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Abstract: Unsymmetrical 1,1-bis(boryl)alkanes and alkenes are organo-bismetallic equivalents, which
are synthetically important because they allow for sequential selective transformations of C–B bonds.
We reviewed the synthesis and chemical reactivity of 1,1-bis(boryl)alkanes and alkenes to provide
information for the synthetic community. In the first part of this review, we disclose the synthesis
and chemical reactivity of unsymmetrical 1,1-bisborylalkanes. In the second part, we describe the
synthesis and chemical reactivity of unsymmetrical 1,1-bis(boryl)alkenes.

Keywords: 1,1-bis(boryl)alkanes and alkenes; bismetallated organic compounds; Suzuki–Miyaura
cross-coupling; chemoselective transformations

1. Introduction

Over the last 70 years, organoboron compounds have dramatically changed the landscape of
organic chemistry through a wide range of valuable and indispensable synthetic applications, e.g.,
cross-coupling chemistry, photochemistry, and alkylboration, which has led to new constructions of
C–C and C–heteroatom bonds [1–6]. Additionally, boron functionality is dispersed in natural products
and synthetic drugs. Natural products include the antibiotics aplasmomycin, boromycin, and tartolon
B, in which boron functionality appears as a borate complex [7–11]. Drugs such as Tavaborole and
Bortezomib also incorporate boron functionality [12–14]. In terms of these aspects, multiborylated
compounds, e.g., I, are even more attractive due to their synthetic versatility and chemical stability,
which allow for the selective synthesis of multifunctionalized molecules (Scheme 1) [15–20]. Recently,
our group [16,17] and other research groups have mainly reviewed the new class of symmetrical
1,1-diboranes, I (bis-metallated reagents) (Scheme 1A,C), their preparation, and their application in
organic synthesis for forming organoboranes and bifunctionalized products [15–20]. In contrast, the
unsymmetrical 1,1-bis(boranes), II, have rarely been reviewed, despite their importance in the chemo-
and stereoselective building of C–C and C–X bonds. These classes of compounds mainly include
1,1-bis(boron) (III) and alkenyldiboronates (IV) (Scheme 1B). These compounds offer two distinct boron
substituents for ideal sites as well as stereoselective synthetic strategies to obtain stereo-controlled
alkanes [16,17] and multisubstituted olefins, which are of major importance in organic synthesis [21–26].
Most importantly, 1,1-bis(boryl)alkenes have been utilized in the synthesis of the anticancer agent
tamoxifen [27].
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Scheme 1. Overview of 1,1-bis(boron) species: their preparation and chemoselective transformations. 
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compounds (E) examples of selective transformations of gemdiboryl compounds (F) Overview of 
selected examples of organoboron that covered in this review (G) Reactivities scale of selected 
examples of organoborones bonds. 
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of boron compounds with a tunable reactivity for boron site-selective functionalization. This review 
will cover synthetic approaches for forming unsymmetrical 1,1-bis(boron) species as well as for 
deriving chemo- and stereoselective transformations for the synthesis of complex molecular 
structures. It is hoped that this review will provide useful knowledge for scientists seeking to discover 
new things about unsymmetrical 1,1-bis(boryl)alkanes and -alkenes in organic synthesis. The 
synthesis of these unsymmetrical 1,1-bisboryls includes mainly the hydroboration of alkynes and 
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(A) Previous works (B) This work (C) Bismetalated-carbon examples (D) Classification of gemdiboryl
compounds (E) examples of selective transformations of gemdiboryl compounds (F) Overview of
selected examples of organoboron that covered in this review (G) Reactivities scale of selected examples
of organoborones bonds.

However, unsymmetrical 1,1-bis(boryl)alkanes (III) and -alkenes (IV) represent a unique class
of boron compounds with a tunable reactivity for boron site-selective functionalization. This review
will cover synthetic approaches for forming unsymmetrical 1,1-bis(boron) species as well as for
deriving chemo- and stereoselective transformations for the synthesis of complex molecular structures.
It is hoped that this review will provide useful knowledge for scientists seeking to discover new
things about unsymmetrical 1,1-bis(boryl)alkanes and -alkenes in organic synthesis. The synthesis
of these unsymmetrical 1,1-bisboryls includes mainly the hydroboration of alkynes and alkenes.
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Unsymmetrical 1,1-bis(boryl)alkanes and -alkenes are mainly utilized in chemo- and stereoselective
(sequential) cross-coupling reactions and other chemoselective transformations. In order to simplify
things for the readers, we classified this review article into two categories based on the hybridization
of the carbon attached to the 1,1-bis(boron) functionalities:

(i) Unsymmetrical sp3-centered type-III; and
(ii) Unsymmetrical sp2-centered type-IV.

In both cases, we discuss the synthesis and utility of the unsymmetrical 1,1-bis(boron) species in
organic chemistry.

Before going into the discussion, let us first introduce the characteristics of the C–boron bond in
terms of reactivity, on the basis of their substitution pattern. It is well known that the organoboron
groups (see Scheme 1F) [28] have different reactivities due to the steric and electronic properties of
the Lewis acidic boron moiety, which can be easily tuned just by changing the substitution around
the organoboron group, which allows for diverse reactivity as a stoichiometric reagent and as a
catalyst. For example, boron reagents behave like nucleophilic component is a Suzuki–Miyaura (SM)
cross-coupling reaction; therefore, their reactivity depends on their nucleophilicity. Nucleophilicity scale
of organoborons (Scheme 1G) shows that organoboronic acids and organo-trifluoroborates have greater
nucleophilicity than do MIDA-boronates (MIDA = N-methyliminodiacetic acid), (1,8-diaminonaphthyl
boronamide, and boronic esters (as described in Scheme 1G) [28]; thus, MIDA-boronates have less
reactivity toward the SM cross-coupling reaction [3]. Therefore, the two different organoboron groups
in 1,1-bis(boron) species tend to show two different reactivities and perform in a chemoselective manner.

