
1Dadkhah E, et al. BMJ Open Gastro 2019;6:e000297. doi:10.1136/bmjgast-2019-000297

Gut microbiome identifies risk for 
colorectal polyps

Ezzat Dadkhah,1 Masoumeh Sikaroodi,1 Louis Korman,2 Robert Hardi,3 
Jeffrey Baybick,2 David Hanzel,4 Gregory Kuehn,5 Thomas Kuehn,5 
Patrick M Gillevet   1

To cite: Dadkhah E, 
Sikaroodi M, Korman L, 
et al. Gut microbiome 
identifies risk for colorectal 
polyps. BMJ Open Gastro 
2019;6:e000297. doi:10.1136/
bmjgast-2019-000297

 ► Additional material is 
published online only. To 
view please visit the journal 
online (http:// dx. doi. org/ 10. 
1136bmjgast- 2019- 000297).

This work has been presented 
in part at Digestive Disease 
Week, 6–9 May 2017, Chicago, 
IL, USA. Gastroenterology. 2017 
Apr;152 (5, Suppl 1):S152. DOI: 
https:// doi. org/ 10. 1016/ S0016- 
5085( 17) 30830- 2.

Received 7 March 2019
Revised 23 April 2019
Accepted 2 May 2019

1Microbiome Analysis Center, 
George Mason University, 
Manassas, Virginia, USA
2Capital Digestive Care, Chevy 
Chase, Maryland, USA
3Capitol Research, Bethesda, 
Maryland, USA
4Naked Biome, San Francisco, 
California, USA
5Metabiomics, Aurora, Colorado, 
USA

Correspondence to
Dr Patrick M Gillevet;  
 pgilleve@ gmu. edu

Colorectal cancer

© Author(s) (or their 
employer(s)) 2019. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

Summary box

What is already known about this subject?
 ► Colorectal cancer (CRC) is the third most common 
cancer and fourth most common cause of cancer 
death in the world.

 ► Many studies have reported gut microbiome dysbi-
osis as a factor in the aetiology of adenoma and the 
progression to CRC.

 ► Characterisation of these complex microbial chang-
es could be used as a non-invasive biomarker to 
screen patients for premalignant lesions.

What are the new findings?
 ► A prospective study of subjects undergoing screen-
ing or surveillance colonoscopy was performed to 
determine if a unique microbiome pattern could be 
used to identify the presence of colorectal polyps.

 ► Advanced machine learning techniques were used 
to build classifying predictors for the presence of 
polyps.

 ► The predictive power of classifiers was greatest 
when informative operational taxonomic units that 
were significantly different in subjects with and 
without polyps were used in the model.

 ► A naïve holdout analysis performed on home collect-
ed stool samples had an average false positive rate 
of 12% and an average false negative rate of 11.5% 
using Naïve Bayes and Neural Network models.

 ► The false negative rate was reduced to 5% when 
data from the Naïve Bayes and Neural Network 
models were combined in a composite analysis.

How might it impact on clinical practice in the 
foreseeable future?

 ► Gut microbiome analysis combined with advanced 
machine learning methods could be used as a 
non-invasive biomarker to screen patients for pol-
yps, enhance colonoscopy compliance and increase 
equitable access to CRC screening efforts.

 ► Larger studies in populations that are more eth-
nically diverse and with broader socioeconomic 
status need to be performed to improve model per-
formance and clinical utility.

AbSTrACT
Objective To characterise the gut microbiome in subjects 
with and without polyps and evaluate the potential of the 
microbiome as a non-invasive biomarker to screen for risk of 
colorectal cancer (CRC).
Design Presurgery rectal swab, home collected stool, and 
sigmoid biopsy samples were obtained from 231 subjects 
undergoing screening or surveillance colonoscopy. 16S rRNA 
analysis was performed on 552 samples (231 rectal swab, 
183 stool, 138 biopsy) and operational taxonomic units (OTU) 
were identified using UPARSE. Non-parametric statistical 
methods were used to identify OTUs that were significantly 
different between subjects with and without polyps. These 
informative OTUs were then used to build classifiers to 
predict the presence of polyps using advanced machine 
learning models.
results We obtained clinical data on 218 subjects (87 
females, 131 males) of which 193 were White, 21 African-
American, and 4 Asian-American. Colonoscopy detected 
polyps in 56% of subjects. Modelling of the non-invasive 
home stool samples resulted in a classification accuracy 
>75% for Naïve Bayes and Neural Network models using 
informative OTUs. A naïve holdout analysis performed on 
home stool samples resulted in an average false negative 
rate of 11.5% for the Naïve Bayes and Neural Network 
models, which was reduced to 5% when the two models 
were combined.
Conclusion Gut microbiome analysis combined with 
advanced machine learning represents a promising 
approach to screen patients for the presence of polyps, with 
the potential to optimise the use of colonoscopy, reduce 
morbidity and mortality associated with CRC, and reduce 
associated healthcare costs.

