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Abstract: Hematite (α-Fe2O3) is a promising electrode material for cost-effective lithium-ion batteries
(LIBs), and the coupling with graphene to form Gr/α-Fe2O3 heterostructures can make full use of
the merits of each individual component, thus promoting the lithium storage properties. However,
the influences of the termination of α-Fe2O3 on the interfacial structure and electrochemical per-
formance have rarely studied. In this work, three typical Gr/α-Fe2O3 interfacial systems, namely,
single Fe-terminated (Fe-O3-Fe-R), double Fe-terminated (Fe-Fe-O3-R), and O-terminated (O3-Fe-Fe-
R) structures, were fully investigated through first-principle calculation. The results demonstrated
that the Gr/Fe-O3-Fe-R system possessed good structural stability, high adsorption ability, low vol-
ume expansion, as well as a minor diffusion barrier along the interface. Meanwhile, investigations
on active heteroatoms (e.g., B, N, O, S, and P) used to modify Gr were further conducted to critically
analyze interfacial structure and Li storage behavior. It was demonstrated that structural stability and
interfacial capability were promoted. Furthermore, N-doped Gr/Fe-O3-Fe-R changed the diffusion
pathway and made it easy to achieve free diffusion for the Li atom and to shorten the diffusion
pathway.

Keywords: interface; α-Fe2O3; heteroatoms; lithium storage; first principle

1. Introduction

Hematite (α-Fe2O3), as one of the promising electrode materials for cost-effective
lithium-ion batteries (LIBs), has aroused extensive attention due to its high theoretical
capacity (1415 mAh g−1), environmentally benign nature, and low cost without obvious
safety concerns [1–8]. Similar to other metal oxide anodes, the sole utilization of pristine
hematite is still challenging. α-Fe2O3 possesses a poor conductivity and will suffer obvious
structural variation (>200%) during repeated lithiation/delithiation processes, resulting
in undesired material pulverization, and thus a large irreversible capacity and a weak cy-
cling stability [9–12]. To promote the lithium storage performance of the α-Fe2O3 electrode,
research has demonstrated that nano-sized α-Fe2O3 possesses better electrochemical perfor-
mance, which is primarily due to the shorten diffusion path for both Li ions and electrons
as well as a large specific active surface in comparison with micro-sized structures [13–15].
However, two major drawbacks for nano-sized metal oxide particles are the nonuniform
dispersion degree in the operation solutions and the easy aggregation tendency under
sample drying and electrode preparation processes, which will lead to serious capacity loss
and stability decay [16–19].

The coupling of nano-sized α-Fe2O3 with conductive substrates is a promising solution
for enhancing ion storage performance in order to address these issues associated with
low conductivity, the large structural fluctuation, and the unsatisfying dispersion level.
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For example, two-dimensional (2D) graphene (Gr) is known to possess a large surface
area, high electrical conductivity, superior mechanical properties, excellent chemical and
thermal stability, and attractive ion storage potentials [20–23]. To combine α-Fe2O3 with Gr
to produce Gr/α-Fe2O3 heterostructures has been verified as an effective strategy to achieve
the superior Li storage performance with high specific capacity, long cycle life, and good
rate capability. Qu et al. found that the specific capacity of Gr/α-Fe2O3 heterostructured
composite was as high as 930 mAh g-1 after 50 cycles, and this was maintained at 337 mAh
g−1 at a high current density of 10 A g−1 [24]. Li et al. synthesized monolithic Gr/α-Fe2O3
heterostructure in the absence of reducing agent, and this hybrid showed good cyclability
with a stable reversible capacity of 810 mAh g−1 at 100 mA g−1 after 100 cycles and a good
rate performance, with the capacity of 280 mAh g−1 remaining at a rate of 2500 mA g−1 [25].
These experimental results on the Li storage properties suggest that the heterostructured
interface between α-Fe2O3 and Gr may act as a crucial role for the superior performance.
Unfortunately, the specific interfacial relationships for Gr/α-Fe2O3 heterostructures and
the potential effects of the specific interfaces on lithium-ion storage properties have been
unclear until now.

