration
6. for each search agent
7. Update the position of current grey wolves by Equation (30)
8. end for
9. Update a, A and C
10. Evaluate the fitness of each wolf
11. Update Xα, Xβ, Xδ

12. t = t + 1
13. end while
14. return Xα
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3.2.2. Grey Wolf Optimization Coupled with Multiple Enhancement Strategies

GWO is slow in convergence speed, resulting in an easy fall into local optimum in the
later iteration. In this section, the improved GWO coupled with multiple enhancement
strategies (LCPGWO) is explored to solve the shortcomings of GWO, which can improve
the ability of global search, accelerate convergence and enhance the capacity for prevent-
ing local optimum during the later iteration. The realization processes of LCPGWO are
described below in detail.

As shown in Equation (25), parameter a influences the change of coefficient vectors
A, which coordinates the local and global explorations. The larger a is, the stronger the
global exploration ability; the smaller a is, the stronger the local exploration ability. To
promote the adaptation during both local and global explorations, the linearly decreasing a
in Equation (27) is substituted with cosine factor as shown in Equation (31). Thus, a is large
and reduces slowly for global exploration in the early iteration stage, while it will reduce
rapidly for the local search in the later iteration stage.

a = 2· cos(
π

2
· t
max

) (31)

Additionally, inertial weight based on cosine factor is introduced in this paper to
enhance the global exploration, which can be seen in Equation (32).

W = 2· cos(
π

2
· t
max

)− 1 (32)

With inertial weight, the positions of α, β and δ wolves are reformulated in Equa-
tion (33). 

X1 = Xα −W·A1·Dα

X2 = Xβ −W·A2·Dβ

X3 = Xδ −W·A3·Dδ

(33)

In iterative process, it falls into local optimum easily when the ω wolf approaches the
other three wolves. By introducing inertial weight [46], the positional relationship between
the grey wolf individual ω and the prey can be redefined as follows:

X(t + 1) =
W1·X1 + W2·X2 + W3·X3

3
(34)


W1 = |X1|

|X1|+|X2|+|X3|

W2 = |X2|
|X1|+|X2|+|X3|

W3 = |X3|
|X1|+|X2|+|X3|

(35)

where W1, W2 and W3 represent the learning rate of ω to α, β and δ wolves, respectively.
In this paper, α wolf is searched globally by levy flight strategy for preventing local

optimum, where the flight step is stable expansion distribution. The next generation of α
wolf is calculated as follows:

X(t + 1) = X(t) + d⊕ Levy(θ) (36)

where X(t) is position of α wolf at t-th iteration, operator ⊕ is entry-wise multiplications, d
and Levy(θ) are random numbers and step of α wolf respectively, which are determined by
Equations (37) and (38).

d = d0·(X(t)− Xα(t)) (37)

Levy(θ) ∼ u = t−1−θ (38)
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where d0 is a constant, θ is levy index, a random number between 0 and 2, whose value is
set at 1.5 here, the flight step of α wolf is a power-law formula.

A more detailed description about levy flight can be summarized as Equation (39).

d⊕ Levy(θ) ∼ 0.01
u

|v|
1
θ

(X(t)− Xα(t)) (39)

where s and v are both normal distributions:{
s ∼ N(0, σ2

s )

v ∼ N(0, σ2
v )

(40)

σs =

{
γ(1 + θ) sin(πθ/2)

γθ[(1 + θ)/2]2(θ−1)/2

}1/θ

, σv = 1 (41)

where parameter γ is the standard gamma function.
In swarm intelligence optimization algorithm, it traps in local optimum easily. For

this purpose, a polynomial mutation operator for GWO is introduced in this section to
promote the exploring ability within the whole situation space, thus to avoid from trapping
in local optimum as well as maintain the diversity of solution in the later iteration stage.
The mathematical formula of the polynomial mutation is written in Equation (42).

X(t + 1) = X(t) + ξ(uk − lk) (42)

where X(t) is the original optimal individual position, X(t + 1) is the mutated optimal
individual position, uk represents the upper limit of the position and lk is the lower limit of
the position.

The parameter ξ is calculated as follows:

ξ =


[2u + (1− 2s)(1− ξ1)

η+1]
1

η+1 − 1, s ≤ 0.5

1− [2(1− s) + 2(s− 0.5)(1− ξ2)
η+1]

1
η+1 , s > 0.5

(43)

where parameter s is a random number in [0, 1], η is also [0, 1].
The parameters ξ1 and ξ2 are deduced in Equation (44).{

ξ1 = (X(t)− lk)/(uk − lk)

ξ2 = (uk − X(t))/(uk − lk)
(44)

To sum up, the pseudocode of LCPGWO algorithm is displayed in Algorithm 2.