IntroductIon
Colorectal cancer (CRC) is the third most 
common cancer and fourth most common 
cause of cancer death in the world.1 Though 
a genetic component is clear, the pathogen-
esis of CRC is complex, involving a sequential 
transition of the normal mucosa to prema-
lignant polyps, and eventually to CRC.2 This 
‘adenoma-carcinoma sequence’ is dependent 
on an interplay of factors such as diet, immune 
system dysfunction, chronic inflammation, and 
dysbiosis of the gut microbiome.3 4

It is well accepted that increased participa-
tion in screening programmes can prevent 
disease by the timely removal of polyps, and 
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reduce CRC mortality with earlier diagnosis,5 yet recent 
data indicate that only 63% of eligible US residents are 
current with CRC screening recommendations, with 
rates further reduced in deprived populations such as the 
uninsured, ethnic minorities, and lower socioeconomic 
status.6–8

The gut microbiota has been identified as a potential 
screening method for CRC,9 10 and many studies have 
reported dysbiosis as a factor in the aetiology of adenoma 
and CRC11–27 (online supplementary table S1), though 
to date no definitive bacterial species profile has been 
identified as a universal biomarker.

Currently, the 16S rRNA gene is used as a standard to 
determine phylogenetic relationships for bacteria and 
to detect and quantify specific bacterial populations.28 
The most challenging and time-consuming step in 
microbiome analysis is the bioinformatics analyses that 
define the operational taxonomic units (OTU) and their 
relative abundance from large numbers of NextGen 
sequence reads.29 Non-parametric statistical approaches 
have been applied to identify associations between 
OTUs and clinical metadata, and machine learning clas-
sification techniques have been used in taxonomic and 
functional studies of microbiome data to improve the 
classifiers’ predictive power.29 We propose that prese-
lection of informative OTUs combined with advanced 
machine learning methods could be used as a biomarker 
to identify at-risk patients with polyps, thereby enhancing 
colonoscopy compliance and offering a potential preven-
tative, non-invasive, affordable screening tool. Here, we 
present the results of a prospective study with subjects 
undergoing screening or surveillance colonoscopy to 
determine if a unique microbiome pattern could be used 
to identify individuals with colorectal polyps via applica-
tion of several machine learning techniques.

Methods
study overview
In this study we defined ‘polyp’ broadly to include non-ne-
oplastic polyps, benign adenomas, advanced adenomas 
(greater than 10 mm or villus features), and high-risk 
adenomas (subjects with three or more adenomas).

The polyp and healthy control data sets were collected 
for a clinical trial sponsored and funded by Metabio-
mics (Biosciences Park Center, Aurora, CO, USA). The 
study was conducted at the Metropolitan Gastroenter-
ology Group/Chevy Chase Clinical Research (Chevy 
Chase, MD, USA) and the Microbiome Analysis Center at 
George Mason University (Manassas, VA, USA) between 
January 2014 and June 2015 under an Institutional 
Review Board-approved (Chesapeake IRB, Columbia, 
MD, USA) protocol, . All subjects provided written, 
informed consent.

study population
Samples were collected from male and female subjects 
aged 45–80 years. Patients undergoing polyp surveillance 

or screening colonoscopy must have been American 
Society of Anesthesiologists class 1–3 (healthy or mild to 
severe systemic disease). Subjects were excluded if they 
had a history of inflammatory bowel disease, were unable 
to schedule the colonoscopy within 60 days of the initial 
stool sample, or had colonic pathology that could inter-
fere with the accuracy of the colonoscopy (eg, colonic 
stricture, poor preparation, and obstructing tumour).

sample collection and sequencing
Rectal swab and home stool samples were collected from 
subjects prior to routine bowel preparation and colo-
noscopy for polyp detection using Metabiomics Home 
Microbiome Sampling Kit (Metabiomics). These kits 
used Puritan Flock Swabs and prefilled collection tubes 
with RNALater as a preservative. Rectal swab samples 
were collected at the time of the initial screening visit 
and subjects were provided with the kits and instructions 
for home stool sampling. Biopsies were collected from 
subjects during colonoscopy and stored in RNALater. 
Samples were kept at −20°C in RNALater until extraction 
using FastDNA Spin Kit for Soil (MP Biomedicals, Solon, 
CA, USA). Sequencing was performed using tagged V1–
V2 bacterial 16S rRNA primers (F21F-R355R) on the 
Ion Torrent Personal Genome Machine (Thermo Fisher 
Scientific, Waltham, MA, USA) located at the Micro-
biome Analysis Center, George Mason University.