For Gr/α-Fe2O3 heterostructures, the interfacial structures are relatively complex.
This is largely due to the different terminations types on the dominate (0001) surface
for the corundum-type α-Fe2O3 structure [26–28]. There are three commonly used and
chemically distinct termination types on the (0001) surface of α-Fe2O3, namely, single Fe-
layer (Fe-O3-Fe-R), double Fe-layers (Fe-Fe-O3-R), and O-layer (O3-Fe-Fe-R) (R represents
the bulk stoichiometric stacking unit) [29–31]. The specific relations between α-Fe2O3
structures with different termination types and the ion storage properties remain a major
challenge owing to the fact that the α-Fe2O3 with a single termination type is difficult to be
experimentally synthesized, and in most cases, both Fe- and O-terminated domains can be
identified on the synthesized α-Fe2O3(0001) surface [28]. From this viewpoint, the in-depth
theoretical understanding on the interfacial structure of Gr/α-Fe2O3 between different
terminated α-Fe2O3 and Gr, and their potential effects on Li ion adsorption and diffusion
behaviors are still in urgent need.

In this work, a systematical investigation was conducted on the interfacial structures
and Li storage performance of different terminated Gr/α-Fe2O3 heterostructures. It is
verified that the single Fe-terminated Gr/Fe-O3-Fe-R structure manifests a low energy
diffusion barrier, small volume change, and high Li+ storage capacity, suggesting its
practicability for high-performance Li-ion batteries in comparison with the double Fe-
terminated Gr/Fe-Fe-O3-R and O-terminated Gr/O3-Fe-Fe-R systems. To further optimize
the interface, we constructed some modifications on the Gr structure by introducing
heterostructured active atoms (e.g., B, N, O, S, and P) into Gr skeletons. Finally, a critically
analysis is given on the influences of different doped Gr structures on the interfacial stability,
the active energy ion diffusion barriers, and the ion diffusion pathways. It is expected
that this work can offer some new theoretical insights on the interfacial enhancement for
Gr/metal oxide heterostructures, and the interfacial design principles for boosting ion
storage properties for advanced rechargeable batteries.

2. Calculation Methodology
2.1. Computing Parameters

All calculations in this article were carried out by the first-principles method based
on density functional theory (DFT) as implemented in the Cambridge Serial Total Energy
Package (CASTEP) software. The generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof (PBE) functional was used for the electron exchange correlation
potential [32,33]. Grimme’s method was used to calculate the Van der Waals interaction
between Gr and α-Fe2O3 layers [34,35]. The cut-off energy was set as 680 eV and k-point
mesh was set as 4 × 4 × 1. For the geometry optimization, the lattice parameters and all
atoms were allowed to be fully relaxed. The convergence tolerance in energy, the max-
imum displacement, and the maximum force were set at 1.0 × 10−5 eV/atom, 0.001 Å,
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and 0.03 eV/Å, respectively. Kinetic barriers were carried out using linear synchronous
transit/quadratic synchronous transit (LST/QST) search with intermediate conjugate gra-
dient refinements [36–38].

2.2. Heterostructures Construction

A 2 × 2 supercell of Gr (8 C atoms) and α-Fe2O3 (0001) (18 O atoms and 12 Fe atoms)
were applied to construct Gr/α-Fe2O3 heterostructures with a 12 Å vacuum space along the
z-direction to eliminate interactions between neighbor layers. The lattice constant mismatch
between Gr and Fe2O3 (0001) surface was 1.2%. Monolayer pristine or heteroatoms doped
Gr was placed on top of 3 different terminated α-Fe2O3(0001) surfaces. There were 3
typical theoretical models, including single Fe-terminated Gr/Fe-O3-Fe-R, O-terminated
Gr/O3-Fe-Fe-R, and double Fe-terminated Gr/Fe-Fe-O3-R heterostructures.

The stability of Gr/α-Fe2O3 heterostructures was estimated by the binding energy
(Eb) as defined by Equation (1) [39]. The interfacial binding capability of Gr/α-Fe2O3
heterostructures was evaluated on the basis of the interfacial formation energy (Ef) that
was calculated by Equation (2) [40,41]. The adsorption energy (Ead) of Gr/α-Fe2O3 het-
erostructures was used to evaluated lithium adsorption behaviors as calculated by Equation
(3) [42,43]. The volume expansion (Ve) of Gr/α-Fe2O3 heterostructures was calculated via
Equation (4) [44,45].

