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Abstract

Introduction: Recent advances in generating massive single-cell/nucleus transcrip-

tomic data have shown great potential for facilitating the identification of cell

type–specific Alzheimer’s disease (AD) pathobiology and drug-target discovery for

therapeutic development.

Methods: We developed The Alzheimer’s Cell Atlas (TACA) by compiling an AD

brain cell atlas consisting of over 1.1 million cells/nuclei across 26 data sets, cover-

ing major brain regions (hippocampus, cerebellum, prefrontal cortex, and so on) and

cell types (astrocyte, microglia, neuron, oligodendrocytes, and so on). We conducted

nearly 1400 differential expression comparisons to identify cell type–specific molecu-

lar alterations (e.g., case vs healthy control, sex-specific, apolipoprotein E (APOE) ε4/ε4,
and TREM2mutations). Each comparison was followed by protein-protein interaction

module detection, functional enrichment analysis, and omics-informed target and drug

(over 700,000 perturbation profiles) screening. Over 400 cell-cell interaction analy-

ses using 6000 ligand-receptor interactions were conducted to identify the cell-cell

communication networks in AD.
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Results: All results are integrated into TACA (https://taca.lerner.ccf.org/), a new web

portal with cell type–specific, abundant transcriptomic information, and 12 interactive

visualization tools for AD.

Discussion:Weenvision thatTACAwill be ahighly valuable resource for bothbasic and

translational research in AD, as it provides abundant information for AD pathobiology

and actionable systems biology tools for drug discovery.

KEYWORDS

Alzheimer’s disease, database, drug repurposing, network pathobiology, single-cell, single-
nucleus, target identification, transcriptomics

Highlights

∙ Wecompiled an Alzheimer’s disease (AD) brain cell atlas consisting ofmore than 1.1

million cells/nuclei transcriptomes from 26 data sets, covering major brain regions

(cortex, hippocampus, cerebellum) and cell types (e.g., neuron, oligodendrocyte,

astrocyte, andmicroglia).

∙ We conducted over 1400 differential expression (DE) comparisons to identify cell

type–specific gene expression alterations. Major comparison types are (1) AD ver-

sus healthy control; (2) sex-specific DE, (3) genotype-driven DE (i.e., apolipoprotein

E [APOE] ε4/ε4 vs APOE ε3/ε3; TREM2R47H vs common variants) analysis; and (4)

others. Each comparison was further followed by (1) human protein-protein inter-

actome network module analysis, (2) pathway enrichment analysis, and (3) gene-set

enrichment analysis.

∙ For drug screening, we conducted gene set enrichment analysis for all the compar-

isons with over 700,000 drug perturbation profiles connecting more than 10,000

human genes and 13,000 drugs/compounds.

∙ A total of over 400 analyses of cell-cell interactions against 6000experimentally val-

idated ligand-receptor interactions were conducted to reveal the disease-relevant

cell-cell communications in AD.