Preprocessing and otu selection
Based on colonoscopy results, subjects were categorised 
into two groups: polyp negative (polyp-N) and polyp 
positive (polyp-Y). Preprocessing, OTU clustering, and 
construction of an OTU abundance table were performed 
using UPARSE.30 Further detail about the preprocessing 
step is available in the online supplementary methods.

Alpha and beta diversity
Alpha and beta diversity was analysed using mothur.31 
After generating abundance tables, alpha (within subject) 
diversity measurements of richness and evenness and 
the identification of the presence or absence of specific 
taxa were performed. Rarefaction curves were drawn 
to analyse the sequencing depth. Samples with fewer 
than 5000 reads were removed. Alpha diversity indices 
such as Shannon, Simpson, invsimpson, and observed 
species (sobs) were calculated for all of the samples 
and compared between the polyp-Y and polyp-N groups 
using the Kruskal-Wallis test. The community diversity 
was compared between polyp-Y and polyp-N groups 
using permutational multivariate analysis of variance 
(PERMANOVA) and analysis of similarities (ANOSIM). 
Further detail about the beta diversity analysis (ie, unique 
fraction and principal coordinates analysis) is available in 
the online supplementary methods.

otu ranking, classification, classifier validation, and 
predictions
Statistical tests such as Kruskal-Wallis, MetaStats,32 linear 
discriminant analysis (LDA) effect size (LEfSe),33 and 
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indicator34 35 were used to identify informative OTUs or 
features that were significantly different between polyp-Y 
and polyp-N groups.

Several machine learning classification models were 
built (Naïve Bayes, decision tree, logistic regression, 
random forest, K-nearest neighbour, Neural Network, 
and support vector machine) using the Orange data 
mining tool, V.2.7 (http:// orange. biolab. si/).36 Classi-
fication was performed separately for the biopsy, stool, 
and rectal swab data sets. Using the fivefold cross-valida-
tion method, 80% of samples were chosen as the training 
set, and the rest were used as the test set. Classification 
was performed under two different conditions: (1) with 
all detected OTUs as classification features, and (2) with 
informative OTUs that were detected by the statistical 
methods described above. This cross-validation method 
was used to evaluate each of the classifiers and their clas-
sification accuracy, sensitivity, specificity, and area under 
the curve.

Naïve test data sets were generated using a Waikato 
Environment for Knowledge Analysis (Weka V.3.8.0)37 
module to assess the predictive power of the best 
performing classifiers for risk assessment. The generated 
classifiers were validated using the 10-fold cross-valida-
tion method and used to predict classes for the naïve test 
set. The classification accuracy was then averaged over all 
of the naïve test sets.

results
Participant characteristics and sample collection
From a cohort of 231 subjects in the Washington, DC, 
metro area undergoing screening or surveillance colo-
noscopy, we collected samples and clinical data from 218 
subjects (male, n=131; female, n=87). The average age 
was 62 years and average body mass index (BMI) was 27 
kg/m2. Most subjects were White (n=193; 88%), 21 were 
African-American (10%), and 4 were Asian-American 
(2%). Over half of the subjects (n=124) had a history of 
polyps. Across all subjects, 552 samples were collected. 
Not all subjects submitted all types of specimens, which 
resulted in the collection of 138 biopsy, 183 home stool, 
and 231 rectal swab samples that were subsequently 
analysed. There was 79% compliance with submission of 
home stool samples after the initial rectal swab samples 
were collected.

Incidence of polyp pathology
Colonoscopy detected polyps in 56% of the subjects. 
All subjects presented with benign polyps. Adenomas, 
advanced adenomas, and high-risk adenomas were 
observed, respectively, in 50%, 2%, and 21% of the 
polyp-positive subjects. This incidence of high-risk 
adenomas (n=27, 11.8%) in the study was higher than 
would be expected in the general population, possibly 
because more than half of the study cohort (n=124) had 
a history of polyps and were undergoing surveillance 
colonoscopy.

Preprocessing and clustering
The number of original reads collected for the 552 
samples (polyp-Y=316, polyp-N=236) was 12 646 278 and 
the number of reads after preprocessing used for OTU 
clustering was 4 377 359. The total number of OTUs 
detected by UPARSE was 2631.

Rarefaction plots indicated that sequencing depth 
was acceptable for the large majority of samples, and 
the reads should have adequately identified the number 
of species in the samples, online supplementary figure 
S1. In total, 13 biopsy, 15 home stool, and 20 presurgery 
rectal swab samples were omitted at this step, as samples 
with <5000 reads were removed.