2. Unsymmetrical sp3-Centered 1,1-Bis(boryl) Compounds: Synthesis and Applications

In 2011, Hall and coworkers elegantly reported the first preparation of optically enriched
unsymmetrical 1,1-bis(boryl) compounds (2) with excellent enantioselectivity via a copper-catalyzed
asymmetric conjugate borylation of β-boronylacrylates (1) with pinacolatodiborane (Scheme 2A) [29].
The obtained enriched unsymmetrical 1,1-bis(boryl) compound (2) was then treated with KHF2,
forming the corresponding trifluoroborate salt 3. Of note, the Bpin (Bpin = B-pinacolato) group
in 2 selectively underwent a trifluorination reaction over Bdan (Bdan = B-1,8-diaminonaphthalene)
functionality, most likely due to the higher Lewis acidity available for activation of the p-orbital of
the boron in Bpin compared to the lower Lewis acidity of the p-orbital of the boron in Bdan, which
is aromatically busy (Scheme 2) [30]. An X-ray crystallographic analysis confirmed the conjugate
borylation product of 2a (R = Me); this provided us with a better understanding of the physical
properties of these compounds.

In addition, the trifluoroborate salt 3 was stereo-specifically cross-coupled with aryl bromide in the
presence of palladium catalyst and XPhos (2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl) as a
ligand: these salts formed the corresponding arylated product 4 in high yield and with good-to-excellent
enantioselectivity (88–99% ee). The coordination of the carbonyl oxygen with the boron atom (see 5) and
the stabilization provided by the second boronyl unit in the α-B–Pd(II) complex are thought to facilitate
the transmetallation process and the cross-coupling reaction. Interestingly, in this cross-coupling
reaction, an inversion of the stereochemistry was observed. The rationale for this inversion was
presented through a transmetallation reaction that took place via transition state 5, which was
responsible for inverting the stereochemistry (Scheme 2B) [29].
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Scheme 2. (A) Preparation of chiral 1,1-bis(boryl) carboxy esters via copper-catalyzed conjugate
borylation. (B) Cross-coupling reaction of enantiomerically pure 1,1-bis(boryl) carboxy ester and the
transition state for the transmetallation reaction.

In 2015, this group expanded its investigations into palladium (Pd(dba)2) and the XPhos-catalyzed
cross-coupling reactions of optically enriched unsymmetrical 1,1-bisboron compound (6), using aryl
bromides in a chemo- and stereoselective manner for the synthesis of the benzylic secondary alkyl
boronates 7a–h, which had a stereochemistry inversion [31]. They also noted an important observation:
by increasing the Lewis basicity of a carbonyl group from an ester to a Weinreb amide, the cross-coupling
reaction was more feasible. The coordination of the carbonyl oxygen with the boron atom, together with
the stability of the second boron unit in the α-B-Pd(II) intermediate, helped to overcome a difficulty at
the transmetallation step. This reaction showed tolerance to a wide range of aryl coupling partners,
with excellent chemoselectivity over the Bdan functionality (Scheme 3).
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a cross-coupling reaction with aryl bromide, affording compound 10 (with an inversion in its 
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Scheme 3. Cross-coupling reaction of chiral 1,1-bis(boryl)alkane with aryl bromides.

These enantioenriched cross-coupled products were subjected to various synthetic transformations,
as presented in Scheme 4. The Bdan motif was treated with acid, affording the hydrolyzed product,
which further underwent esterification with pinacol, yielding compound 8. Next, 8 was converted into
its corresponding potassium trifluoroboronate salt, 9; finally, it underwent a cross-coupling reaction
with aryl bromide, affording compound 10 (with an inversion in its stereochemistry). The sequence of
two cross-couplings, from 6 to 10, was followed by double inversions of stereochemistry. Finally, amide
10 was transformed into ketone 11 upon a reaction with ethylmagnesium bromide (Scheme 4) [31].
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Yun and coworkers reported the use of copper-catalyzed hydroboration of borylalkenes to
synthesize unsymmetrical 1,1-bis(boryl)alkanes in a high regioselective and enantioselective version [32].
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Various alkene substitutions, such as aryl, primary, and secondary alkyls, were well tolerated in this
reaction and provided excellent regioselectivity (Scheme 5).
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Scheme 5. Copper-catalyzed enantioselective hydroboration of alkenes.

Initially, the reaction mechanism involved the reaction of copper tert-butoxide with
pinacolatoborane, affording LCu-H species 16, which then underwent a regio- and enantioselective
addition reaction into borylalkene 12, yielding the chiral organocopper intermediate 17. Next,
this intermediate 17 underwent stereoretentive transmetallation with one more equivalents of
pinacolatoborane, finally yielding the desired product 14 and regenerating the catalyst (LCu-H)
16 for another catalytic cycle (Scheme 5).

These chiral unsymmetrical 1,1-bis(boryl)alkanes were then transformed into allenylboronate
18 in a homologation reaction with 3-chloro-3-methylbut-1-ynyllithium, with almost no erosion
of its enantioselectivity. Similarly, the Suzuki–Miyaura cross-coupling (SMCC) of 19 afforded the
corresponding arylated product 20 in a low yield and with little loss of its enantioselectivity (but with
retention of its configuration) (Scheme 6) [32].
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Scheme 6. Synthetic transformations of chiral unsymmetrical 1,1-bis(boryl)alkanes.

In 2015, Fernandez’s research group reported a transition metal-free approach for the synthesis of
unsymmetrical 1,1-bis(boron) compounds from diazo compounds, 23, which were obtained in situ
from aldehydes as well as from cyclic and noncyclic ketones (21) via in situ-generated sodium salts
of tosylhydrazones followed by treatment with sodium hydride (Scheme 7) [33]. This method also
provides a wide range of unsymmetrical 1,1-bis(borane) compounds from aldehydes and ketones, with
good isolated yields. However, it is strictly limited to aliphatic carbonyls.