1 INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative disease

now affecting 6.5 million Americans age 65 and older and projected

to double to 13.8 million by 2060.1 More than 11 million family

members and unpaid caregivers provided an estimated $271.6 bil-

lion care to people with AD and other dementias in 2021,1 while

the attrition rate for AD clinical trials (2002–2012) is estimated at

over 99%.2 The underlying disease etiology andmolecularmechanisms

of AD are under investigation.3–6 The genetic predisposition to AD

involves a complex, polygenic, and pleiotropic genetic architecture.7,8

The traditional reductionist paradigm overlooks the inherent complex-

ity of AD and often leads to incomplete evidence on disease initiation,

progression, or modification.9 Existing multi-omics data resources,

including genomics, transcriptomics, proteomics, and interactomics

(protein-protein interactions [PPIs]), have not been fully utilized and

integrated to identify pathobiology and support therapeutic devel-

opment for AD and AD-related dementias (ADRDs). For example,

tools such as Single Cell Portal (https://singlecell.broadinstitute.org/

single_cell) and CELLxGENE (https://cellxgene.cziscience.com/) have

anextensivenumberof single-cell/nucleus (sc/sn) omic data sets. These

tools focus on visualizing cells (annotations) and gene expressions,

but have not utilized resources such as PPIs to reveal underlying dis-

ease pathobiology and actionable targets, or utilized drug perturbation

profiles for therapeutic discoveries. It is urgent to develop genome-

wide, systems approaches or resources to identify likely molecular

drivers anddiseasenetworks,whichwill enable amore completemech-

anistic understanding of AD/ADRDs and assist in identifying effective

treatments.10–12

Recent breakthroughs in sc/sn RNA-sequencing (RNA-seq) tech-

nologies have advanced our understanding of AD/ADRDs.13,14 For

example, using 5XFADmousemodel scRNA-seq data, a novelmicroglia

subtype termed disease-associated microglia (DAM) was discov-

ered that co-localized with amyloid beta (Aβ) plaques.13 Diseased-

associated astrocyte (DAA) was also discovered using a snRNA-seq

data set, which occurred in AD mouse models and increased with

https://taca.lerner.ccf.org/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://cellxgene.cziscience.com/
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disease progression.14 Using a large-scale human snRNA-seq data

set, researchers discovered two distinct microglial subclusters in

patients with AD that correlated with Aβ plaques and tau pathology,

respectively.15 Marked disease heterogeneity of AD may have been

one of the leading causes of the high failure rate of AD clinical trials.16

These sc/sn studies advance our understanding of the heterogeneity

of AD and offer cell type–specific actionable targets and, therefore,

have great potential in target identification and precision-medicine

drug repurposing for AD.10,12,17 For example, using endophenotype

network and population-based validation, we identified that sildenafil

use was associated significantly with a 69% reduced likelihood of

AD, potentially by promoting neurite growth and decreasing phospho-

tau expression in patients with AD.10 Using sc/sn RNA-seq data and

network-based methodologies, our team identified both unique and

shared immune pathways between DAM and astrocytes, and per-

formed network-based predictions that identified fluticasone as a

potential treatment for AD.17

Although there has been a surge of new AD-related sc/sn RNA-

seq data sets in the past few years,13–15,18–31 the potential insights

embedded in these data come with several difficulties. The majority

of the original studies of these heterogeneous data sets focus on spe-

cific aspects of AD, although some studies such as Mathys et al.32 and

Grubman et al.19 provide a comprehensive view of the AD biology in

cell type–specific manners. Researchers frequently need to re-run the

single-cell analysis pipelines for their tasks due to limited access to pro-

cessed data and results, and such analyses require a large amount of

computing resources. The application of state-of-the-art techniques,

such as network pathobiology mapping, have been lacking with these

data sets. To overcome these limitations, we built The Alzheimer’s

Cell Atlas (TACA), which contains abundant AD-related sc/sn tran-

scriptomic information and various types of large-scale transcriptomic

and systems biology analysis results for the identification of cell type–

specific AD pathobiology and target discovery for rapid translational

therapeutic development (e.g., drug repurposing).

2 METHODS

The construction of TACA involved three steps: data collection

(Figure 1A), data analysis (Figure 1B), and construction and implemen-

tation of the database and web portal (Figures 1C and 2A). Detailed

methods canbe found in theSupplementaryMethods. In this initial ver-

sion of TACA, three interactive explorers were implemented for genes

(Figure 2B), drugs (Figure 2C), and sc/sn data sets (Figures 1C and 2D),

respectively. A total of 12visualization toolswere implemented, among

which seven are for different types of network visualizations.

3 RESULTS

3.1 Overall design of TACA

In this study, we compiled an AD brain sc/sn atlas consisting of more

than 1.1 million cells/nuclei from over 400 human/mouse samples

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literatures using

traditional sources (i.e., PubMed) and we have seen

a surge in the number of Alzheimer’s disease (AD)

single-cell/nucleus multi-omics data sets in the past few

years. Yet, genome-wide, systems biology approaches or

resources that utilize these large-scale data to identify

likely molecular drivers, disease networks, and drug tar-

get are still lacking. The development of a portal for these

analyses results will enable a more complete mechanistic

understanding ofAlzheimer’s disease (orAD) and assist in

identifying treatments.

2. Interpretation: We compiled an AD brain cell atlas

(termed The Alzheimer’s Cell Atlas [TACA], https://

taca.lerner.ccf.org/) consisting of more than 1 million

cells/nuclei from 26 data sets, covering major brain

regions (cortex, hippocampus, cerebellum, and so on) and

cell types (neuron, oligodendrocyte, astrocyte, microglia,

and so on). We developed a web portal with 12 inter-

active visualization tools (including cells, targets, drugs,

and networks) and databases incorporating large-scale

single cell/nucleus transcriptomic, various biological net-

works, and analyses results to facilitate the identification

of cell type–specific AD pathobiology and drug-target

identification for therapeutic discovery.