Alpha and beta diversity
Simpson, invsimpson, and sobs indices were significantly 
different among the polyp-Y and polyp-N groups in all 
three data sets (p<0.001). Shannon diversity had a signifi-
cant change in median rank of samples’ diversity between 
the groups only in the biopsy data set (p=0.039), online 
supplementary figure S2. Comparison of alpha diversity 
and change of taxa abundance at the phylum and genera 
levels are shown in online supplementary tables S2 and 
S3.

PERMANOVA analysis indicated that there was a signif-
icant difference for the weighted UniFrac distances 
between the polyp-Y and polyp-N groups in the biopsy 
data set (p=0.03). However, unweighted UniFrac was not 
statistically distinctive between groups in this data set. 
Moreover, there was no statistical difference in the Bray-
Curtis distances plus weighted and unweighted UniFrac 
measurements for home stool and rectal swab samples 
based on PERMANOVA (p>0.05), online supplementary 
figures S3, and S4.

Informative otus
We identified the informative OTUs that differed 
between the polyp-Y and polyp-N groups by performing 
statistical tests with 1000 permutations using MetaStats, 
Kruskal-Wallis, LEfSe, and indicator species analyses and 
used these informative features for classification.

MetaStats32 is a statistical approach designed to iden-
tify differentially abundant features in metagenomic and 
16S rRNA sequence data sets. This programme uses the 
non-parametric t-test, Fisher’s exact test, and the false 
discovery rate to provide users with a prioritised list of 
remarkable features that define differences between two 
classes.

The Kruskal-Wallis test uses a rank-ordered one-way 
analysis of variance and is a method for testing whether 
samples originate from the same distribution. It is used 
for comparing two or more independent samples of 
equal or different sample sizes. It extends to the Mann-
Whitney U test when there are more than two groups. A 
significant Kruskal-Wallis test indicates that at least one 
sample stochastically dominates over at least one other 
sample.
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Figure 1 Receiver operating characteristic (ROC) curves for five classifiers using informative operational taxonomic units 
(OTU) for biopsy, home stool, and rectal swab data sets. The evaluated classifiers included Naïve Bayes (red), random forest 
(orange), K-nearest neighbour (yellow), logistic regression (green), and Neural Network (blue). The straight line represents the 
null model. (A) For the biopsy data set, the best performing classifier was Naïve Bayes with area under the curve (AUC) equal 
to 0.85. (B) For the home stool data set, the best performing classifiers were Naïve Bayes and random forest with AUC=0.83. 
(C) For the rectal swab data set, the best performing classifiers were random forest with AUC=0.81 and Naïve Bayes with 
AUC=0.80.

The LEfSe33 is an algorithm for high-dimensional 
biomarker discovery and detection of genomic features 
such as genes, pathways, and taxa that can characterise 
the differences between two or more biological classes. 
This algorithm is helpful to identify differentially abun-
dant features that are also consistent with biologically 
meaningful categories (classes) by taking into account 
both statistical significance and biological relevance. 
It first detects statistically different features using the 
non-parametric Kruskal-Wallis sum-rank test and then 
uses another pairwise test (Wilcoxon) to determine 
whether the detected differences are consistent with 
biological behaviour. LDA is used to estimate the biolog-
ical effect of each differentially abundant feature.

The indicator metric is another statistically based tool 
developed to find the indicator species (eg, OTUs) that 
define a distinctive aspect or characteristic of an environ-
ment. Indicator combines the species relative abundance 
with the relative frequency of occurrence in various 
classes. When all the individuals of a species are repre-
sented in one group, and all the species appear in all the 
samples of that group, the indicator index is defined as 
high. A randomisation method is used to find the statis-
tical significance of the metric. The indicator index for 
each species is independent of the other species rela-
tive abundance and is independent of classification 
approaches.34 35

These four approaches identified 109, 59, and 92 infor-
mative OTUs for biopsy, home stool, and rectal swab 
samples, respectively, from the original 2631 OTUs.

Online supplementary tables S4, S5 and S6 show the 
differentially detected OTUs for each of the three data 
sets. The informative OTUs at each taxonomic level were 
used as classification features to improve the classifiers’ 
performance. Bar plots of the normalised abundance of 

the informative OTUs are presented in online supple-
mentary figures S5, S6 and S7 for biopsy, home stool, 
and rectal swab samples, respectively. It can be seen that 
some taxa are enriched while others are depleted in the 
polyp-Y group compared with the polyp-N group.