Eb =
1

ΣNi

[
EGr/Fe2O3 − Σ(NiEi

iso)
]

(1)

E f = EGr/Fe2O3 − EGr − EFe2O3 (2)

Ead = ELin(Gr/Fe2O3)
− (EGr/Fe2O3 + nµLi) (3)

Ve = (VLin(Gr/Fe2O3)
−VGr/Fe2O3)/VGr+Fe2O3 (4)

where EGr/Fe2O3, EGr, and EFe2O3 represent the energies of the Gr/α-Fe2O3 heterostructures
and the individual Gr and Fe2O3, respectively; Ni is the total number of i atoms (i represents
Fe, O, C, Li, B, N, P, or S); Ei

iso is the energy of the isolated i atom; VLin(Gr/Fe2O3) represents
the volume of n Li atoms adsorbed on the interface of Gr/α-Fe2O3; VGr/Fe2O3 is volume of
Gr/Fe2O3; and µLi is the chemical potential of a single isolated Li atom.

To further evaluate LIB performance in Gr/α-Fe2O3 structures, we further calculated
open-circuit voltage (OCV) by Equation (5) [46–48].

OCV ≈ [En1 − En2 + (n2 − n1)µLi]/(n2 − n1)e (5)

where En1 and En2 are the total energy of Gr/α-Fe2O3 heterostructure adsorbed with n1
and n2 lithium atoms, respectively.

3. Results and Discussion
3.1. Geometric Structures

As illustrated in the optimized Gr/α-Fe2O3 heterostructures (Figure 1a–c), the vertical
distances between the Gr layer and the terminated layer of α-Fe2O3 in Gr/Fe-O3-Fe-R,
Gr/O3-Fe-Fe-R, and Gr/Fe-Fe-O3-R systems were 2.264 Å, 2.904 Å, and 1.850 Å, respec-
tively. As illustrated in Figure 1d, Eb values of Gr/Fe-O3-Fe-R, Gr/O3-Fe-Fe-R, and Gr/Fe-
Fe-O3-R systems were all less than zero, indicating the stable structures. Furthermore,
by comparison on the absolute value of the Ef, we could identify that the Gr/Fe-Fe-O3-R
structure (1.03 eV) was the most stable one, followed by the Gr/Fe-O3-Fe-R (0.51 eV),
with the O-terminated Gr/O3-Fe-Fe-R system (0.34 eV) being the weakest one.
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Figure 1. Optimized geometries of (a) Gr/Fe-O3-Fe-R, (b) Gr/O3-Fe-Fe-R, and (c) Gr/Fe-Fe-O3-
R heterostructures; (d) binding energy (Eb), interfacial formation energy (Ef), and (e–g) charge
difference plots of three models (isosurface level was set to 0.04 electrons/bohr3, green and purple
areas represent charge accumulation and depletion); (h–j) transferred electrons of atoms near the
interface in (h) Gr/Fe-O3-Fe-R, (i) Gr/O3-Fe-Fe-R, and (j) Gr/Fe-Fe-O3-R.

To better understand interfacial coupling effects, we studied electronic density differ-
ences for Gr/Fe-O3-Fe-R, Gr/O3-Fe-Fe-R, and Gr/Fe-Fe-O3-R, as shown in Figure 1e–g.
Obviously, charge redistribution behaviors mainly occurred in the Gr/Fe-O3-Fe-R and
Gr/Fe-Fe-O3-R systems, accompanied by the electron transfer from Fe to C atoms via the
interfaces, which suggest that Fe atoms in the terminated layer donate electrons to the
Gr surface. Furthermore, the charge accumulation density around C atoms in the Gr/Fe-
O3-Fe-R system was obviously larger than that in the Gr/Fe-Fe-O3-R system. As for the
Gr/O3-Fe-Fe-R system, there was almost no charge transfer through the interface, and the
main force between Gr and O3-Fe-Fe-R was the Van der Waals interaction. In addition, Mul-
liken charge analysis on atoms near the interface confirmed that the Gr obtained 0.49 |e|
for Gr/Fe-O3-Fe-R and 1.17 |e| for the Gr/Fe-Fe-O3-R system, and lost 0.03 |e| for the
Gr/O3-Fe-Fe-R system in Figure 1h–j. Meanwhile, the top-level Fe atom near the interface
lost 1.24 |e| in the Gr/Fe-O3-Fe-R system (labeled “1” in Figure 1h) and two Fe atoms in
the Gr/Fe-Fe-O3-R system lost 1.11 |e| and 1.03 |e| (labeled “1” and “2” in Figure 1j), The
interfacial atom-transferred electrons were consistent with that of the interfacial binding
ability.
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3.2. Lithium Adsorption and Diffusion Behaviours