3. Future directions: We envision that TACA will be a

highly valuable resource for both basic and translational

research for AD, owing to the abundant information it

contains for the AD pathobiology and the actionable sys-

tems biology tools it is equipped with for therapeutic dis-

covery.Wewill continue to bringmore single cell/nucleus

transcriptomic data and more types of analyses results

and visualizations into TACA.

across 26 data sets (Tables S1 and S2). All data sets were processed

in consistent pipelines. We exhaustively compared gene expression

among groups by automating the differential expression (DE) analy-

ses using metadata that we curated from the original studies, reaching

1400 comparisons (Table S3). Major comparison types are (1) case ver-

sus healthy control, (2) sex-specific DE, (3) genotype-driven DE (i.e.,

apolipoprotein E (APOE) ε4/ε4 vs APOE ε3/ε3; TREM2R47H vs common

variants), and (4) others. Each comparison was accompanied by net-

work analysis to reveal PPI modules, functional analyses to reveal the

enriched pathways and biological processes, and gene set enrichment

analyses for target and drug screening formore than 700,000 chemical

perturbation profiles. We performed an exhaustive search of cell-cell

interactions (CCIs) using a comprehensive ligand-receptor interaction

(LRI) network thatwehave compiled (Table S4), achieving over 400CCI

analyses.

https://taca.lerner.ccf.org/
https://taca.lerner.ccf.org/


4 of 15 ZHOU ET AL.

F IGURE 1 Overview of the information architecture and functions of The Alzheimer’s Cell Atlas. (A)We have collected and assembled
multiple types of data and networks, including single-cell/nucleus (sc/sn) RNA-sequencing (RNA-seq) data sets, ligand-receptor interactions (LRIs),
protein-protein interactions (PPIs), drug-target interactions, and gene-quantitative trait locus (QTL) associations. (See Table S1 and
SupplementaryMethods for more details of the data sources and preprocessing steps.) In total, we obtained over 1.1million cells/nuclei from the
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All results were integrated into a new web service, TACA, with

interactive data set, gene, and drug explorers, and awide range of visu-

alization tools such as dimensional reduction plot for cell types and

gene expressions, volcano plot, and PPI network for the differentially

expressed genes (DEGs), LRI network for CCIs, and mechanism-of-

action plot for chemical perturbation profiles against the DEGs. All

visualized networks can be modified interactively, downloaded as

images, and exported for use on the users’ own computers. All other

types of visualization tools provide panning, scaling, selecting, and

downloading as images, and offers informative messages when data

points are hovered on.

3.2 Interface and main functions of TACA

On the home page of TACA (Figure 2A), users can search for genes and

drugs, which will lead users to their respective explorer pages. In the

gene explorer (Figure 2B), the basic information, gene-xQTL associa-

tions (including expression quantitative trait locus [eQTL] and protein

quantitative trait locus [pQTL]) (Table S5), and PPI network centered

with the selected gene are shown. Gene-xQTL associations are catego-

rizedaspositive (β>0) andnegative (β<0) associations in twoseparate

tables. The PPI network can help identify important neighbor genes

(blue nodes) that may serve as targets of drugs to indirectly affect the

gene of interest (yellow node). In the drug explorer (Figure 2C), basic

drug information and the drug-target network of the selected drug are

shown.

The home page lists all the sc/sn data sets and serves as their entry

points. Each data set is shown in a dedicated data set explorer page.

The data set explorer (Figure 2D) is composed of a navigation panel

on the left (Figure 3A,B) and a shared space on the right for the cur-

rently selected tool from the navigation panel (Figure 3C–G). The tools

in the navigation panel are organized in a tree format corresponding

to the analysis pipeline. For example, DE is the upstream analysis of

drug screening (downstream analysis) that utilized the DEGs, whereas

drug screening is the upstream analysis of drug-perturbation net-

work (downstream analysis) (Figure 3A). The downstream tool buttons

are grayed out initially, and are (re)enabled when an upstream anal-

ysis is selected. Selecting a different upstream analysis will reset its

downstream tools. For example, when a DE comparison is selected,

its associated PPI network, functional enrichment analysis, and drug

screening results may become available to view using the buttons on

theDE tool page initially and can be accessed later from the navigation

panel until another DE selection is made. The details of the currently

selected DE comparison are shown below the DE navigation button,

similar for the drug screening and CCI analysis tools.