In their work, they provided a rationalized mechanism for this method via transition state 26
(based on DFT-Density Functional Theory calculations). The reaction involved the heterolytic cleavage
of the mixed diboron reagent 25 and the formation of geminal C–Bpin and C–Bdan bonds via a
concerted–asynchronous mechanism, as shown in Scheme 7.
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To explore the diastereoselective 1,1-diboration of diazo compounds, Fernandez’s group
substituted cyclohexanones for in situ-formed diazo-compounds and promoted insertion into the
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pinB–Bdan bond (Scheme 8) [33]. When they carried out a reaction with 4-substituted cyclohexanones
(28a) under optimized reaction conditions, they observed reasonable diastereo-selectivity. An X-ray
analysis of 29a showed that the Bdan and CF3 groups were situated at the 1,4-diequitorial (trans)
positions, as shown in Scheme 8. Under optimized conditions, the 3-Ph-cyclohexanone 28b afforded
the 1,3-diequitorial (cis)-substituted isomer as the major diastereomer 29f (64%). Interestingly,
under a similar reaction condition, the 2-Me-cyclohexanone 31 afforded excellent diastereo-selectivity
(32a/32b), favoring the Bdan and Me groups with a 1,2-diequitorial (trans) configuration. This high
diastereo-selectivity was expected because the 2-position substituent can directly influence the
reaction center.
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The origin of diastereo-selectivity was explained through DFT analysis by taking the example
of the 4-(trifluoromethyl)cyclohexanone 28a, as shown in Scheme 9. After the reaction of hydrazide
and NaH with compound 28a, Fernandez’s group considered in situ-generating two possible chair
conformations (28aNeq and 28aNax) that were different in terms of their CF3 substituent arrangement:
the equatorial conformer (28aNeq) was 1.7 kcal/mol lower than the axial conformer (28aNax). Each
confirmation could attack the pinB–Bdan substrate through its two diastereo-faces. When the conformer
28aNeq attacked pinB–Bdan through its two diastereomeric faces, the observed computed free energy
barriers for the Bdan equatorial and Bdan axial positions were 33.9 and 38.9 kcal/mol, respectively
(Scheme 9, left side). Thus, the lowest energy path led to a major diastereomer with Bdan and a CF3

substituent in the 1,4-diequitorial (trans) of each 29a. The high energy (~5.0 kcal/mol) in the Bdan axial
approach was due to destabilized interactions between 1,3-diaxial and cyclohexane. Similarly, the
conformer 28aNax also exhibited a low energy barrier in the case of the Bdan equatorial approach,
as opposed to the Bdan axial approach (Scheme 9, right side).

The energy difference between the two Bdan equatorial approaches was not too large in the two
conformers (28aNeq and 28aNax), with the expected non-negligible formation of conformer 30a with
an observed diastereomeric ratio of 70/30 for 29a/30a [33].

Molecules 2020, 24, x FOR PEER REVIEW 9 of 30 

 

(28aNax). Each confirmation could attack the pinB–Bdan substrate through its two diastereo-faces. 
When the conformer 28aNeq attacked pinB–Bdan through its two diastereomeric faces, the observed 
computed free energy barriers for the Bdan equatorial and Bdan axial positions were 33.9 and 38.9 
kcal/mol, respectively (Scheme 9, left side). Thus, the lowest energy path led to a major diastereomer 
with Bdan and a CF3 substituent in the 1,4-diequitorial (trans) of each 29a. The high energy (~5.0 
kcal/mol) in the Bdan axial approach was due to destabilized interactions between 1,3-diaxial and 
cyclohexane. Similarly, the conformer 28aNax also exhibited a low energy barrier in the case of the 
Bdan equatorial approach, as opposed to the Bdan axial approach (Scheme 9, right side). 

The energy difference between the two Bdan equatorial approaches was not too large in the two 
conformers (28aNeq and 28aNax), with the expected non-negligible formation of conformer 30a with 
an observed diastereomeric ratio of 70/30 for 29a/30a [33]. 

 

Scheme 9. Proposed diastereo-isomeric pathways for the 1,1-bisboration of 4-CF3-cyclohexanone with 
pinB–Bdan and the relative Gibbs free energies in kcal/mol. 

Interestingly, 1,1-bis(boryl)alkanes can behave as catalysts, too. Piers’s borane V [HB(C6H5)2] 
precatalyzed the hydroboration of terminal and internal alkynes for the synthesis of E-alkenyl pinacol 
boronic ester 36, and excellent selectivities were reported by Stephan and coworkers in 2016 [34]. In 
this hydroboration, they found that unsymmetrical 1,1-bis(borane) 34 catalyzed the reaction. An 
independent reaction of Piers borane V [HB(C6H5)2] with phenylacetylene afforded the 
corresponding E-alkenyl boronic ester 33a, which, upon additional treatment with pinacol boranes, 
yielded the regioselective stereogenic unsymmetrical 1,1-bis(borane) 34 (Scheme 10). Actually, 1,1-
bis(borane) 34 acted as an electrophilic catalyst for the hydroboration of alkyne into alkene in the 
presence of HBpin (pinacolborane). To support this, the electrophilic boron center of 34 was 
confirmed through an X-ray diffraction analysis of the tert-butylisonitrile adduct 35. 

The proposed mechanism for the unsymmetrical 1,1-bis(borane) 34 catalyzing the hydroboration 
of alkynes for the synthesis of E-alkenyl boronic ester 36 is shown in Scheme 10. In this mechanism, 
unsymmetrical 1,1-bisboranes 34 acts as a Lewis acid catalyst, which activates alkyne to form complex 
VI: then, HBpin reacts with complex VI in a concerted syn-1,2-hydroboration manner (complex VII) 
to afford the hydroborylated product 36 and regenerate the unsymmetrical 1,1-bis(borane) 34 [34]. 