First, to confirm the specific Li adsorption sites, we selected five Li adsorption sites
(labeled as A, B, C, D, and E in Figure S1) for calculation to identify the most stable
site, which were labelled as Li(Gr/Fe-O3-Fe-R), Li(Gr/O3-Fe-Fe-R), and Li(Gr/Fe-Fe-O3-
R) systems, as demonstrated in Figure 2a–c. Compared with Gr/Fe-Fe-O3-R, interfacial
structure was changed in Li(Gr/Fe-Fe-O3-R), resulting from the Fe atom labeled “1” moving
down, implying initial interface structure unstable and susceptible to Li atoms. Eb values
in Figure 2d show that all three structures were stable. The Li adsorption ability of the
Li(Gr/Fe-O3-Fe-R) system was the strongest, with a minimum Ead value, while the ability
was the weakest of the Li(Gr/Fe-Fe-O3-R) system accompanied by a maximum Ead value.
Charge density behavior analysis on stable Li(Gr/Fe-O3-Fe-R), Li(Gr/O3-Fe-Fe-R), and
Li(Gr/Fe-Fe-O3-R) systems (Figure 2e–g) could verify that the most stable site for Li was
in the tetrahedron gap of α-Fe2O3 terminal surface, accompanied by losing 1.47 |e|,
1.32 |e|, and 1.42 |e| in the Gr/Fe-O3-Fe-R, Gr/O3-Fe-Fe-R, and Gr/Fe-Fe-O3-R systems.
In Figure 2h–j, the embedded Li atoms lost 1.47, 1.32, and 1.42 |e| for Li(Gr/Fe-O3-Fe-R),
Li(Gr/O3-Fe-Fe-R), and Li(Gr/Fe-Fe-O3-R), respectively, which was consistent with the
changes of adsorption ability. Owing to adsorption of Li atom, the electrons Gr lost and
O atoms around the interface gained were increased in comparison with Gr/Fe-O3-Fe-R,
Gr/O3-Fe-Fe-R, and Gr/Fe-Fe-O3-R, demonstrating that interface stability was enhanced.
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Eb and Ead of Lin(Gr/Fe-O3-Fe-R), Lin(Gr/O3-Fe-Fe-R), and Lin(Gr/Fe-Fe-O3-R) for
different Li number (n) were calculated to evaluate structure stability and adsorption
capacity, as shown in Figure 3. As the number of adsorbed Li atoms increased, the absolute
values of Eb and Ead decreased, resulting from the growing repulsive forces among Li atoms.
It should be noted that Li atoms were unable to be stably adsorbed on the Lin(Gr/Fe-Fe-
O3-R) system when n was equal to 9, as confirmed by a positive Ead value. Both Eb and
Ead absolute values for the Lin(Gr/Fe-Fe-O3-R) system possessed a large declining rate in
comparison with the Lin(Gr/Fe-O3-Fe-R) and Lin(Gr/O3-Fe-Fe-R) systems, which showed
the weakest Li adsorption capacity of the Lin(Gr/Fe-Fe-O3-R) system.
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To investigate the structural variation of the Gr/α-Fe2O3 heterostructures, we calcu-
lated Ve during the lithiation process, as shown in Figure 4a. It was found that the volume
expansion ratio of the Gr/O3-Fe-Fe-R system increased slowly, varying from 3.04% to
6.12% when n≤ 8. However, the volume expansion of the Gr/Fe-O3-Fe-R system increased
sharply when n≥ 5, which was consistent with the Gr/Fe-Fe-O3-R system at n≥ 4. It could
be demonstrated that lithiation-induced volume expansion ratios of the Gr/Fe-O3-Fe-R
and Gr/O3-Fe-Fe-R systems were less than that of the Gr/Fe-Fe-O3-R system, suggesting
a better structural stability. Figure 4b illustrates the OCV curves along with the Li atom
intercalation process. Owing to the adsorption ability, Li decreased with the increase of
atomic number, and OCVs decreased as well. When n = 9, the OCVs of the Gr/Fe-O3-Fe-R
and Gr/O3-Fe-Fe-R systems remained positive (0.31 and 0.84 V, respectively). However,
for the Gr/Fe-Fe-O3-R system, the OCV became negative (−0.019 V) and the dendrite oc-
curred [49]. On the whole, the OCV values for Gr/Fe-O3-Fe-R and Gr/O3-Fe-Fe-R systems
were higher than that of the Gr/Fe-Fe-O3-R system. It can be inferred that Gr/Fe-O3-Fe-R
and Gr/O3-Fe-Fe-R can provide high Li concentration in intercalation process while also
inhibiting the undesired Li dendrite growth.