In the navigation panel, the first two buttons provide access to basic

data set information and a table for sample metadata (Figure 3C). “Cell

Viewer” offers a versatile dimensional reduction plot that has three

coloring modes (Figure 3D), by cell types (i.e., microglia), by sample

identities or samplemetadata fields (e.g., TREM2variants), and by gene

expressions (e.g., APOE) in which cells are colored by a gradient. It is

notable that “cell viewer” comeswith a full-featured sample and/or cell

type selector. For samples, users can choose to show or hide each sam-

ple individually, or by filtering all samples with one or more metadata

fields (e.g., selecting all malemild cognitive impairment [MCI] samples).

In the “differential expression” tool, all DE comparisons canbe found

by selecting “strategy,” “comparison,” and “cell type.”Once selected, the

DE comparison’s description, volcano plot, number ofDEGs, and down-

streamanalysis availabilities are shown, togetherwith two tables at the

page bottom for up- and down-expressed genes (Figure 3E). The gene

names of the top DEGs with smallest false discovery rates (FDRs) are

shown in the volcano plot, and are hidden upon clicking. In the two data

tables, users can click the genes to open corresponding gene explorer

pages. In TACA, we predefined nine sets of DEG cutoffs using fold

change (FC) and FDR. These cutoffs can be selected in the table that

shows thenumberofDEGs. The initial access points to thedownstream

tools are three buttons also found on this page.

In the “drug screen” tool (Figure 3F), all significant inversely and

positively related perturbations are shown in two separate tables.

For readability we display the compound name instead of the IDs of

the perturbations (referred to as “signature” ID in Connectivity Map

[CMap] L1000) in the tables. Once a perturbation is selected, its details

are shown below, with two buttons for opening the drug target and

perturbation network tools. These networks along with other ones are

explained in the next section. At the bottomof the page is a scatter/line

hybrid plot that visualizes the relationship between the perturbation

profile and the selected DE comparison. The perturbation profile is

transcriptomic data sets.We curated themetadata of the samples in the data sets from the GEO database and original publications, which enabled
a comprehensive analysis of differential expression (DE) comparisons and cell-cell interactions (CCIs). AD, Alzheimer’s disease; CV, common
variant; MCI, mild cognitive impairment. (B) The analysis pipeline of TACA.We adopted a standard sc/sn RNA-seq processing pipeline as shown.
We referred to the original publications of these data sets for cutoffs for gene and cell filtering, dimensional reduction technique selection (i.e.,
UMAP or tSNE), marker genes for detecting cell types, and other additional processing steps if used in the original publication. Otherwise, we
integrated the quality-controlled (cells filtered bymitochondria gene expression and number of features detected, etc.) data sets, performed
dimensional reduction and clustering to annotate cell types, and exported the processed data for use in downstream analyses and the TACA
webserver. For DE and CCI analyses, we defined possible analysis strategies and our pipeline conducted these analyses systematically (see
SupplementaryMethods). The differentially expressed genes (DEGs) were analyzed subsequently for PPIs, functional enrichment analysis, and
virtual drug screening against over 700,000 chemical perturbation profiles. (C) Overview of themain tools (indicated by the tabs) and visualization
types (indicated by the sample charts) available in the gene, drug, and sc/sn RNA-seq data set explorers in TACA. The tools in the data set explorer
are organized as trees corresponding to the analysis pipeline. For example, drug-screening results can be accessed from the DE tool, when a
specific DE comparison is selected. TACA incorporated several types of network visualizations for various types of biological relationships. These
tools and visualizations are explained inmore detail in Figures 2–4 and the Results section. MOA, mechanism of action.
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F IGURE 2 Drug, gene/target, and data set explorers in TACA. (A) The home page provides search tools for genes (B) and drugs (C) that direct
users to the gene and drug explorers. All data sets in TACA can be listed by clicking the “human” or “mouse” buttons, and each data set has its own
data set explorer page (D). (B) A gene explorer page shows the basic gene information, gene-quantitative trait locus (QTL) associations, and
protein-protein interaction (PPI) neighbors of the gene of interest. (C) A drug explorer page shows the basic drug information, the structure, and
the drug-target network of the drug of interest. PPIs among the targets are shown as gray edges. (D) A data set explorer page that currently
displays the dimensional reduction plot colored by cell types. Various tools can be accessed from the navigation panel on the left side of the page.
Several tools are grayed out upon page loading, indicating that they are downstream analyses whose results become available to view only when
the upstream analysis is selected. The help information for each tool can be accessed using the “help” button in the top header.

shown as a blue line, in which genes (x-axis) are always in ascending

order by their Z scores (y-axis) in the profile. The DEGs (dots) are x-

positioned according to the genes in the perturbation profile, and are

y-positioned and colored by their log2FC. For inversely related pertur-

bations, the up-DEGs (warm color, above x-axis) tend to locate to the

left, indicating that they are downregulated by the perturbation, and

the down-DEGs (cold color, below x-axis) tend to locate to the right,

indicating they are upregulated by the perturbation. This pattern is

reversed for the positively related perturbations.