Algorithm 2. The algorithm pseudocode of LCPGWO.

1. Initialize grey wolf population Xi(i = 1, 2, 3 · · · , n)
2. Initialize the parameters a by Equation (31), and initialize A and C
3. Evaluate the fitness of each wolf
4. Assign the best three grey wolves to Xα, Xβ, Xδ

5. while t < max iteration
6. for each search agent
7. Update the position of current grey wolves by Equation (34)
8. Calculate the new positions of grew wolves employing the levy flight and polynomial

mutation by Equations (36) and (42)
9. end for
10. Update a, A and C
11. Evaluate the fitness of each wolf
12. Update Xα, Xβ, Xδ

13. t = t + 1
14. end while
15. return Xα
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3.2.3. Experimental Study and Results Analysis
Benchmark Functions

To prove the effectiveness of the proposed LCPGWO algorithm, six well-known
nature-inspired optimization algorithms, including PSO, GWO, SCA, WOA, MFO and
DE were applied for comparison. Meanwhile, 12 benchmark functions were selected for
optimization experiments as listed in Table 1 and divided into two categories, where F1-F7
were unimodal functions and F8-F12 were multimodal functions [47–49]. In Table 1, Fmin
was the minimum value of each benchmark function. The unimodal functions were mainly
employed to test the convergence rate of the algorithms, while the multimodal functions
were carried out to test the global exploration ability of the algorithms.

Table 1. Overview of 12 benchmark functions.

No. Function Range Fmin

1 F1(x) =
n
∑

i=1
x2

i [−100, 100] 0

2 F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10] 0

3 F3(x) =
n
∑

i=1
(

i
∑

j=1
xj)

2
[−100, 100] 0

4 F4(x) = max(|xi|, 1 ≤ i ≤ n) [−100, 100] 0

5 F5(x) =
n−1
∑

i=1

[
100(xi+1 − x2

i )
2
+ (xi − 1)2

]
[−30, 30] 0

6 F6(x) =
n
∑

i=1
ix2

i [−10, 10] 0

7 F7(x) =
n
∑

i=1
(106)

(i−1)/(n−1)x2
i [−100, 100] 0

8 F8(x) = −20e(−0.2

√
1
n

n
∑

i=1
x2

i )− e( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e [−32, 32] 0

9 F9(x) = 1
4000

n
∑

i=1
x2

i +
n
∏
i=1

cos( xi√
i
) + 1 [−100, 100] 0

10 F10(x) =
n
∑

i=1
(x2

i − 10 cos(2πxi)) + 10n [−5.12, 5.12] 0

11 F11(x) =
n
∑

i=1
|xi sin(xi) + 0.1xi| [−10, 10] 0

12

F12(x) = p
n

{
10sin(py1) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(pyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 u(xi, a, m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

[−50, 50] 0

Comparison and Analysis with Different Algorithms

The experiment was on a personal computer, which was equipped with Windows 10
system and an Intel(R) Core (TM) CPU at 2.89 GHz and 4 GB memory. The simulation
software was MATLAB R2016a.

Each benchmark function was run 10 times independently to obtain an objective
result. The iteration number and searching agents in the experiment were set at 200 and 40,
respectively. The detailed parameter settings are shown in Table 2. During iterations of
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all algorithms, the optimal fitness values were recorded every time. The average fitness
values were obtained to draw a curve reflecting the convergence trend of the algorithms.
The convergence curves of PSO, GWO, SCA, WOA, MFO, DE and LCPGWO algorithms
on the 12 well-known benchmark functions are listed in Figure 1. At the same time, the
maximum value, minimum value, mean values and standard deviations of the optimal
solution obtained by all algorithms are displayed in Table 3, where a lower value means
better search ability and stability.
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Table 2. Parameter settings of different optimization algorithms.

Models Parameter Determination
Approach

Range Determined
Value

PSO
iteration number preset 200
searching agents preset 40

dimensions preset 30

GWO
iteration number preset 200
searching agents preset 40

dimensions preset 30

SCA
iteration number preset 200
searching agents preset 40

dimensions preset 30

WOA
iteration number preset 200
searching agents preset 40

dimensions preset 30

MFO
iteration number preset 200
searching agents preset 40

dimensions preset 30

DE
iteration number preset 200
searching agents preset 40

dimensions preset 30

LCPGWO
iteration number preset 200
searching agents preset 40

dimensions preset 30

Table 3. The comparison results of the seven algorithms on benchmark functions.