Scheme 9. Proposed diastereo-isomeric pathways for the 1,1-bisboration of 4-CF3-cyclohexanone with
pinB–Bdan and the relative Gibbs free energies in kcal/mol.

Interestingly, 1,1-bis(boryl)alkanes can behave as catalysts, too. Piers’s borane V [HB(C6H5)2]
precatalyzed the hydroboration of terminal and internal alkynes for the synthesis of E-alkenyl
pinacol boronic ester 36, and excellent selectivities were reported by Stephan and coworkers in
2016 [34]. In this hydroboration, they found that unsymmetrical 1,1-bis(borane) 34 catalyzed the
reaction. An independent reaction of Piers borane V [HB(C6H5)2] with phenylacetylene afforded
the corresponding E-alkenyl boronic ester 33a, which, upon additional treatment with pinacol
boranes, yielded the regioselective stereogenic unsymmetrical 1,1-bis(borane) 34 (Scheme 10). Actually,
1,1-bis(borane) 34 acted as an electrophilic catalyst for the hydroboration of alkyne into alkene in the
presence of HBpin (pinacolborane). To support this, the electrophilic boron center of 34 was confirmed
through an X-ray diffraction analysis of the tert-butylisonitrile adduct 35.

The proposed mechanism for the unsymmetrical 1,1-bis(borane) 34 catalyzing the hydroboration
of alkynes for the synthesis of E-alkenyl boronic ester 36 is shown in Scheme 10. In this mechanism,
unsymmetrical 1,1-bisboranes 34 acts as a Lewis acid catalyst, which activates alkyne to form complex
VI: then, HBpin reacts with complex VI in a concerted syn-1,2-hydroboration manner (complex VII) to
afford the hydroborylated product 36 and regenerate the unsymmetrical 1,1-bis(borane) 34 [34].
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In 2019, Sharma research group reported a novel and concise method for the synthesis of a wide 
range of MIDA (MIDA = N-methyliminodiacetic acid) acylboronates (41) via the chemoselective 
oxidation of 1,1-bisboranes (39) (Scheme 12) [35]. MIDA acylboronates are synthetically challenging; 
however, they can be utilized as powerful building blocks for bioorthogonal amide formation and 
protein ligation. 
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reasons for this selectivity. 

Scheme 10. Unsymmetrical 1,1-bis(borane) catalyzing the hydroboration of alkyne.

In 2019, Sharma research group reported a novel and concise method for the synthesis of a wide
range of MIDA (MIDA = N-methyliminodiacetic acid) acylboronates (41) via the chemoselective
oxidation of 1,1-bisboranes (39) (Scheme 11) [35]. MIDA acylboronates are synthetically challenging;
however, they can be utilized as powerful building blocks for bioorthogonal amide formation and
protein ligation.

First, Sharma prepared unsymmetrical 1,1-bis(borane) products (39) from symmetrical diboranes
(38) by heating MIDA and triethylorthoformate (Scheme 11). The mechanism underlying this selective
desymmetrization is still unclear. However, steric considerations could be among the reasons for
this selectivity.
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Scheme 11. Synthesis of unsymmetrical 1,1-bis(borane) products.

Next, Sharma chemoselectively oxidized pinacolate boran functionality over the MIDA boronate of
unsymmetrical 1,1-bis(borane) products (39a–b) to obtain α-hydroxymethyl MIDA boronates (40) with
good yields (Scheme 12). Thereafter, these α-hydroxymethyl MIDA boronates (40) were successfully
oxidized into MIDA acylboronates (41) using Dess–Martin periodinane (DMP), with moderate to good
yields (Scheme 12).
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Then, Sharma successfully applied a similar strategy for the synthesis of unique α, β-unsaturated
MIDA acyl boronates (44) with an acceptable yield (Scheme 13).
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Additionally, Sharma applied the same strategy to the unsymmetrical diborylmethane 39c to
obtain hydroxymethyl MIDA 45. Interestingly, the DMP oxidation of hydroxymethyl MIDA afforded
acetoxy MIDA boronate 46 instead of formyl MIDA boronate (Scheme 14) [35].
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In the same year, the Masarwa research group reported a late-stage desymmetrization of
symmetrical 1,1-bis(boryl)alkanes via nucleophilic trifluorination while constructing unsymmetrical
1,1-bis(boryl)alkanes bearing trifluoroborate salts (Scheme 15) [36]. This method was tolerable within
a wide range of substrate scopes, with good to excellent yields. Most interestingly, this method did
not need any column purification, as the product was obtained upon crystallization. Our group
proposed a mechanism to account for this desymmetrization methodology: First, nucleophilic fluoride
attacks the vacant p-orbital of one of the boron centers in the symmetrical diborane 38 and generates
monofluorinated compound I (step 1), which is more electrophilic than the parental symmetrical
diborane 38. Hence, it forces the second fluorination (step 2) and then the third fluorination (step 3)
at the boron center shown in Scheme 15. Consequently, the newly generated BF3 moiety develops a
partial negative charge on the fluoride, and the fluoride may stabilize the flanking Bpin group through
a fluoride bridge, as shown in 47′, which helps to prevent a subsequent attack by fluoride.
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Interestingly, this method exhibited excellent diastereo-selectivity when the reaction was performed
on the 1,1-bis(boryl)substituted cyclopropanes 38a–c (Scheme 16). This diastereo-selectivity has
been confirmed using 2D-NMR spectroscopic methods. From these results, it can be seen that
the diastereo-selectivity mechanism underlying the reaction involves the selective nucleophilic
trifluorination of boron, which occupies the less hindered side of cyclopropane.
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These unsymmetrical 1,1-bis(boryl)alkanes, bearing a trifluoroborate group, were utilized for 
various selective functionalizations. For example, the simple hydrolysis of the trifluoroborate group 
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Scheme 16. Diastereoselective desymmetrization of cyclopropanes via nucleophilic trifluorination.