In the “cell interactions” tool (Figure 3G), all CCI analyses are found

by selecting “strategy” and “analysis.” Once a CCI analysis is selected,

a heatmap is shown for the number of significant LRIs in all cell type

pairs. The grids in the heatmap can be selected, and the significant LRIs

for the selected cell-cell pair are populated in a table below. In another

table, all LRIs that are significant in at least one cell-cell pair are listed

in descending order by the number of significant cell-cell pairs. Two

network visualizations can be accessed from this tool page for these

two tables, respectively.
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F IGURE 3 The data set page in TACA. (A) Themain functions of the data set page are organized corresponding to the analysis pipeline. (B) A
closer view of the navigation panel. Information regarding the currently selected analyses is shown in the navigation panel. (C) Basic data set
information and a list of samples withmetadata can be accessed by corresponding buttons. (D) In “cell viewer,” the dimensional reduction plot has
three coloringmodes, by cell types, by gene expression (color gradient), and by samples or samplemetadata. A full-featured cell selection tool
based on cell type or sample (metadata) is offered. (E) In “differential expression” tool, all analyses are organized as “strategy,” “comparison,” and
“cell type” (see SupplementaryMethods). Once selected, a volcano plot of the comparison is shown, with those significantly differentially
expressed genes colored in red. Two tables show the up- and down-expressed genes, respectively. The downstream analyses can be accessed from
this tool (indicated by arrows pointing back to the navigation panel). (F) Drug-screening results are categorized as either inversely related (i.e., the
perturbation leads to opposite gene expression pattern to that of the selected DE comparison) or positively related (i.e., the perturbation leads to
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3.3 Drug/gene/cell network visualizations in
TACA

TACA offers seven types of network visualization tools, among which

five (Figure 4) are found in the data set explorer.

In the “differential expression” tool, when a DE is selected, the

“PPI Network” becomes accessible that shows the PPIs among the top

200 DEGs with the smallest FDRs (Figure 4A). Node colors and sizes

indicate log2FC and FDR, respectively.

In the “drug screen” tool, when a perturbation is selected, its “drug

target network” and “perturbation network” may become accessible.

In the “drug target network” (Figure 4B), the targets of the drug are

shown with the PPIs among them. Targets are colored by log2FC if

they are also DEGs. This network shows the DEGs from the selected

DE comparison that can be targeted directly by the selected drug, or

targeted indirectly through PPIs with the drug’s targets. In the “per-

turbation network” (Figure 4C), the inverse or positive relations of

the DE and perturbation are visualized. Figure 4C shows an example

of inverse relation, in which the up-DEGs (warm-colored nodes) are

downregulated by the perturbation (cold-colored edges and borders),

whereas the down-DEGs (cold-colored nodes) are upregulated by the

perturbation (warm-colored edges and borders).

In the “cell interactions” tool, when a CCI is selected, “LRI Network”

becomes available when a specific pair of cell types is selected from

the heatmap (Figure 4D), and “CCINetwork” becomes availablewhen a

specific LRI is selected from the table (Figure 4E). “LRI Network” shows

the significant LRIs in the selected pair of cell types. Ligands and recep-

tors are denoted by different colors. In “CCI Network,” cell types are

displayed instead, showing the cell types hosting the ligand that inter-

act with cell types hosting the receptor. For example, using the data set

(GEO ID: GSE98969) that led to the original discovery of DAM,13 we

found that the APOE-TREM2 interaction was one of the top significant

LRIs in multiple CCIs (Figure 4E) in the 5XFADmouse, including DAM-

DAM and DAM-microglia (Figure 4D). This observation is consistent

with those of previous studies that demonstrated the important roles

ofAPOE-TREM2 interaction inmodulatingphagocytosis andmediating

the transition from homeostatic microglia to DAM.13,33–35

3.4 Discovery of repurposable drugs for AD using
TACA

In this example, we selected data set “GSE148822.” In the “differen-

tial expression” tool, we selected the strategy ‘SUBSET by “REGION”