Function PSO GWO SCA WOA MFO DE LCPGWO

F1

Max 2.19 × 10−1 1.69 × 10−9 1.21 × 103 9.99 × 10−6 1.86 × 103 6.17 × 101 1.29 × 10−181

Min 2.14 × 10−2 6.60 × 10−11 4.32 × 101 3.71 × 10−7 4.87 × 102 2.28 × 101 6.51 × 10−183

Mean 1.17 × 10−1 3.62 × 10−10 4.33 × 102 3.12 × 10−6 1.14 × 103 3.46 × 101 3.04 × 10−182

Std 6.24 × 10−2 4.87 × 10−10 4.43 × 102 3.07 × 10−6 4.22 × 102 1.18 × 101 0.00

F2

Max 2.22 × 100 1.34 × 10−6 3.79 × 100 1.28 × 10−4 5.33 × 101 2.22 × 100 1.82 × 10−83

Min 4.04 × 10−1 7.07 × 10−7 2.46 × 10−1 2.19 × 10−5 1.03 × 101 1.52 × 100 1.20 × 10−84

Mean 9.68 × 10−1 9.95 × 10−7 1.42 × 100 4.85 × 10−5 2.99 × 101 1.75 × 100 7.58 × 10−84

Std 5.24 × 10−1 1.88 × 10−7 1.07 × 100 3.25 × 10−5 1.39 × 101 2.10 × 10−1 5.04 × 10−84

F3

Max 5.36 × 102 5.26 × 100 3.16 × 104 1.03 × 102 4.52 × 104 4.83 × 104 1.01 × 10−180

Min 2.45 × 102 3.78 × 10−2 4.76 × 103 2.36 × 100 1.47 × 104 3.31 × 104 1.34 × 10−182

Mean 3.48 × 102 1.63 × 100 1.70 × 104 3.51 × 101 2.50 × 104 4.28 × 104 2.42 × 10−181

Std 1.02 × 102 1.68 × 100 7.81 × 103 3.39 × 101 9.84 × 103 4.83 × 103 0.00

F4

Max 2.75 × 100 5.87 × 10−2 6.53 × 101 8.65 × 10−1 8.06 × 101 4.08 × 101 8.75 × 10−97

Min 1.88 × 100 5.03 × 10−3 2.88 × 101 1.11 × 10−1 5.16 × 101 3.49 × 101 2.56 × 10−97

Mean 2.10 × 100 1.80 × 10−2 5.27 × 101 3.37 × 10−1 6.50 × 101 3.79 × 101 5.05 × 10−97

Std 2.58 × 10−1 1.77 × 10−2 1.32 × 101 2.68 × 10−1 9.07 × 100 1.98 × 100 2.11 × 10−97

F5

Max 5.11 × 102 2.88 × 101 1.38 × 107 2.86 × 101 1.20 × 106 1.05 × 104 2.24 × 101

Min 6.75 × 101 2.62 × 101 5.75 × 104 2.61 × 101 1.02 × 105 3.57 × 103 1.00 × 101

Mean 1.86 × 102 2.76 × 101 2.86 × 106 2.75 × 101 5.73 × 105 6.52 × 103 1.67 × 101

Std 1.33 × 102 9.23 × 10−1 4.50 × 106 8.08 × 10−1 3.68 × 105 2.24 × 103 4.11 × 100

F6

Max 7.95 × 100 2.33 × 10−10 1.47 × 102 7.43 × 10−6 1.95 × 103 6.83 × 100 1.30 × 10−188

Min 5.82 × 10−1 9.51 × 10−12 3.23 × 100 1.64 × 10−8 8.74 × 101 3.47 × 100 1.22 × 10−189

Mean 1.77 × 100 7.16 × 10−11 5.54 × 101 1.17 × 10−6 6.96 × 102 4.72 × 100 6.08 × 10−189

Std 2.19 × 100 6.86 × 10−11 4.91 × 101 2.26 × 10−6 5.81 × 102 9.98 × 10−1 0.00

F7

Max 4.26 × 104 8.55 × 10−7 3.90 × 105 1.15 × 10−2 1.54 × 108 8.14 × 104 3.81 × 10−166

Min 1.16 × 103 1.80 × 10−7 4.57 × 103 6.78 × 10−4 1.42 × 106 3.80 × 1044 1.25 × 10−167

Mean 7.97 × 103 5.56 × 10−7 1.09 × 105 4.09 × 10−3 2.93 × 107 6.39 × 104 1.49 × 10−166

Std 1.26 × 104 2.28 × 10−7 1.11 × 105 3.72 × 10−3 4.52 × 107 1.56 × 104 0.00
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Table 3. Cont.