Some OTUs show the same pattern of change in all 
three sample types. For example, Bacteroides is enriched 
in the polyp-Y group in the biopsy, stool, and rectal swab 
samples; however, other OTUs show different patterns 
in the different sample types. For instance, Blautia shows 
enrichment in the polyp-Y group in stool and rectal swab 
samples and depletion in the polyp-Y biopsies, while 
Faecalibacterium was increased in the polyp-Y rectal swab 
and decreased in the polyp-Y stool samples.

classification using all otus and informative otus
As shown in online supplementary table S7, in all spec-
imen types (biopsy, stool, and rectal swab samples), the 
classification accuracy, sensitivity, specificity, and area 
under the receiver operating characteristic (ROC) curve 
improved by using informative OTUs for classification 
instead of all OTUs. For example, the Naïve Bayes classi-
fication accuracy for all OTUs for the home stool samples 
was 0.40 but increased to 0.75 when informative OTUs 
were used. Similarly, the Neural Network classification 
accuracy for all OTUs for the home stool samples was 
0.50 but increased to 0.77 when informative OTUs were 
used. The ROC curves for biopsy, home stool, and rectal 
swab data sets are shown in figure 1. The home stool 
samples were chosen for the naïve predictions below.

The Naïve Bayes and Neural Network models appeared 
to be the best performing classifiers. Specifically, the clas-
sification accuracy of the Naïve Bayes model on the infor-
mative OTUs was 0.77, 0.75, and 0.72 for biopsy, home 
stool, and rectal swab samples, respectively. Similarly, the 
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Table 1 Classification accuracy of the Naïve Bayes and Neural Network models for the home collected stool samples using 
naïve test sets

Model
Classification 
accuracy

Sensitivity
(true positive rate)

Specificity
(true negative rate) AUC

Naive Bayes 79% 83% 72% 86%
Neural Network 82% 86% 75% 87%

AUC, area under the curve;

Table 2 Confusion matrix for the Naïve Bayes and Neural Network models for the home collected stool samples using naïve 
test sets

Model Count Score HS_Polyp_Y Score HS_Polyp_N Classification

Naïve Bayes 17** 27% 73% FN

Naïve Bayes 19 82% 18% FP

Naïve Bayes 50 10% 90% TN

Naïve Bayes 82 90% 10% TP

Neural Network 14†† 22% 78% FN

Neural Network 17 83% 17% FP

Neural Network 52 11% 89% TN

Neural Network 85 90% 10% TP

*False negatives using Naive Bayes model
†False negatives using Neural Network model
AUC, area under the curve; FN, false negative; FP, false positive;HS, home collected stool sample;HS_Polyp_N, Home Stool from subjects 
without polyps; HS_Polyp_Y, Home Stool from subjects with Polyps; Polyp_N, polyp-negative group; Polyp_Y, polyp-positive group; TN, true 
negative; TP, true positive.

classification accuracy of the Neural Network model on 
the informative OTUs was 0.74, 0.77, and 0.67 for biopsy, 
home stool, and rectal swab samples, respectively. As 
such, these models were selected for the naïve predic-
tions of the home stool samples.

naïve prediction using informative features
Using the prediction pipeline that we developed using 
the Orange data mining tool, the predictive powers of 
the best performing classifiers (Naïve Bayes and Neural 
Network) were evaluated. For each of the sample types 
(biopsy, stool, and rectal swab), 90% of samples were 
used for training and 10% were used as the holdout 
test data set. From a total of 125 biopsy samples, 8 of 13 
test samples (61.5%) were predicted correctly as shown 
in online supplementary table S8. From the total of 
168 stool samples, 12 of 17 test samples (82.3%) were 
predicted correctly as shown in online supplementary 
table S9. From the total of 211 rectal swab samples, 18 
of 22 test samples (81.8%) were predicted correctly as 
shown in online supplementary table S10.

risk assessment of home collected stool samples using 
informative features
The classification results for the home stool samples 
were analysed in greater detail. Naïve test data sets were 

generated using Weka. The Naïve Bayes and Neural 
Network classifiers were used to build models that were 
then used to predict classes for the naïve test set. This 
was repeated 10 times and the classification accuracy 
was then averaged over all of the naïve test sets. Table 1 
shows the accuracy of the average classification of the 
stool samples using the naïve test sets. The Naïve Bayes 
and Neural Network classifiers have 79% and 82% clas-
sification accuracy, respectively, with an average false 
positive rate of 12% and an average false negative rate of 
11.5%. However, all samples did not have the same result 
for each classifier, as shown in table 2, where there are 
different numbers of false positives and false negatives 
for each classification model. The more important issue 
in risk assessment is the false negative rate, as this risk 
assessment would result in a non-recommendation for 
colonoscopy for an at-risk individual.

Figure 2 is a box plot of the classification scores for 
the naïve predictions of the home stool samples. Clas-
sification score distributions for the Naïve Bayes true 
positives and the Neural Network true positives are very 
similar. Likewise, classification score distributions for the 
true negatives are comparable for the Naïve Bayes and 
Neural Network classifiers. However, there are differ-
ences between the classification score distributions of the 
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Figure 2 Naïve Bayes and Neural Network classification 
scores for the naïve predictions of the home stool samples.

false positives and false negatives compared with the true 
positives and true negatives. Thus, one cannot use the p 
values of either classifier alone to clarify the confusion 
matrix.