– GROUP by “GROUP” – ADJUST by “AGE,SEX”’, comparison ‘SUB-

SET = “OC” – COMPARE GROUPs “AD” versus “CTR,’” and cell type

“Neuron.” In other words, here we are exploring the DE results of

comparing occipital cortex (OC) samples in AD patients versus those

in non-demented controls (CTR) for the cell type neuron. The DE

comparison resulted in 79 DEGs, such as SLC1A3, SLC1A2, SPRED1,

GPC5, MBP, and DDX24. It has been reported that members from the

solute carriers (SLCs) family may be associated with neurodegenera-

tive diseases.36 SPRED1 may be involved in tauopathy.37 By clicking

“drug screen” below the “Number of DEGs” table, the page is switched

to the “drug screen” tool. As the comparison is AD versus CTR, the

desired relationship is, therefore, “inversely-related” (such that up-

DEGs in AD are downregulated by the drug perturbation and the

down-DEGs in AD are upregulated by the drug perturbation to achieve

an “rescued” effect). In this table, one perturbation (troglitazone) has a

significant enrichment score. By clicking this perturbation, we see that

most of the up-DEGs are downregulated in the perturbation profile,

andmost of the down-DEGs are upregulated by the drug (Figure 5A,B).

By comparing the strongly perturbed genes (e.g., STAT1, CLU, GPM6A,

CST3, SLC1A2) (Figure 5A,B)with a list of AD-associated risk genes that

were compiled in a previous study,10,12 we found that clusterin (CLU),38

which is significantly up-expressed (log2FC= 0.453, FDR= 0.000006)

in ADversusCTR, is strongly downregulated by troglitazone (Z score=

−1.767). We found that one of troglitazone’s physical interacting tar-

gets (Figure 5C), transient receptor potential cation channel subfamily

Mmember 3 (TRPM3), is significantly overexpressed (log2FC = 0.977,

FDR = 0.0002) in AD versus CTR. Troglitazone is a TRPM3 inhibitor

(IC50 = 12 μM).39 It also downregulated TRPM3 in this perturbation

(Z score = -0.562). These results suggest that troglitazone may have

a beneficial effect for AD neurons by reducing the levels of two up-

expressed genes in AD. It is possible that other inversely perturbed

genes in Figure 5A and B can explain the beneficial effect.

3.5 Discovery of potential pathobiology of AD
using TACA

Here we show a case of how we identify potential pathobiology of

AD in cell type–specific manners using TACA. Previous studies have

shown that the transcription factor EB (TFEB) may have a protec-

tive role against AD because the upregulation of TFEB alleviated AD

pathologies inmice and cells.40 TFEB is amaster regulator of lysosomal

biogenesis and plays important roles in autophagy andmitophagy,40,41

which were shown to be associated with AD pathology.42,43 Here, we

show that by using three data sets (GSE147528_EC, GSE147528_SFG,

and GSE148822) from two studies,15,26 we found that TFEB was sig-

nificantly downregulatedwhenwe comparedADpatientswith healthy

or less-severe AD patients (Figure 6). The cell dimensional reduction

similar gene expression pattern to that of the selected DE comparison). Gene expression patterns in both the DE comparison (dots whose colors
and y positions indicate expression fold change) and the selected chemical perturbation (blue line for gene expressions in ascending order) are
plotted. (G) Cell-cell interactions (CCIs) (i.e., cellular communications among cell types) analyses are organized similar to that of the “differential
expression” tool. Once an analysis is selected, the numbers of significant ligand-receptor interactions (LRIs) in all cell type pairs are visualized in a
heatmap. The results are organized in two tables, showing the significant LRIs in the selected CCI and the number of CCIs in which a certain LRI is
significant, respectively.
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F IGURE 4 The network visualizations in TACA. (A) Protein-protein interaction (PPI) network of the differentially expressed genes. Node
colors indicate log2 fold change (log2FC), and node sizes indicate false discovery rate (FDR). (B) Drug target network of the selected drug.
Differentially expressed drug targets are colored by log2FC. PPIs among the targets are shown. (C) Perturbation network that visualized the
inverse relation or positive relation of the differential expression results and gene profiles of a chemical perturbation. Amaximum of 50
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plots, gene expression plots (Figure 6A–C), and DE analyses results

(Figure 6D–F) can be found in TACA as explained in previous sections.