Function PSO GWO SCA WOA MFO DE LCPGWO

F8

Max 1.66 × 100 4.62 × 10−6 2.04 × 101 2.04 × 101 1.99 × 101 3.75 × 100 7.99 × 10−15

Min 1.75 × 10−1 1.57 × 10−6 3.45 × 100 4.58 × 10−5 7.53 × 100 2.95 × 100 4.44 × 10−15

Mean 1.12 × 100 3.36 × 10−6 1.34 × 101 6.07 × 100 1.50 × 101 3.38 × 100 6.57 × 10−15

Std 4.63 × 10−1 1.03 × 10−6 7.40 × 100 9.78 × 100 5.24 × 100 2.46 × 10−1 1.83 × 10−15

F9

Max 4.96 × 10−2 7.78 × 10−2 2.06 × 100 2.77 × 10−2 1.55 × 100 9.73 × 10−1 0.00
Min 5.88 × 10−3 2.21 × 10−12 8.26 × 10−1 3.56 × 10−8 1.11 × 100 7.73 × 10−1 0.00

Mean 1.94 × 10−2 1.08 × 10−2 1.13 × 100 9.18 × 10−3 1.29 × 100 8.71 × 10−1 0.00
Std 1.22 × 10−2 2.44 × 10−2 3.65 × 10−1 1.06 × 10−2 1.21 × 10−1 6.18 × 10−2 0.00

F10

Max 1.63 × 102 3.02 × 101 1.61 × 102 4.41 × 101 2.55 × 102 1.44 × 102 0.00
Min 6.25 × 101 6.38 × 100 2.92 × 101 8.63 × 100 1.17 × 102 1.22 × 102 0.00

Mean 9.41 × 101 1.60 × 101 6.56 × 101 2.09 × 101 1.76 × 102 1.32 × 102 0.00
Std 3.17 × 101 7.64 × 100 3.79 × 101 1.14 × 101 4.04 × 101 7.99 × 100 0.00

F11

Max 2.76 × 100 5.67 × 10−3 1.18 × 101 2.36 × 100 1.63 × 101 9.46 × 100 2.54 × 10−2

Min 6.25 × 10−1 2.34 × 10−3 3.03 × 10−1 2.40 × 10−3 4.10 × 100 6.46 × 100 7.47 × 10−69

Mean 1.55 × 100 3.58 × 10−3 4.85 × 100 5.15 × 10−1 9.40 × 100 7.99 × 100 2.54 × 10−3

Std 7.38 × 10−1 1.11 × 10−3 4.44 × 100 7.79 × 10−1 4.08 × 100 1.09 × 100 8.03 × 10−3

F12

Max −4.61 × 102 −5.78 × 102 −4.86 × 102 −7.67 × 102 −9.95 × 102 −1.04 × 103 −1.06 × 103

Min −9.78 × 102 −7.16 × 102 −5.88 × 102 −8.71 × 102 −1.06 × 103 −1.06 × 103 −1.06 × 103

Mean −6.96 × 102 −6.39 × 102 −5.29 × 102 −8.24 × 102 −1.05 × 103 −1.06 × 103 −1.06 × 103

Std 1.39 × 102 4.53 × 101 3.40 × 101 3.36 × 101 2.14 × 101 7.94 × 100 2.40 × 10−13

From Figure 1, it was observed that the proposed LCPGWO algorithm converged
better than PSO, GWO, SCA, WOA, MFO, DE algorithms for all F1−F12, indicating that
the proposed LCPGWO algorithm was able to prevent local optimum and converge to
the optimal value at a faster speed. From Table 3, it can be concluded that the proposed
LCPGWO algorithm achieved the lowest value in the maximum value, minimum value,
mean value and standard deviation for both unimodal and multimodal functions. In
particular, the results of the LCPGWO algorithm were superior to PSO, GWO, SCA, WOA,
MFO, DE algorithms, especially on functions F6, F8, F9 and F10. On the whole, the
proposed LCPGWO algorithm is more effective and feasible than contrastive methods.

3.3. SVM Optimized by LCPGWO

In order to obtain a good generalization performance in dealing with fault identifi-
cation issues, it is necessary to assign appropriate parameters C and g of SVM. Thus, the
proposed LCPGWO was used to optimize SVM model. The main procedures of classifi-
cation machine learning with SVM optimized by the proposed LCPGWO algorithm are
in below:

Step 1: Initialize the population and set relevant parameters;
Step 2: Update individual’s status according to Equations (36) and (42);
Step 3: Calculate the fitness value, which is the cross-validation accuracy of SVM;
Step 4: Update individual’s new position;
Step 5: Repeat Steps 2–4 until the maximum time of iterations is reached or the

convergence condition is met;
Step 6: Choose the maximal cross-validation accuracy as the optimal parameters C

and g of SVM;
Step 7: Train the optimal SVM model according to the training set;
Step 8: Recognize the testing set and finish the identification.