These unsymmetrical 1,1-bis(boryl)alkanes, bearing a trifluoroborate group, were utilized for
various selective functionalizations. For example, the simple hydrolysis of the trifluoroborate group
afforded the 1,1-bis(borane) products 48a–c, which has a boronic acid moiety (Scheme 17A). Additionally,
compound 47 treated with diamines and diols as coupling partners, yielded the unsymmetrical
1,1-bis(borane) products 49a–c (Scheme 17B).
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Finally, trifluoroborylated unsymmetrical 1,1-bis(boryl)alkanes were also utilized for
cross-coupling reactions. Intermolecular palladium(II) catalyzed a cross-coupling reaction with
aryl bromide, which afforded arylated product 50a, which had excellent yield (Scheme 18A). Similarly,
an intramolecular cross-coupling reaction of 2-bromo-substituted phenyl substrates under the same
reaction conditions yielded the cyclic product 50b, with a 90% yield (Scheme 18B) [36].
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In 2017, Erker and coworkers reported that Lewis acid induced a cyclopropyl acetylene
rearrangement for the synthesis of unsymmetrical 1,1-bis(borane) [37]. In this synthesis, when
cyclopropyl acetylene 51 was treated with two equivalents of Piers’s borane V [HB(C6F5)2], it resulted in
the formation of substituted α-boryl-tetrahydroborole 53a-cis and 53b-trans in a 7:1 ratio (Scheme 19A):
this was confirmed by in situ NMR spectroscopic studies. Furthermore, they confirmed these structures
using X-ray diffraction and found that the pair of substituents at C1 and C4 (in terms of stereochemistry)
differed structurally from the cis and trans isomers.

The mechanism underlying this reaction involves the sequential hydroboration of cyclopropyl
acetylene 51 with 2.0 eq. of Piers’s borane V, affording 1,1-bis(boryl) compound VIII. Then, one of
the frustrating borons of product VIII acts as a Lewis acid and induces cyclopropyl ring-opening
and the hydride sequence. Then, aryl 1,2 shifts to form borole 53 (Scheme 19B). The stereochemical
outcome of the reaction largely depends on the least sterically hindered pathway, leading to the major
diastereomer cis-borole.
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The cyclic 1,1-bis(boryl) contains two Lewis acidic boron sites: they can coordinate only as a
frustrated Lewis pair (FLP) or can serve as a dihydrogen splitting reagent. Treatment of a 1:1 ratio of
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cis-borole compound and tri-tert-butylphosphine (as a Lewis base with 2.0 bar of hydrogen in pentane
solution) resulted in the precipitation of product cis-54a. Similarly, upon treatment with carbon dioxide
instead of hydrogen, a new six-membered cyclic ring was formed, in addition to the borole ring cis-54b
(Scheme 20).
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hydroboration of N-methylindole. Here, 1,1-bis(borane) compounds were utilized as effective 
catalysts for C–H bond activating the borylation of N-methylindole with catechol borane. This 
reaction afforded 3-boryl-N-methylindole with a 59% yield and N-methylindoline with a Lewis pair 

Scheme 20. Frustrated Lewis pair (FLP) reaction of unsymmetrical 1,1-bisboroles.

Interestingly, Erker and coworkers interconverted cis-borole 53a into trans-isomer 53b by treating
it with a catalytic amount of TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl). This reaction followed
reversible H-abstraction at the activated C1 position of the heterocycle. After they subjected trans-borole
to a similar FLP reaction, they obtained products 54c and 54d in good yields (Scheme 21) [37].
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In the same year, Erker and coworkers reported that cyclic 1,1-bis(borane) 53 catalyzed the
hydroboration of N-methylindole. Here, 1,1-bis(borane) compounds were utilized as effective catalysts
for C–H bond activating the borylation of N-methylindole with catechol borane. This reaction afforded
3-boryl-N-methylindole with a 59% yield and N-methylindoline with a Lewis pair adduct (with
HBcat). Furthermore, this adduct, upon treatment with the same catalyst for several hours, yielded a
5-boryl-N-methylindoline product through the evolution of molecular hydrogen (Scheme 22) [38].

Molecules 2020, 24, x FOR PEER REVIEW 17 of 30 

 

adduct (with HBcat). Furthermore, this adduct, upon treatment with the same catalyst for several 
hours, yielded a 5-boryl-N-methylindoline product through the evolution of molecular hydrogen 
(Scheme 22) [38]. 

Scheme 22. 1,1-bis(borane)-catalyzed borylation of N-methylindole. 

3. Unsymmetrical sp2-Centered 1,1-bis(boron) Compounds: Synthesis and Applications 

In 2007, Chirik and coworkers developed a cobalt that catalyzed the 1,1-diboration of readily 
available terminal alkyne 58 with an unsymmetrical (pinB–Bdan) diboron reagent for the synthesis 
of stereoselective trisubstituted 1,1-bis(boryl)alkenes (59a–d), with good yields (Scheme 23) [39]. 

The mechanism proposed by Chirik’s group involved the initial formation of cobalt acetylide 
(X), which, upon reacting with pinacolborane, yielded compound XI, which had more Lewis acidic 
boron substituent (Bpin). This could transfer to the alkyne, and the resulting alkynyl−BPin cobalt 
complex (XII) underwent syn-borylcobaltation, selectively affording XIII, which finally produced the 
stereoselective alkene 59. 

Scheme 22. 1,1-bis(borane)-catalyzed borylation of N-methylindole.