In GSE147528_EC and GSE147528_SFG (Figure 6A,B), we found

that as Braak stage increases, the expression of TFEB significantly

decreases (|log2FC| > 0.25 and FDR < 0.05) in both the entorhinal

cortex (EC) region and superior frontal gyrus (SFG) region from post-

mortem brain tissue of male donors (Figure 6D,E). In GSE148822, we

found that the expression of TFEB was inversely associated with AD

disease progression usingmale samples fromOCand occipitotemporal

cortex (OTC) regions (Figure 6C,F). However, this effect is not observed

in female patients (|log2FC| < 0.25 or FDR > 0.05). In addition, TFEB

is highly expressed in the oligodendrocytes (Figure 6A–C), consistent

with results of a previous study that TFEB plays important roles in

myelination in the oligodendrocytes.44 These observations illustrate

that TACA offers a useful tool for identifying potential pathobiology of

AD in cell type–specific manners.

4 DISCUSSION

We present TACA, a web portal and database with strong potential for

the identification of cell type–specific AD pathobiology as well as tar-

get discovery for drug repurposing.We collected and processed a large

amount of data, including sc/sn RNA-seq transcriptomic data sets and

many types of networks. Our first version of TACA achieved over 1.1

million cells/nuclei and ≈1400 differential expression and 400 cell-cell

interaction analyses with various downstream analyses. We will con-

tinue to expand TACA by adding new sc/sn RNA-seq data sets and new

types of visualizations and analyses.

TACA offers a highly organized and interactive interface. Currently,

there are 12 types of visualization tools throughout the data set, gene,

and drug explorers. TACA’s many types of network visualizations will

play important roles in showing PPIs among DEGs, understanding cell

type communications by LRIs, and revealing potential mechanisms of

actionof chemical perturbations against theDEcomparisons and soon.

As examples, we used the data and tools provided in TACA, and

identified that troglitazone may have a protective effect for AD neu-

rons. We found that it can lower the expression levels of CLU (known

AD risk–associated gene)38 and TRPM3 (direct target of troglitazone)

that are both significant up-DEGs inADneurons. Previous studies have

reported that troglitazone has a protective effect on neurodegenera-

tive disorders, such asAD.45 Yet, the underlyingmolecularmechanisms

are not fully understood. A potential explanation is that inhibition of

cyclin-dependent kinase 5 (CDK5) activity by troglitazone repressed

tau-Thr231 phosphorylation.45 Our case study shows that the virtual

drug screening in TACA discovered troglitazone for AD without this

prior knowledge, and identified two additional potential mechanisms

of action for thebeneficial effect.Our second case studyofTFEBshows

that TACA can be validated at mechanistic level, and we further found

amale-specific protective effect of TFEB.

We envision that TACA will be a highly valuable resource for both

basic and translational research in AD, as it provides abundant infor-

mation for AD pathobiology and actionable systems biology tools

for therapeutic discovery. Our framework can guide future AD sc/sn

analyses and cell type–specific pathobiology and target discovery by

providing numerous examples of data processing, analysis, and inter-

pretation. Moreover, our framework can be broadly applied to other

diseases. TACA will be regularly updated to include up-to-date sc/sn

RNA-seq AD data sets.

4.1 Collaborative interactions with other sc/sn
RNA-seq and AD resources

To date, several useful bioinformatics tools have been developed for

a broader range of sc/sn data set exploration, such as Single Cell Por-

tal (https://singlecell.broadinstitute.org/single_cell) and CELLxGENE

(https://cellxgene.cziscience.com/), and for AD studies, such as Agora

(https://agora.adknowledgeportal.org/genes) and the Alzheimer’s Dis-

ease Atlas (https://adatlas.helmholtz-muenchen.de/).46 We envision

that itwould bebeneficial to theADresearch community if TACAcould

establish collaborative work with these resources in the future. For

example, a pipeline may be implemented to automatically import the

annotated AD sc/sn data sets from Single Cell Portal, and our analysis

pipelinewill conduct analyses such as DE, CCI, and drug screening. The

analyses outputs can be integrated into (or linked from) tools such as

Agora for a more comprehensive view of genes and networks in a cell

type–specific manner for rapid data sharing.

4.2 Limitations and future directions

We acknowledge several limitations. First, although we included 26

AD data sets, more data sets have become available during the devel-

opment of TACA. We will expand TACA in the following directions.