3.4. Intelligent Fault Identification for Rolling Bearings Fusing the Proposed Method

A novel fault identification method is proposed according to VMD, ARCMDE as the
feature extraction and SVM optimized by LCPGWO as classification model in this paper.
The flowchart of the fault identification with the proposed method is illustrated in Figure 2.
To be specific, firstly, vibration signals were decomposed into four IMFs of different series
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by VMD. Afterwards, the feature vectors were constructed by means of the proposed
ARCMDE, which extracted fault features from IMFs. Finally, the parameters of SVM model
were optimized by multistrategy enhanced swarm optimization algorithm LCPGWO, thus
achieving the fault pattern recognition.
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Figure 2. The flowchart of the fault identification with the proposed method.

4. Engineering Application
4.1. Data Collection

To attest the effectiveness of the proposed method in this paper, the machinery fault
simulator (MFS) manufactured by SQI company was used to measure the relevant ex-
perimental data for bearings. The detailed information of machinery fault simulator is
shown in Figure 3. The type of rolling bearings selected in the experiment was ER12KCL.
Meanwhile, the motor speeds of the bearings were 1800 rpm and 2200 rpm when collecting
experimental data. The time of sample data collection was set as 10 s. The bearings’ state
types were also divided into four, which were inner race fault, ball fault, outer race fault
and combination fault, which are displayed in Figure 4. The diameter of all the experimen-
tal bearings was 3/4 inches. The vibration signals of the rolling bearings were collected
by employing the acceleration sensor mounted on the bearing seat of the motor drive end,
and the sampling frequency was 12.8 kHz. Further, there were 61 samples of the vibration
signals for each type, and one sample possessed 2048 sample points. The detailed data
about the experiments are shown in Table 4.
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Table 4. Description of the experimental data.

Motor Speed Fault Position Number of Total
Samples

Number of Training
Samples

Number of Testing
Samples Label

1800 rpm

Normal 61 40 21 L1
Inner race 61 40 21 L2
Outer race 61 40 21 L3
Ball fault 61 40 21 L4

Combination fault 61 40 21 L5

2200 rpm

Normal 61 40 21 L6
Inner race 61 40 21 L7
Outer race 61 40 21 L8
Ball fault 61 40 21 L9

Combination fault 61 40 21 L10

4.2. Application to Fault Identification of Rolling Bearings

To fully prove that the proposed fault identification method was effective, other
relevant methods were applied to compare with the proposed VMD-ARCMDE-LCPGWO-
SVM method. More specifically speaking, FE, DE and RCMDE were employed to compare
with ARCMDE at the feature extraction stage; GWO was applied for comparison at the
parameter optimization stage. The settings of the same parameters were uniform in all the
comparison experiments.
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Feature extraction is the main problem in the process of identifying rolling bearing
faults. VMD was selected to decompose the fault signal into a set of IMFs. The parameter
of decomposing mode number K was decided in advance, where it was determined by the
center frequency observation method according to a previous study [50]. In this paper, the
K value was obtained by experiment using sample data under a motor speed of 1800 rpm.
As shown in Figure 5, if K is too large, the center frequencies of adjacent IMFs are too close,
resulting in mode mixing, which means excessive decomposition. However, if K is too
small, the fault signal cannot be effectively decomposed, which leads to more valuable
information being ignored. Therefore, the K value in the paper was set as 4.
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Figure 5. The variation of central frequency with iteration under different K values.

The waveforms of the original signals with different fault positions (L1, L2, L3, L4, L5)
and different motor speeds (L3, L4, L8, L9) are illustrated in Figure 6. With VMD decom-
position, all the vibration signals were decomposed into four subcomponents including
IMF1, IMF2, IMF3, IMF4, as shown in Figure 7. IMFs decomposed from original signals
have quite different fluctuation characteristics.
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Figure 6. Time and frequent domain waveforms of different signals.
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Figure 7. The VMD decomposition results of different signals.

After the IMFs of all samples were obtained through signal decomposition, fault
feature vectors were constructed by calculating ARCMDE values, where parameters should
be chosen properly beforehand [51,52]. Here, four parameters were set in advance, which
were embedding dimension m, number of class c, maximum scale factor τmax, and time
delay td. By referring to previous papers [53], the parameter settings of ARCMDE are
displayed in Table 5.