A total of 22 subjects were classified as false negative 
by either model; however, only nine subjects (5%) were 
classified as false negative by both models (tables 3 and 
4), suggesting improved predictive accuracy of using a 
composite score from both models.

dIscussIon
We sought to characterise the gut microbiome in a 
prospective cohort of subjects with and without colorectal 
polyps using home collected stool, presurgery rectal 
swab, and biopsy samples, and use statistical methods and 
advanced machine learning to build classifying predic-
tors for the presence of polyps.

Although bacterial dysbiosis has been reported in 
virtually all CRC/adenoma microbiome studies as well 
as in our research, the microbial features that have been 
found to differ significantly are not the same, and are in 
some cases contradictory. We expected that the compar-
ison of OTUs (ie, taxa) reported in previously published 
studies and those identified in our own work would have 
many common species and would change in abundance 
along with the appearance of polyps. Indeed, some bacte-
rial taxa identified by our study were previously reported 
to be associated with adenoma/CRC. These include the 
Firmicutes, Bacteroidetes, and Proteobacteria phyla, 
Bacteroides, Roseburia, Bifidobacterium, Faecalibacterium, and 
Blautia genera, as well as Bacteroides fragilis and Faecalibacte-
rium prausnitzii species. However, the direction of change 
was not collinear in all the studies. One possible explana-
tion is the difference in species and strain composition 
between study populations and partial overlap between 
the biochemical functions of particular microbes. 
Another possible explanation is the presence of certain 

clinical confounders (eg, differences in BMI, age, and 
medications), differences in ethnic backgrounds and 
dietary habits, or differences in sequencing methods 
employed, 16S variable region analysed, and analytical 
pipelines used which may influence the study outputs.

When individuals with polyps in our study were 
compared with those with normal colonoscopy results, 
their microbial profiles were different in all three types 
of the specimens. Even for the same individual, the 
microbial profiles of their biopsy, stool, and rectal swab 
samples differed. These observations are consistent 
with previous studies.14 21 A summary of alpha diversity 
results from this study and 17 other CRC and adenoma 
studies along with those phyla significantly changed 
are summarised in online supplementary table S11. Six 
of these 17 studies reported higher alpha diversity in 
adenoma or cancer groups, four studies observed lower 
diversity in the adenoma or cancer group, and three 
studies indicated no significant change in the diversity 
of the cancer or adenoma group compared with healthy 
control subjects.12 14 16 18 21 27 38 39

At the phylum level, the most commonly reported 
significant differences of microbial abundancies among 
healthy control, adenoma, and CRC samples are for 
Firmicutes, Bacteroidetes, and Proteobacteria. Some 
studies have shown increased abundance of Firmicutes 
in adenoma/CRC samples while other studies reported 
relative depletion of this phylum.11 15 16 27 38–41 Similarly, 
a number of reports described an increase in abun-
dance of Bacteroidetes in patients with adenoma/CRC 
while others reported a decrease in abundance of this 
phylum.11 12 15 16 18 21 38–41 In our polyp data set, Firmicutes 
and Bacteroidetes phyla were significantly more abun-
dant in the polyp-Y samples compared with the polyp-N 
group.

Among the 17 studies of adenoma/CRC listed in online 
supplementary table S11, eight data sets contained infor-
mation on Proteobacteria. In five out of six adenoma 
studies which reported Proteobacteria abundance, this 
phylum was represented at higher levels in the adenoma 
state.12 16 24 39 40 Among six CRC studies two detected 
higher Proteobacteria abundance with CRC, and two 
data sets reported lower abundance with CRC.23–26 In one 
study that analysed three types of samples—tumour, swab, 
and stool—an increase in Proteobacteria abundance in 
the stool of the CRC group and a decrease of this phylum 
in both the tumour and swab samples were reported.14 In 
our polyp data set, analysis of both rectal swab and stool 
samples revealed an increase in Proteobacteria abun-
dance, but lower abundance of Proteobacteria in polyp 
biopsies compared with the normal colon biopsies.