The lithium diffusion barrier is another indispensable factor for rechargeable battery.
For the Gr/Fe-O3-Fe-R and Gr/O3-Fe-Fe-R systems, the optimized pathways of Li diffusion
sites were site A→B→C→A, as displayed in Figure 5. The calculated results revealed that
the three Li diffusion pathways of the Gr/Fe-O3-Fe-R system possessed much lower
activation energy barriers (0.81 eV, 0.25 eV, and −0.07 eV) in comparison with these of the
Gr/O3-Fe-Fe-R system (5.49 eV, 2.76 eV, and 0.91 eV), which implies that the Gr/Fe-O3-Fe-R
interface could supply easy Li diffusion capability and shorten diffusion pathway. Notably,
the diffusion energy barrier from C to A site was the lowest one in both Gr/Fe-O3-Fe-R
and Gr/O3-Fe-Fe-R systems, demonstrating that the dominant diffusion pathway was
along the interface. Furthermore, compared with the bulk Fe-O3-Fe-R system (Figure S2)
in which the pathway from A to B site was easiest while the pathway from C to A site was
the most difficult with an energy barrier of 3.07 eV, the lowest energy diffusion pathway
shift from C to A in the Gr/Fe-O3-Fe-R system was mainly attributed to the presence of
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Gr. Moreover, the diffusion behaviors across the interface were evaluated, as presented in
Figure 5c–e. The energy barriers of the pathway from D to E site were 11.07 and 3.88 eV for
the Gr/Fe-O3-Fe-R and Gr/O3-Fe-Fe-R systems, respectively. This suggests that there were
some possible vertical diffusion pathways for the Gr/O3-Fe-Fe-R system.
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3.3. Interfacial Optimization by Using Heteroatoms Doped Gr

To further optimize the interfaces in the Gr/α-Fe2O3 heterostructures, we conducted
some modifications on the Gr structure by introducing heterostructured active atoms
(e.g., B, N, O, S, and P) into Gr skeleton. To simplify the calculation, we chose the Fe-O3-Fe-



Nanomaterials 2021, 11, 81 8 of 13

R as a typical model for α-Fe2O3. As shown in Figure 6a,b, the distance between the nearest
Fe atom to the interface and B or N were 2.125 or 2.357Å, respectively, closely negative to
their interface bonding performance [50]. The structures of Gr fluctuated greatly due to
introducing O, P, and S, as shown in Figure 6c–e. Heteroatoms B, P, and S in the doped
Gr framework lost 0.34 |e|, 0.89 |e|, and 0.82 |e|, respectively, while N and O obtained
0.29 |e| and 0.37 |e|, respectively (Figure 6f–k). Moreover, the top Fe lost 1.24 |e|,
1.29 |e|, 0.73 |e|, 0.71 |e|, 0.71 |e|, and 0.71 |e|, and meanwhile the heteroatom-doped
Gr received 0.49 |e|, 0.66 |e|, 0.79 |e|, 0.73 |e|, 1.69 |e|, and 1.52 |e| in the Gr/Fe-
O3-Fe-R, B-doped Gr/Fe-O3-Fe-R, N-doped Gr/Fe-O3-Fe-R, O-doped Gr/Fe-O3-Fe-R,
P-doped Gr/Fe-O3-Fe-R, and S-doped Gr/Fe-O3-Fe-R systems, respectively, as shown in
Figure 7a–e. Therefore, it can be inferred that the activity of Gr was promoted due to the
addition of heteroatoms. Further analysis on Eb and Ef of the Gr/Fe-O3-Fe-R system with
heteroatom doping was carried out (Figure 7f). The Eb values of B/N/O/P/S doping on
the Gr/Fe-O3-Fe-R systems were increased to −6.05/−6.10/−5.98/−5.97/−5.91 eV/atom,
and the absolute values of Ef were promoted to 1.49/1.20/2.12/1.82/1.38 eV, respectively,
indicating the enhanced structural stability and the increased interface binding capability
compared to the pristine Gr/Fe-O3-Fe-R system.
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Figure 7. Charge difference plots for (a–e) M-doped Gr/Fe-O3-Fe-R systems (M = B, N, O, P, and S; isosurface level was
set to 0.04 electrons/bohr3); (f) binding energy (Eb) and interfacial formation energy (Ef) for (f) M-doped Gr/Fe-O3-Fe-R;
(g) binding energy (Eb) and adsorption energy (Ead) for Li adsorbed on M-doped Gr/Fe-O3-Fe-R systems; (h–l) charge
difference plots for Li adsorbed on M-doped Gr/Fe-O3-Fe-R systems (isosurface was set to 0.02 electrons/bohr3).