Table 5. The parameter settings of ARCMDE.

Parameter τmax m c td

Value 20 4 6 1

To verify the performance of the proposed method, 61 feature vectors belonging
to different fault types were selected for the contrast experiment. They were randomly
divided into two parts, where 40 vectors were selected for training and the remaining
21 vectors were for testing. After that, the proposed LCPGWO method was utilized to
enhance the classification identification performance of SVM by searching the optimal
values of parameters C and g of SVM model. The searching range of C and g were set in
[2−10, 210], meanwhile, the optimization experiments were accomplished by 100 iterations
and 20 searching agents. The five-fold cross-validation was applied for calculating the
fitness values of training samples in this experiment. Hence, according to the obtained
optimal parameters C and g by the proposed LCPGWO method, the SVM model was
trained and employed to achieve fault identification. For a dependable verification of
the proposed method about the effectiveness and superiority, each of these comparative
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fault identification methods was run 10 times, on average, independently, and training
samples were randomly selected. Moreover, accuracy (ACC), adjusted rand index (ARI),
F-measure (F) and normalized mutual information (NMI) [54,55] were applied to evaluate
the capability of these different approaches. The higher values of the four metrics mean
that the matching degree between fault identification result and real samples distribution
information is better. The calculation methods of the four metrics are shown in the Table 6,
where the range of ARI is set in [−1, 1], and the rest of the metrics are in [0, 1].

Table 6. The calculation method of the four metrics.

Abbreviation Expression

ACC ACC = TP+TN
TP+FN+FP+FN

ARI ARI = n11+n00
C2

n

F F = 2 (TP/(TP+FP))(TP/(TP+FN))
TP/(TP+FP)+TP/(TP+FN)

NMI NMI =
∑

ϕ∈Φ
∑

ω∈Ω
P(ϕ,ω)log(P(ϕ,ω)/P(ϕ)P(ω))√√√√( ∑

ϕ∈Φ
P(ϕ)log(P(ϕ))

)(
∑

ω∈Ω
P(ω)log(P(ω))

)

The following notations in Table 6 are adopted: TP, TN, FP, FN represent true positive,
true negative, false positive, false negative on the basis of the result of fault identification
and actual label; Φ and Ω are the sets of given actual label classified result, respectively; n11
is the number of sample pairs for the same label in both Φ and Ω, while n00 is for different
label, C2

n is all possible sample pairs combinations; P(ϕ) and P(ω) represent the probability
functions of Φ and Ω respectively; P(ϕ, ω) is the joint probability functions of Φ with Ω.

Eight relevant methods were employed to compare for illustration of the advantages
of the proposed approach in this study. The four evaluation values of fault identification
results are shown in Table 7. By comparing with the results of different methods, it proves
that the proposed VMD-ARCMDE-LCPGWO-SVM method is the best of four evaluation
metrics. It has the highest values at 0.9597, 0.9627, 0.9838, 0.9838 under a motor speed of
1800 rpm and 0.9303, 0.9381, 0.9712, 0.9714 under a motor speed of 2200 rpm. Although the
performance of NMI under 2200 rpm was not optimal, it was still very good, which could
be considered a desirable result. The evaluation value deviations were also very low. In
order to better analyze the results, the results when the motor speed was 1800 rpm were
taken as the analysis. For feature extraction, VMD-FE-GWO-SVM, VMD-DE-GWO-SVM,
VMD-RCMDE-GWO-SVM and VMD-ARCMDE-GWO-SVM methods were compared,
respectively. The ACC of the VMD-ARCMDE-GWO-SVM was 0.9781, which was superior
to the VMD-FE-GWO-SVM, VMD-DE-GWO-SVM and VMD-RCMDE-GWO-SVM methods.
Similarly, comparing with VMD-FE-LCPGWO-SVM, VMD-DE-LCPGWO-SVM and VMD-
RCMDE-LCPGWO-SVM methods, the proposed VMD-ARCMDE-LCPGWO-SVM method
also had the highest accuracy. The results revealed that the proposed ARCMDE method
was superior for feature extraction.

For the parameter optimization of the SVM model, it can be observed that the ACC of
the proposed VMD-ARCMDE-LCPGWO-SVM method was far better than VMD-ARCMDE-
GWO-SVM method. Additionally, the VMD-FE-LCPGWO-SVM and VMD-DE-LCPGWO-
SVM methods also performed better than the VMD-FE-GWO-SVM and VMD-DE-GWO-
SVM methods, respectively, which proved the effectiveness of LCPGWO method for
parameter optimization. Based on the above experimental analyses, the conclusion can
be drawn that the proposed VMD-ARCMDE-LCPGWO-SVM method achieves stable
competitiveness when compared with other methods.
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Table 7. Comparison results with different methods under variable sampling speeds.