At the genus level, the abundancies of Bifidobacterium, 
Faecalibacterium, and Blautia were decreased in our polyp 
biopsies as compared with normal colon mucosa, while 
in the rectal swab and stool samples of the subjects with 
polyps, their abundancies (except for Faecalibacterium) 
were higher than that in subjects with healthy colons. 
Possibly, the polyp-associated gut microbiota shifts 

https://dx.doi.org/10.1136/bmjgast-2019-000297
https://dx.doi.org/10.1136/bmjgast-2019-000297
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Table 3 Classification scores and predictions for the 22 subjects with polyps whose home stool samples were called false 
negative on Naïve Bayes and/or Neural Network models

Sample ID Class Classifier
Score HS_
Polyp_Y

Score HS_
Polyp_N Predicted Call

A. Subjects where both models call FN

  HS_23 HS_Polyp_Y Naïve Bayes 0.007 0.993 HS_Polyp_N FN

Neural Network 0 1 HS_Polyp_N FN

  HS_341 HS_Polyp_Y Naïve Bayes 0.159 0.841 HS_Polyp_N FN

Neural Network 0.177 0.823 HS_Polyp_N FN

  HS_372 HS_Polyp_Y Naïve Bayes 0.213 0.787 HS_Polyp_N FN

Neural Network 0.208 0.792 HS_Polyp_N FN

  HS_381 HS_Polyp_Y Naïve Bayes 0.005 0.995 HS_Polyp_N FN

Neural Network 0.373 0.627 HS_Polyp_N FN

  HS_384 HS_Polyp_Y Naïve Bayes 0.026 0.974 HS_Polyp_N FN

Neural Network 0.256 0.744 HS_Polyp_N FN

  HS_386 HS_Polyp_Y Naïve Bayes 0.35 0.65 HS_Polyp_N FN

Neural Network 0.418 0.582 HS_Polyp_N FN

  HS_413 HS_Polyp_Y Naïve Bayes 0.328 0.672 HS_Polyp_N FN

Neural Network 0.427 0.573 HS_Polyp_N FN

  HS_423 HS_Polyp_Y Naïve Bayes 0.01 0.99 HS_Polyp_N FN

Neural Network 0.002 0.998 HS_Polyp_N FN

  HS_461 HS_Polyp_Y Naïve Bayes 0.578 0.422 HS_Polyp_N FN

Neural Network 0.303 0.697 HS_Polyp_N FN

B. Subjects where one model calls FN and the other calls TP

  HS_363 HS_Polyp_Y Naïve Bayes 0.779 0.221 HS_Polyp_Y TP

Neural Network 0.034 0.966 HS_Polyp_N FN

  HS_367 HS_Polyp_Y Naïve Bayes 0.905 0.095 HS_Polyp_Y TP

Neural Network 0.365 0.635 HS_Polyp_N FN

  HS_373 HS_Polyp_Y Naïve Bayes 0.578 0.422 HS_Polyp_N FN

Neural Network 0.992 0.008 HS_Polyp_Y TP

  HS_403 HS_Polyp_Y Naïve Bayes 0.627 0.373 HS_Polyp_N FN

Neural Network 0.982 0.018 HS_Polyp_Y TP

  HS_407 HS_Polyp_Y Naïve Bayes 0.076 0.924 HS_Polyp_N FN

Neural Network 0.991 0.009 HS_Polyp_Y TP

  HS_412 HS_Polyp_Y Naïve Bayes 0.317 0.683 HS_Polyp_N FN

Neural Network 0.528 0.472 HS_Polyp_Y TP

  HS_417 HS_Polyp_Y Naïve Bayes 0.894 0.106 HS_Polyp_Y TP

Neural Network 0.03 0.97 HS_Polyp_N FN

  HS_420 HS_Polyp_Y Naïve Bayes 0.524 0.476 HS_Polyp_N FN

Neural Network 0.654 0.346 HS_Polyp_Y TP

  HS_427 HS_Polyp_Y Naïve Bayes 0.084 0.916 HS_Polyp_N FN

Neural Network 0.536 0.464 HS_Polyp_Y TP

  HS_45 HS_Polyp_Y Naïve Bayes 0.651 0.349 HS_Polyp_Y TP

Neural Network 0.079 0.921 HS_Polyp_N FN

  HS_507 HS_Polyp_Y Naïve Bayes 0.711 0.289 HS_Polyp_N FN

Neural Network 0.682 0.318 HS_Polyp_Y TP

  HS_6 HS_Polyp_Y Naïve Bayes 0.031 0.969 HS_Polyp_N FN

Neural Network 0.731 0.269 HS_Polyp_Y TP

  HS_62 HS_Polyp_Y Naïve Bayes 0.686 0.314 HS_Polyp_Y TP

Neural Network 0.453 0.547 HS_Polyp_N FN

Continued
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Sample ID Class Classifier
Score HS_
Polyp_Y

Score HS_
Polyp_N Predicted Call

Classification scores are presented for each model and subject where the true class (ie, Polyp-Y or Polyp-N) is tabulated along with the model 
scores and predictions.
FN, false negative;HS, home collected stool sample; Polyp_N, polyp-negative group; Polyp_Y, polyp-positive group; TP, true positive.