(1) We will continue to process the sc/sn RNA-seq data sets as we

did for the first phase of the data sets in TACA, as well as allowing

user-supplied processed data sets in .rds format to be added using a

pipeline that we have developed for this purpose. (2) We will focus on

adding data sets frommorediverse populations (e.g., AfricanAmerican,

Asian populations,47 and other minority populations), brain regions,

and other AD tissue types (e.g., peripheral blood mononuclear cell

[PBMC] and cerebrospinal fluid [CSF]). (3) We will integrate other

types of omics data, such as scATAC-seq, and offer multi-omics inte-

differentially expressed genes (DEGs) with the lowest Z scores and 50with the highest Z scores in the perturbation profile are shown in the
network. Gene nodes are colored and sized by their log2FC and FDR, respectively, whereas their border colors and edge (to the compound) colors
indicate the Z scores in the perturbation profile. As a result, plot for inversely related perturbation andDEGswill have inverse node and edge color,
whereas positively related perturbation andDEGswill have similar node and edge color. PPIs among the DEGs are shown as gray edges. (D)
Ligand-receptor interaction (LRI) network for the selected cell-cell interaction. (E) Cell-cell interaction network for the selected LRI.

https://singlecell.broadinstitute.org/single_cell
https://cellxgene.cziscience.com/
https://agora.adknowledgeportal.org/genes
https://adatlas.helmholtz-muenchen.de/
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F IGURE 5 Case study: single-cell transcriptomics-based drug screening. (A) This plot shows the inverse relationship between the selected
drug perturbation (blue line, genes ordered in ascending order by their expression Z scores) and the differential expression (DE) (colored dots,
x-positioned according to the perturbation profile) profiles. The up-differentially expressed genes (DEGs) (warm color) are downregulated by the
perturbation, whereas the down-DEGs (cold color) are upregulated by the perturbation. (B) A drug perturbation network that shows the (a
maximum of) 50DEGswith the lowest Z scores and 50with the highest Z scores in the perturbation profile are shown in the network. In inversely
related drug perturbation andDE profiles, the node color (indicate DE profile) and edge/border color (indicate drug perturbation profile) of the
majority of the nodes are shown in opposite colors. (C) A drug target network colored by the DEG profiles. Non-DEG targets are shown as gray
circles.

gration analyses.48,49 Wewill add additional tables on the gene page to

show other omic layers, such as proteomic andmetabolomic data from

the AD knowledge portal and The Alzheimer’s Disease Metabolomics

Consortium (ADMC).50 (4) We will expand TACA for other neurode-

generative diseases, such as Parkinson disease (PD) and amyotrophic

lateral sclerosis (ALS). Second, althoughwe have curated themetadata

from the GEO database and original publications, the availability of

metadata varies among the data sets, and those with limited metadata

have, therefore, limited DE comparisons and CCI analysis results. We

recommend that researchers make their sample metadata available as

complete as possible, since these metadata can significantly improve

the reusability of the data sets. We will add more analysis results for

existing data sets if these metadata become available. Third, although

we integrated data from many sources to generate the human protein

interactome, drug-target network, and ligand-receptor network, these

networks are still incomplete andwill be expanded. Fourth, the current

“cell viewer” is optimized for showing large numbers of cells, but a “sub-

set” function that loads only a subsetted data set with fewer cells may

be useful to accelerate the performance on older generation comput-

ers. Fifth,wepredefinednine setsofDEcutoffs for generatingDEGs for
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F IGURE 6 Case study: discovery of potential pathobiology of AD using TACA. (A–C) Dimensional reduction plots and expression plots for
transcription factor EB (TFEB) from three data sets in TACA. (D–F) TFEBwas significantly downregulated whenwe compared AD patients with
healthy or less-severe AD patients. CTR, non-demented controls; CTR+, non-demented controls withmild amyloid beta pathology; DAA,
disease-associated astrocyte; EC, entorhinal cortex; FC, fold change; OC, occipital cortex; OPC, oligodendrocyte progenitor cell; OTC,
occipitotemporal cortex; SFG, superior frontal gyrus.
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downstream analyses, such that drug screening can be pre-calculated.

In future updates, we will further improve the drug-screening compu-

tational efficiency to allow user-defined DE cutoffs. Finally, advanced

artificial intelligence/machine-learning techniques, such as deep gen-

erative model and transfer-learning approaches, can be applied for

sc/sn data integration (among the AD data sets or with non–disease-

centric datasets such as the Tabula Sapiens51) and analysis to identify

novel/rare cell types and states.52
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