Motor
Speed Methods Best C Best g

Evaluation Metrics

ARI NMI F ACC

1800 rpm

VMD-FE-GWO-
SVM 334.3608 13.2605 0.7697

[−0.0439, 0.0532]
0.8142

[−0.0477, 0.0545]
0.8885

[−0.0286, 0.0264]
0.8905

[−0.0238, 0.0238]

VMD-FE-
LCPGWO-SVM 14.792 5.8259 0.7919

[−0.1008, 0.0650]
0.8360

[−0.0202, 0.0620]

0.9004
[−0.06130,

0.0320]

0.9029
[−0.0553, 0.0304]

VMD-DE-GWO-
SVM 2.3934 21.5967 0.8748

[−0.0544, 0.0775]
0.8845

[−0.0568, 0.0678]
0.9473

[−0.0240, 0.0334]
0.9476

[−0.0238, 0.0340]
VMD-DE-

LCPGWO-SVM 166.1041 38.8857 0.8791
[−0.0868, 0.0508]

0.8906
[−0.0732, 0.0382]

0.9490
[−0.0335, 0.0222]

0.9495
[−0.0352, 0.0219]

VMD-RCMDE-
GWO-SVM 445.5278 0.0353 0.9202

[−0.0716, 0.0327]
0.9298

[−0.0563, 0.0305]
0.9658

[−0.0371, 0.0151]
0.9667

[−0.0334, 0.0143]
VMD-RCMDE-
LCPGWO-SVM 708.8285 0.2694 0.9439

[−0.0348, 0.0319]
0.9488

[−0.0246, 0.0273]
0.9769

[−0.0159, 0.0136]
0.9771

[−0.0152, 0.0134]
VMD-ARCMDE-

GWO-SVM 683.77 0.25 0.9458
[−0.0639, 0.0300]

0.9500
[−0.0533, 0.0261]

0.9780
[−0.0248, 0.0125]

0.9781
[−0.0257, 0.0124]

VMD-ARCMDE-
LCPGWO-SVM 5.6124 0.2451 0.9597

[−0.0310, 0.0403]
0.9627

[−0.0342, 0.0373]
0.9838

[−0.0124, 0.0162]
0.9838

[−0.0124, 0.0162]

2200 rpm

VMD-FE-GWO-
SVM 43.6013 0.4489 0.7216

[−0.1137,0.0993]
0.7573

[−0.0814,0.0705]
0.8725

[−0.0512,0.0509]
0.8733

[−0.0543,0.0505]
VMD-FE-

LCPGWO-SVM 72.1392 0.8806 0.7327
[−0.0991,0.0919]

0.7640
[−0.0868,0.0831]

0.8761
[−0.0472,0.0458]

0.8781
[−0.0495,0.0457]

VMD-DE-GWO-
SVM 20.573 27.4512 0.8604

[−0.0651, 0.0447]
0.8732

[−0.0410, 0.0392]
0.9417

[−0.0263, 0.0202]
0.9419

[−0.0276, 0.0200]
VMD-DE-

LCPGWO-SVM 5.5 69.6902 0.8652
[−0.0663, 0.0877]

0.8815
[−0.0544, 0.0788]

0.9439
[−0.0316, 0.0370]

0.9438
[−0.0295, 0.0371]

VMD-RCMDE-
GWO-SVM 653.1094 0.4638 0.9220

[−0.0535, 0.0538]
0.9330

[−0.0346, 0.0430]
0.9675

[−0.0249, 0.0230]
0.9676

[−0.0248, 0.0229]
VMD-RCMDE-
LCPGWO-SVM 408.9463 0.2012 0.9242

[−0.0557, 0.0287]
0.9337

[−0.0352, 0.0267]
0.9684

[−0.0258, 0.0125]
0.9686

[−0.0257, 0.0124]
VMD-ARCMDE-

GWO-SVM 767.9240 0.0013 0.9271
[−0.0401, 0.0487]

0.9385
[−0.0377, 0.0376]

0.9693
[−0.0176, 0.0212]

0.9695
[−0.0171, 0.0210]

VMD-ARCMDE-
LCPGWO-SVM 172.4596 0.0185 0.9303

[−0.0461, 0.0455]
0.9381

[−0.0380, 0.0380]
0.9712

[−0.0207, 0.0193]
0.9714

[−0.0190, 0.0191]