After Li was absorbed on the heteroatom-doped Gr/Fe-O3-Fe-R system, optimized
geometries were depicted, as shown in Figure S3. Eb and Ead values of Gr/Fe-O3-Fe-R
were −5.86 and −1.93 eV/atom, respectively. If B-, N-, O-, P-, and S-doped Gr were used,
the absolute values of Eb increased, however, the Ead values were all reduced (Figure 7g).
That means that the adsorption ability of doped Gr/Fe-O3-Fe-R systems for Li atom
decreased in spite of the enhanced structure stability. Similar to the Gr/Fe-O3-Fe-R system,
the electrons were transferred from Li to the O and Gr surfaces, in which Li atoms lost
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1.46 |e|, 1.49 |e|, 1.38 |e|, 1.42 |e|, and 1.43 |e| in B, N, O, P, and S-doped Gr/Fe-O3-Fe-
R systems, respectively, as shown in Figure 7h–l.

It is well known that B and N can be easily incorporated into Gr due to them having
roughly the same atomic radius as C [51]. Moreover, N and B are typical n-type and p-type
donors with different effects on electronic structures of Gr [52]. In addition, heteroatoms
B and N modifying Gr contribute to better structural stability of Gr/Fe-O3-Fe-R in com-
parison with introducing O, P, and S, as shown in Figure 7f–g. Consequently, the energy
barrier profiles for Li atom of the three pathways (A→B, B→C (C1), and C (C1)→A site)
in the B- and N-doped Gr/Fe-O3-Fe-R systems were conducted to evaluate the interca-
lation/deintercalation process. As demonstrated in Figure 8a–b, B-doped Gr exhibited
little effect on the diffusion barrier from A to B site, whereas energy barriers of B→C and
C→A were increased. N doping Gr changed the location of site C to C1, as shown in the
illustration in Figure 8b. Moreover, embedding of N was able to alter the easiest pathway
from C→A to A→B. Meanwhile, Li atom was able to diffuse freely from site A to B. As for
the vertical diffusion pathway (D→E), as calculated in Figure 8c–d, the presence of B could
reduce the energy barriers to 10.10 eV. On the contrary, the implantation of N could further
increase the diffusion barrier.
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To summarize, the presence of heteroatom-doped Gr in the Gr/α-Fe2O3 heterostruc-
tures could enhance the structural stability and interfacial bonding capability. Eb absolute
values were promoted from 5.89 eV to 6.05, 6.10, 5.98, 5.97, and 5.91 eV for B-, N-, O-, P-,
and S-doped Gr/Fe-O3-Fe-R, respectively. Ef absolute values were also clearly increased
from 0.51 eV to 1.49, 1.20, 2.12, 1.82, and 1.38 eV, respectively. N-doping shortened the
diffusion pathway and made free diffusion become possible, compared with heteroatom B.
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4. Conclusions

On the basis of first-principle calculations, we conducted a systematical investigation
on the interfacial structures, interface bonding capability, intercalation process, and Li
diffusion behavior of three terminated Gr/α-Fe2O3 heterostructures as well as Li storage
performance. These results show that the Gr/Fe-O3-Fe-R system possesses good structural
stability, high adsorption ability, small volume expansion, low energy barriers, and a short
diffusion pathway. To further optimize the interface, we conducted some modifications on
the Gr structure by introducing heterostructured active atoms (e.g., B, N, O, S, and P) into
Gr skeletons. Through a critical analysis on the influences of different heteroatom-doped
Gr, we can conclude that structural and interfacial stability were promoted. Moreover,
it was easier for the Li atom to migrate along the interface, and the presence of N-doped Gr
possessed a free diffusion pathway. It is hoped that the present work paves the way for
understanding interface properties and achieving Li rapid diffusion with a low barrier of
Gr/transition metal oxides through tuning the interface microstructure.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/1/81/s1: Figure S1: Adsorption sites A, B, C, D, and E for Li atom in (a,d) Gr/Fe-O3-Fe-R,
(b,e) Gr/O3-Fe-Fe-R, and (c,f) Gr/Fe-Fe-O3-R systems. Figure S2: Energy barrier profiles for Li
atom in α-Fe2O3 (0001) surface. Figure S3: Optimized structures of Li adsorbed in (a–j) M-doped
Gr/Fe-O3-Fe-R systems (M = B, N, O, P, and S).
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