Table 3 Continued

Table 4 Summary for the adjusted composite confusion 
matrix for home stool samples

Call
False 
negative

False 
positive

True 
positive

True 
negative

n 9 22 90 47
Rate (of 168 
subjects)

5% 13% 54% 28%

Subjects that had mixed false negative and true positive calls by 
the two models were binned as true positive.

relative abundancies towards more harmful bacteria, 
while beneficial bacteria are displaced into the lumen 
and gradually shed with the stool.

At the species level, the pathogens Fusobacterium 
nucleatum and B. fragilis did not show enrichment in 
subjects with polyps in our study, as has been reported in 
other CRC data sets. As the origin and aetiology of CRC 
may be different based on the tumour location,42 43 it is 
possible that F. nucleatum and B. fragilis contribute to the 
development of polyps or malignant transformations of 
adenomatous polyps in some locations, but not others. 
Another confounding factor is that many of the subjects 
in our study were so-called ‘polyp producers’ who were 
monitored more frequently for removal of new polyps. 
Due to the possible genetic component, the aetiology of 
polyps in this group probably differed from that in the 
general population.

Supervised machine learning methods are useful 
for finding patterns in highly complex data sets like 
human microbiota surveys.44 Moreover, we introduced 
informative feature selection as an additional step for 
classification to find a combination of feature subsets 
that would lead to better classifiers.45 To decrease the 
complexity of the analysis in our study, we used inde-
pendent non-parametric statistical tools to find signif-
icant differences between the polyp-Y and polyp-N 
groups to select OTUs that are associated with a shift 
from normal state to disease state.

Thus, we undertook a comparison of eight classifica-
tion methods, four feature selection approaches, and 
four accuracy metrics. We focused on supervised classifi-
cation methods, as unsupervised methods like clustering 
are not suitable for predictions and assigning naïve data 
to a specific class.46 47 We first performed classification 
with the complete relative abundance OTU table using 
all OTUs and then with relative abundance tables of just 
the informative OTUs. For all three data sets of biopsy, 
stool, and rectal swab samples, the accuracy of classifica-
tion, sensitivity, and specificity of classification as well as 

the area under the ROC curve were improved by using 
the informative features, demonstrating that most OTUs 
were not informative and removing them improved the 
model performance. As an added benefit, analysis of a 
reduced data set requires less computational power.

Widespread screening for CRC results in earlier diag-
nosis (when the disease is more easily treated) and 
primary prevention,6 yet remains underused. An afford-
able, non-invasive or minimally invasive tool for risk 
assessment for the presence of polyps would have the 
potential to increase acceptability of colonoscopy by 
individuals categorised as high risk for CRC,48 that in 
turn could have a salient effect on CRC morbidity and 
mortality. Such a tool would have the additional benefit 
of reducing healthcare costs by avoiding screening colo-
noscopies in individuals without polyps.

In our study, advanced machine learning with Naïve 
Bayes and Neural Network classifiers resulted, respec-
tively, in 79% and 82% classification accuracy of 
stool samples from subjects with and without polyps, 
although false positive and false negative classifications 
averaged 12% and 11.5%. False positive classifications 
are less problematic than false negative classifications; 
however, the number of subjects classified as false 
negative by both models was reduced to 5%, and it is 
likely that both sensitivity and specificity of the model-
ling could be improved by increasing cohort size. By 
comparison, existing in vitro diagnostics that have 
been recommended by the US Preventive Services Task 
Force for CRC screening have minimal or no reported 
sensitivity to colon polyps.49 50

In summary, this study focused on the comparative 
investigation of the statistical analysis and machine 
learning methods applicable to colorectal microbiome 
studies. The informative features were selected a priori 
using Kruskal-Wallis, MetaStats, LEfSe, and indicator 
species in Mothur. This selection was independent 
from the machine learning classification. We expect 
that specific taxa will be identified in larger cohorts 
using this approach.

The key thrust of this study was to circumvent the 
overfitting inherent in machine learning methods by 
the independent selection of informative features using 
non-parametric techniques. Furthermore, the fact that 
this approach yielded higher classification accuracy on 
naïve data sets suggests that these informative features 
are robust and likely associated with disease progres-
sion. We currently are applying this approach in a 
meta-analysis of published data to verify the utility of 
the method.
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By optimising the analytical pipeline, we were able to 
improve extraction of informative OTUs, thereby also 
improving the predictive power of resultant classifier 
models in identifying the presence of polyps in the human 
colon. It is possible that the best classifying features are 
also important in the aetiology of CRC. However, before 
microbiome-based classifiers could be introduced to 
clinical practice, additional biomarkers with predictive 
value will need to be identified and further validation in 
independent and much larger, ethnically diverse cohorts 
should be performed.
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