3. Unsymmetrical sp2-Centered 1,1-bis(boron) Compounds: Synthesis and Applications

In 2007, Chirik and coworkers developed a cobalt that catalyzed the 1,1-diboration of readily
available terminal alkyne 58 with an unsymmetrical (pinB–Bdan) diboron reagent for the synthesis of
stereoselective trisubstituted 1,1-bis(boryl)alkenes (59a–d), with good yields (Scheme 23) [39].

The mechanism proposed by Chirik’s group involved the initial formation of cobalt acetylide
(X), which, upon reacting with pinacolborane, yielded compound XI, which had more Lewis acidic
boron substituent (Bpin). This could transfer to the alkyne, and the resulting alkynyl−BPin cobalt
complex (XII) underwent syn-borylcobaltation, selectively affording XIII, which finally produced the
stereoselective alkene 59.



Molecules 2020, 25, 959 18 of 30

Molecules 2020, 24, x FOR PEER REVIEW 18 of 30 

 

 
Scheme 23. Cobalt-catalyzed stereoselective 1,1-diboration of terminal alkynes with pinB–Bdan. 

Taking advantage of the different chemical reactivities of two boron moieties (Bpin, Bdan) in 1,1-
unsymmetrical bis(boryl)alkenes (59), an SMCC reaction was carried out with aryl iodides to afford 
corresponding (Z)-alkenes (60), which had an extended conjugation and good yields. Interestingly, 
they observed that the cross-coupling took place selectively at the Bpin moiety over Bdan (Scheme 

Scheme 23. Cobalt-catalyzed stereoselective 1,1-diboration of terminal alkynes with pinB–Bdan.

Taking advantage of the different chemical reactivities of two boron moieties (Bpin, Bdan)
in 1,1-unsymmetrical bis(boryl)alkenes (59), an SMCC reaction was carried out with aryl iodides
to afford corresponding (Z)-alkenes (60), which had an extended conjugation and good yields.
Interestingly, they observed that the cross-coupling took place selectively at the Bpin moiety over Bdan



Molecules 2020, 25, 959 19 of 30

(Scheme 24) [39]. The whole methodology, which includes the 1,1-diboration of alkynes (Scheme 23)
and the cross-coupling reaction of 1,1-unsymmetrical bis(boryl)alkenes (Scheme 24), represents a
formal 1,1-carboboration of hept-1-yne with Ar–Bdan [40–42].

Molecules 2020, 24, x FOR PEER REVIEW 19 of 30 

 

24) [39]. The whole methodology, which includes the 1,1-diboration of alkynes (Scheme 23) and the 
cross-coupling reaction of 1,1-unsymmetrical bis(boryl)alkenes (Scheme 24), represents a formal 1,1-
carboboration of hept-1-yne with Ar–Bdan [40–42]. 

B
HN

H
NC5H11

59a

Me
B

B

I

MeO
(1 equiv)

Pd[P(tBu3)]2 (10 mol%)
aq. KOH (3 equiv)

THF
23 C, 8 h

OMe

60, 78%

OO

HN

H
N

 
Scheme 24. Selective Suzuki–Miyaura cross-coupling at Bpin. 

In 2018, the Molander group reported the borylation of 3-bromo-2,1-borazaronaphthalenes (61) 
with boronic acid pinacol esters, affording 3-boryl-2,1-borazaronaphthalene 62a–f (1,1-
unsymmetrical bis(boryl)alkenes) [43]. These borazaronaphthalenes (62) also exhibited an umpolung 
character in cross-coupling reactions. This method allows for the synthesis of a wide range of 
heterocycles with different substituents at the boron center, with electron-rich and electron-poor aryl 
and heteroaryl groups and up to an 83% yield (Scheme 25A). Next, compound 62 was converted into 
organotrifluroborate salt (63) by treating it with commercially available KHF2 as a fluoride ion source 
(Scheme 25B). 

 
Scheme 25. (A) Pd-catalyzed borylation of brominated 2,1-borazaronaphthalenes; (B) synthesis of 3-
BF3K-2,1-borazaronaphthalenes. 
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In 2018, the Molander group reported the borylation of 3-bromo-2,1-borazaronaphthalenes (61)
with boronic acid pinacol esters, affording 3-boryl-2,1-borazaronaphthalene 62a–f (1,1-unsymmetrical
bis(boryl)alkenes) [43]. These borazaronaphthalenes (62) also exhibited an umpolung character in
cross-coupling reactions. This method allows for the synthesis of a wide range of heterocycles with
different substituents at the boron center, with electron-rich and electron-poor aryl and heteroaryl groups
and up to an 83% yield (Scheme 25A). Next, compound 62 was converted into organotrifluroborate
salt (63) by treating it with commercially available KHF2 as a fluoride ion source (Scheme 25B).
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Scheme 25. (A) Pd-catalyzed borylation of brominated 2,1-borazaronaphthalenes; (B) synthesis of
3-BF3K-2,1-borazaronaphthalenes.

Later, they also utilized the bis-boryl compounds 62a and 63d for a palladium-catalyzed
cross-coupling strategy with a variety of aryl halides containing an electron-withdrawing group or an
electron-donating group, which yielded the corresponding coupling products 64a–h (Scheme 26) [43].
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(B) 3-BF3K-B-phenyl-2,1-borazaronaphthalene.

In 2014, the Nishihara research group reported the platinum-catalyzed diborylation of
1-phenylethynyl MIDA boronate 65a with bis(pinacolato)diboron, affording stereoselective
1,1,2-triboryl-2-phenylethene 66a with an 86% yield [44]. Under similar reaction conditions,
they also extended diboration with the aliphatic 1-alkynyl MIDA boronate 65b, yielding the
1,1,2-triboryl-2-hexylethene 66b, as shown in Scheme 27A. Furthermore, 1,1,2-triboryl-2-phenylethene,
66, was successfully applied to chemoselective palladium-catalyzed Suzuki−Miyaura coupling with
aryl halides bearing electron-donating and electron-withdrawing groups. Under optimized reaction
conditions, they synthesized a library of synthetically useful 1,1-bis(boryl)olefins, 67a–f, with up to
91% yields (Scheme 27B).
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Suzuki–Miyaura coupling of 66.