In order to show the fault identification evaluation results comparison of different
methods more intuitively, the comparison of evaluation values of different methods un-
der 1800 rpm are shown in Figure 8, illustrating that the proposed method has obvious
advantage in fault identification. As shown in Figure 9, the proposed VMD-ARCMDE-
LCPGWO-SVM method achieved more outstanding results than the other methods on
the whole, where the evaluation values of the data had a strong performance at 2200 rpm.
Furthermore, the boxplots of the four evaluation values are displayed in Figure 10, it
demonstrates the performances of the different methods. The proposed method possesses
better stability and overall performance. Therefore, with the experiments on various fault
locations, motor speeds and the detailed comparative analysis given above, the superiority
of the proposed identification model is effectively demonstrated.
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Figure 10. Boxplots of identification results with different methods: the x-axis tick labels correspond to: 1: VMD-FE-GWO-
SVM; 2: VMD-FE-LCPGWO-SVM; 3: VMD-DE-GWO-SVM; 4: VMD-DE-LCPGWO-SVM; 5: VMD-RCMDE-GWO-SVM; 6:
VMD-RCMDE-LCPGWO-SVM; 7: VMD-ARCMDE-GWO-SVM; 8: VMD-ARCMDE-LCPGWO-SVM.

5. Conclusions

Increasingly complex rotating machinery equipment must have excellent mechanical
fault identification technology to ensure its safe and effective operation. In this paper, a
novel fault identification approach is proposed by fusing VMD, ARCMDE and SVM with
LCPGWO optimization. Firstly, VMD was employed to decompose the nonstationary
fault signals into several IMFs by the center frequency observation method. Afterwards,
ARCMDE fusing the superiorities of DE and average refined composite multiscale pro-
cedure, was proposed to construct the feature vectors of different fault samples, which
performed excellently in multiscale fault feature extraction from the IMFs. Subsequently,
LCPGWO, which was GWO enhanced by multistrategy, including levy flight, cosine factor
and polynomial mutation strategies, was compared with the other algorithms on different
benchmark functions. The results demonstrated that the use of LCPGWO was explored
to improve the ability of global search, accelerate convergence and enhance the capacity
for jumping out of local optimum in the later iteration. Thus, LCPGWO was applied to
optimize penalty factor C and kernel parameter g of SVM model, which was employed
to realize the fault classification for different fault samples. Lastly, the proposed VMD-
ARCMDE-LCPGWO-SVM method was applied to compare with other methods for rolling
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bearing fault identification. Meanwhile, the experiment results were measured by four
evaluation metrics named ACC, ARI, F and NMI. The proposed fault identification method
has smaller error, better stability and higher reliability than the other contrastive methods.
Particularly, under motor speed 1800 rpm, the identification accuracy of the proposed
method was 9.33, 3.62, 1.71 and 0.57% higher than the VMD-FE-GWO-SVM, VMD-DE-
GWO-SVM, VMD-RCMDE-GWO-SVM and VMD-ARCMDE-GWO-SVM methods; and
also 8.09, 3.43 and 0.67 higher than the VMD-FE-LCPGWO-SVM, VMD-DE-LCPGWO-SVM
and VMD-RCMDE-LCPGWO-SVM methods. Meanwhile, the evaluation metrics were
also outstanding under 2200 rpm. Therefore, it can be expected to provide a new way for
rolling bearing fault identification.

6. Discussion

The generation and development of rolling bearing faults are caused by the coupling of
many factors, which contain a large number of uncertain factors. Conventional diagnostic
methods have difficulty in obtaining satisfactory results. The SVM method is a relatively
novel method in the field of rolling bearing fault identification. Although some research
has been done in this paper, the author believes that there are still some issues worthy
of further research: (1) in practical engineering applications, different components in the
unit influence each other, complex rolling bearing combinations may have multifactor
failures in the future. Therefore, it is still necessary to conduct in depth failure mechanism
research to make the identification work more targeted, more accurate and reliable. (2)
The research of a fault identification classifier is only one aspect of the problem of fault
identification. The premise of fault identification is to apply an advanced signal analysis
method to extract more effective and more capable features from the rolling bearings’
operating state. Therefore, it is necessary to extract fault feature information from multiple
angles according to the bearing fault signal characteristics and combined with new signal
processing technology, so as to lay a foundation for the SVM to provide more effective
fault features. (3) The occurrence of rolling bearing faults is a gradual process, and minor
failures have little impact, but parts must be replaced after reaching a certain degree of
severity. Therefore, real-time monitoring of rolling bearings is very important. This paper
only analyzes the bearing vibration signals collected on the experimental platform, and
does not realize real-time monitoring, which is also the direction of author’s next research.
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