To determine the (Z)-configuration of the chemoselective arylated product 67, they carried out
Suzuki−Miyaura coupling of 1,1,2-triboryl-2-phenylethene 66a and iodobenzene to afford the arylated
unsymmetrical 1,1-bis(boryl)-2,2-diphenylethene 67g, with 82% yield. Then, transformation of the
BMIDA group into Bpin afforded the symmetrical 1,1-bis(boryl)-2,2-diphenylethene 68a at a 98% yield,
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which matched with earlier reported spectroscopic data. This experimental result clearly suggests that
selective cross-coupling takes place at the Bpin group, which is geminal to the aryl moiety (Scheme 28).Molecules 2020, 24, x FOR PEER REVIEW 22 of 30 
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In 2019, the Tsuchimoto group reported that the Pt-catalyzed diboration of alkyne had terminal 
Bdan with pinB–Bpin, resulting in the 1,1,2-triboryalkene 66c, which had perfect stereoselectivity 
without suffering direct activation by the platinum complex [45]. Compared to other reports on the 
diboration of alkynes [46,47] with pinB–Bpin, this method afforded an excellent yield (Scheme 30A). 

Scheme 28. Determination of the stereochemistry of arylated product 67.

Furthermore, they changed the electrophile ArI into BnCl (1.5 equiv) for an SMCC reaction with
compound 66a and observed only one isomer of unsymmetrical 1,1-bis(boryl) alkene 67h, with a
moderate yield (Scheme 29) [44].
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Scheme 29. Suzuki–Miyaura coupling of 66a with benzyl chloride.

In 2019, the Tsuchimoto group reported that the Pt-catalyzed diboration of alkyne had terminal
Bdan with pinB–Bpin, resulting in the 1,1,2-triboryalkene 66c, which had perfect stereoselectivity
without suffering direct activation by the platinum complex [45]. Compared to other reports on the
diboration of alkynes [46,47] with pinB–Bpin, this method afforded an excellent yield (Scheme 30A).
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Scheme 30. (A) Platinum-catalyzed 1,2-diboration of alkyne with B2(pin)2; (B) Suzuki–Miyaura cross-
coupling reactions to afford the tetra-arylalkene 72. 

In 2019, utilizing the tetrasubstituted triborylalkene 66c, for the first time the Tsuchimoto group 
successfully synthesized tetrasubstituted aryl alkenes (72) through sequential SMCC reactions. In the 
triborylalkene 66c, the Csp2-B bond is inactive; thus, it is very unreactive under SMCC conditions. Of 
the remaining two Csp2-B bonds, one is at the transposition of the aryl group, which can possibly 
increase the nucleophilicity of the boron atom through electron flow: it reacts more facilely than does 
the other under Pd(II) SMCC conditions. In the first SMCC reaction, 4-iodobenzotrifluoride was 
treated under ligand-free conditions, affording 69 in very good yield (with regioselectivity). In the 
second SMCC arylation, 4-iodoanisole reacted preferentially with Csp2-Bpin over Csp2-Bdan, 

Scheme 30. (A) Platinum-catalyzed 1,2-diboration of alkyne with B2(pin)2; (B) Suzuki–Miyaura
cross-coupling reactions to afford the tetra-arylalkene 72.

In 2019, utilizing the tetrasubstituted triborylalkene 66c, for the first time the Tsuchimoto group
successfully synthesized tetrasubstituted aryl alkenes (72) through sequential SMCC reactions. In the
triborylalkene 66c, the Csp2-B bond is inactive; thus, it is very unreactive under SMCC conditions.
Of the remaining two Csp2-B bonds, one is at the transposition of the aryl group, which can possibly
increase the nucleophilicity of the boron atom through electron flow: it reacts more facilely than does
the other under Pd(II) SMCC conditions. In the first SMCC reaction, 4-iodobenzotrifluoride was
treated under ligand-free conditions, affording 69 in very good yield (with regioselectivity). In the
second SMCC arylation, 4-iodoanisole reacted preferentially with Csp2-Bpin over Csp2-Bdan, affording
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70. Since Bdan is unreactive toward SMCC, it was converted into Bpin under acidic conditions with
pinacol. In the final sequence of SMCC arylation, 4-iodobenzonitrile was treated with Csp2-Bpin to
produce the tetra-arylalkene 72. Importantly, during all of the SMCC reactions observed, there was
only one stereoisomer with a high yield (Scheme 30B) [47].

In 2008, the Walsh group described the reaction of stable pinB-substituted alkynes (65) with
dicyclohexyl borane to afford unsymmetrical 1,1-bis(boryl)alkene species (73) [48]. Compound 73
was not isolated and exhibited two peaks at 30 ppm and 80 ppm in a crude 11B-NMR spectrum.
In addition, crude 1H-NMR of 73 exhibited only one isomer in the hydroboration reaction. Later
on, they successfully utilized a 1,1-bis(boryl)alkane species for chemoselective transmetallation with
an organozinc reagent (in place of Cy2B) to afford the boron/zinc heterobimetallic reagent 74; they
then added it to an aldehyde to obtain pinB-substituted (E)-allylic alcohols (75) with good yields.
By utilizing this method, they synthesized a library of secondary alcohols via hydroboration and
transmetallation, followed by aldehyde treatment with pinB-substituted alkynes (65) (Scheme 31) [48].
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Scheme 31. Synthesis of allylic alcohols from alkyne via unsymmetrical diborylalkenes.

In 2013, the Braunschweig group demonstrated a photolytic approach to creating a new
class of three-membered borirenes using an aminoboryl complex [(OC)5Cr=B=N(SiMe3)2] in the
presence of a series of mono- or bis(boryl) alkynes: 1-phenyl-2-bis-(dimethylamino)borylethyne,
bis{bis-(dimethylamino)boryl}ethyne, and 1-trimethylsilyl-2-bis-(dimethylamino)borylethyne [49]. As
depicted in Scheme 32A, aminoboryl complex 76 was irradiated with alkyne 77 at room temperature
to produce the desired unsymmetrical 1,1-bis(boryl) alkenes (i.e., iminoboranes) (78a–c) (Scheme 32A).
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dequarternization of borirenes.

Generally, aminoboranes (i.e., compound 80) do not follow quaternization, since the p-orbital
of boron is filled by the π-basic amino group. The utility of iminoboranes (78) was established
by the synthesis of quaternary aminoboranes (79): these kinds of aminoboranes are very
rare, according to the literature (Scheme 32B). The iminoborane 78 did not react with DMAP
(4-(dimethylamino)pyridine), pyridine, PCy3, or PMe3 even at 80 ◦C, whereas it reacted with IMe
(IMe = 1,3-dimethyl-2,3-dihydro-1H-imidazole) at ambient temperature to produce quaternization
in the endocyclic boryl group. Interestingly, the Braunschweig group observed that there was no
quaternization of the exocyclic boryl groups even upon the addition of an excess of IMe (Scheme 32B).
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The dequarternization of borirenes also afforded the parental unsymmetrical 1,1-bis(boryl)alkanes
and alkenes (80) in the presence of B(C6F5)3 (Scheme 32C) [49].

In 2013, Weber et al. reported the hydroboration of 2-alkyl- and 2-aryl-ethynyl-1,3,2-
benzodiazaboroles with dicyclohexylborane (DCB) under metal-free conditions at room temperature,
affording the cis-1,1-bis(boryl)alkene 82 as a major regioisomer, with quantitative yields [50].
Interestingly, they also observed the hydroboration of 2-silylethynyl-1,3,2-benzodiazaborole with DCB,
which afforded 1,1-bis(boryl)alkene (82) as a minor regioisomer and trans-1,2-bis(boryl)alkene as a
major regioisomer (83), with quantitative yields (Scheme 33) [50].
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In 2015, the Erker group reported the preparation of 1,2,5-trisubstituted boroles containing
1,1-bis(boryl) groups from the bis(ethynyl)borane 84 and B(C6F5)3 via a 1,1-carboboration sequence
followed by di-π-borane rearrangement [51]. Initially, the reaction of bis(ethynyl)borane with B(C6F5)3

resulted in 44:56 mixtures of the 1,1-carboboration product Z-85 and the trisubstituted borole 87 via 86,
which was isolated after treatment with pyridine (Scheme 34A).

Under thermal conditions, a mixture of Z-85 and 87 afforded the [4 + 2] cycloaddition product
88, which was formed after the dimerization of reactive borole 87. The Erker group observed that
the unreacted Z-85 remained under thermal conditions (Scheme 34B). Since compound Z-85 was not
isomerized thermally, they tried photolysis. Under photolysis, Z-85 isomerized to E-85, which can
easily be converted into 87, as shown in Scheme 34A, and compound 87 also cleanly isomerized to
the new trisubstituted borole 90 via di-π-borane rearrangements (two formal 1,3-boron migrations)
followed by ring opening. Consequently, the photolysis of a solution of the Z-85 + 87 mixture resulted
in 1,1-bis(boryl)alkanes and alkenes (90) (1,2,5-trisubstituted boroles) in quantitative conversion, which
was isolated after treatment with pyridine (Scheme 34B) [51].
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4. Conclusions

In this review, we wished to emphasize the importance of unsymmetrical 1,1-bis(boryl) species as
unique building blocks that lead to synthetically new connections. For their preparation, we mainly
focused on a few main strategies: 1) the metal-catalyzed conjugate borylation of β-boronylacrylates,
the hydroboration of boryl-alkenes, the 1,1-diboration of alkynes, the 1,2-diboration of borylated
alkyne, and the borylation of brominated 2,1-borazaronaphthalenes; 2) the metal-free insertion of
diazo-compounds into pinB–Bdan, the hydroboration of borylated alkenes, the hydroboration of
borylated alkyne, and Piers’s borane (which induces cyclopropyl rearrangement and the diboration of
alkynes); 3) the late-stage desymmetrization of symmetrical 1,1-bis(boryl)alkanes; and 4) the photolytic
synthesis of diboranes. Additionally, transformations of unsymmetrical 1,1-bis(boryl) species were
extensively studied in this review. Unsymmetrical 1,1-bis(boryl) species are unique because two
boryl groups exhibit different chemical reactivities toward chemoselective SMCC reactions, including
sequential cross-coupling reactions with alkyl/aryl halides, chemoselective oxidation, hydrolysis, and
transmetallation. We also revealed the rare catalytic activity of 1,1-bis(borane). Due to its potential in
the synthesis of unsymmetrical 1,1-bis(boryl)alkenes, this field will continue to grow rapidly, and more
appealing transformations are expected to appear in the years to come.

Moreover, these classes of unsymmetrical 1,1-bis(boryl) compounds have the potential to be linked
to important materials in the late stages of their synthesis, which then (by applying a variety of selective
reaction conditions to unsymmetrical 1,1-bis(boryl) units) leads to multiple different functional groups
in order to create new chemical libraries of bioactive compounds, drugs, and natural products that are
demonstrative of a large serving of these compounds. Therefore, unsymmetrical 1,1-bis(boryl) and its
transformations hold great promise in contributing to diversity-oriented synthesis.

Future approaches to expand the synthetic utility of these unsymmetrical 1,1-bis(boryl) compounds
(III and IV) can be carried out by selectively transforming their C–B bonds into C–heteroatom bonds.
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