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ABSTRACT
Introduction  Prenatal growth restraint followed by 
rapid postnatal weight gain increases lifelong diabetes 
risk. Epigenetic dysregulation in critical windows could 
exert long-term effects on metabolism and confer such 
risk.
Research design and methods  We conducted a 
genome-wide DNA methylation profiling in peripheral 
blood from infants born appropriate-for-gestational-
age (AGA, n=30) or small-for-gestational-age (SGA, 
n=21, with postnatal catch-up) at age 12 months, to 
identify new genes that may predispose to metabolic 
dysfunction. Candidate genes were validated by 
bisulfite pyrosequencing in the entire cohort. All infants 
were followed since birth; cord blood methylation 
profiling was previously reported. Endocrine-metabolic 
variables and body composition (dual-energy X-ray 
absorptiometry) were assessed at birth and at 12 and 24 
months.
Results  GPR120 (cg14582356, cg01272400, 
cg23654127, cg03629447), NKX6.1 (cg22598426, 
cg07688460, cg17444738, cg12076463, cg10457539), 
CPT1A (cg14073497, cg00941258, cg12778395) and 
IGFBP 4 (cg15471812) genes were hypermethylated 
(GPR120, NKX6.1 were also hypermethylated in cord 
blood), whereas CHGA (cg13332653, cg15480367, 
cg05700406), FABP5 (cg00696973, cg10563714, 
cg16128701), CTRP1 (cg19231170, cg19472078, 
cg0164309, cg07162665, cg17758081, cg18996910, 
cg06709009), GAS6 (N/A), ONECUT1 (cg14217069, 
cg02061705, cg26158897, cg06657050, cg15446043) 
and SLC2A8 (cg20758474, cg19021975, cg11312566, 
cg12281690, cg04016166, cg03804985) genes 
were hypomethylated in SGA infants. These genes 
were related to β-cell development and function, 
inflammation, and glucose and lipid metabolism and 
associated with body mass index, body composition, and 
markers of insulin resistance at 12 and 24 months.
Conclusion  In conclusion, at 12 months, abnormal 
methylation of GPR120 and NKX6.1 persists and new 
epigenetic marks further involved in adipogenesis 
and energy homeostasis arise in SGA infants. These 
abnormalities may contribute to metabolic dysfunction and 
diabetes risk later in life.

INTRODUCTION
Low birth weight followed by rapid post-
natal weight gain has been associated with 
increased metabolic risk in adulthood 

Significance of this study

What is already known about this subject?
►► There is increasing evidence concerning the fetal 
programming of adult pathologies, including obesity, 
diabetes and cardiovascular disease. It is recognized 
that an adverse intrauterine environment resulting in 
small-for-gestational-age (SGA) fetuses can induce 
changes in the epigenome to allow fetal adaptation. 
In addition, SGA infants who experience a rapid 
postnatal catch-up in weight are at increased risk 
for diabetes later in life. Thus, although the sequence 
of events is not well understood, the prenatal as well 
as the postnatal environment may ultimately induce 
changes in DNA methylation that lead to metabolic 
dysfunction through modulation of the expression 
levels of key genes directly or indirectly involved in 
the control of metabolic processes.

What are the new findings?
►► SGA infants show a differential DNA methylation 
profile in peripheral blood at age 12 months as com-
pared with appropriate-for-gestational-age infants 
(AGA); some of the altered epigenetic marks were 
already present at birth (in both the GPR120 and 
NKX6.1 genes) whereas others appear at the age of 
12 months.

►► Dysmethylated genes relate to β-cell biology, regu-
lation of glucose and lipid metabolism and inflam-
mation, and associated with body mass index, body 
composition parameters and markers of insulin re-
sistance at 12 and 24 months.

►► Dysfunction of dysmethylated genes may induce 
long-term changes in gene expression contributing 
to the genesis of metabolic disturbances, which in 
turn may increase the future risk for diabetes of SGA 
infants.

http://drc.bmj.com/
http://orcid.org/0000-0003-4595-7191
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjdrc-2020-001402&domain=pdf&date_stamp=2020-010-26
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including for obesity, type 2 diabetes and cardiovascular 
disorders.1 2 The extent of this mismatch between the 
prenatal and postnatal environments—as judged by the 
Z‐score change from weight at birth to body mass index 
(BMI) in childhood—appears to be critical in metabolic 
programming, as it relates closely to central (hepato-
visceral fat) and insulin resistance.3 4 Along these lines, 
catch-up infants born small-for-gestational-age (SGA, 
birth weight below −2 SD), and particularly those who 
receive enriched formulas and have a faster weight 
gain, depict low levels of high molecular weight (HMW) 
adiponectin and are less insulin sensitive and more 
abdominally adipose than those born appropriate-for-
gestational-age (AGA).5 Although the mechanisms under-
lying this sequence of events have not been elucidated in 
full, there is increasing evidence of the key role played by 
epigenetics—especially DNA methylation—in the fetal 
programming of adult pathologies.6–8 DNA methylation 
is modulated by environmental factors, particularly by 
nutrition, and it has been proved that an adverse nutri-
tional environment during the perinatal period can lead 
to persistent epigenetic modifications producing stable 
changes in gene expression later in life.9–11 Methylation 
of cytosine bases in CpG dinucleotides induces chromatin 
modifications leading to repression of gene expression 
by recruitment of methyl-binding and chromatin remod-
eling proteins, or by blocking transcriptional machinery 
from accessing start sites on a gene’s promoter.12 We have 
recently reported a differential methylation and expres-
sion pattern of genes involved in the regulation of glucose 
and lipid metabolism in placenta and cord blood of SGA 
infants, which may influence fetal growth, early adipo-
genesis and later diabetes risk.13 Remarkably, DNA meth-
ylation levels have been shown to change more rapidly in 
the immediate postnatal years, tending to stabilize beyond 
age 7.14 However, reports on DNA methylation patterns 
during early childhood are scarce, and none has assessed 
simultaneously endocrine-metabolic parameters and/or 
body composition.15–17 Here, we tested whether differ-
ential DNA methylation patterns persist in catch-up SGA 
infants—as compared with AGA infants—and whether 
new epigenetic marks involved in the control of energy 
metabolism arise by age 12 months. We also assessed the 
associations among those differentially methylated genes 

and endocrine-metabolic and body composition vari-
ables at age 12 and 24 months.

RESEARCH DESIGN AND METHODS
Study population
The study cohort consisted of 51 infants born either AGA 
(n=30; 57% female) or SGA (n=21; 57% female) who 
participated in a previous study assessing DNA meth-
ylation in placenta and cord blood of SGA versus AGA 
infants and its association with endocrine-metabolic 
parameters and body composition,13 and who were subse-
quently followed up to age 24 months.

The specific inclusion criteria were (1) singleton preg-
nancy, absence of maternal pathology (hypertension, pre-
eclampsia or gestational diabetes) and drug addiction; 
(2) term birth (37–42 weeks) with a birth weight range 
between −1.1 and +1.1 SD (AGA) and below −2 SD (SGA); 
(3) spontaneous catch-up in weight and length, defined 
as weight and length Z-score >−2.0 by age 12 months18; 
(4) auxological (weight, length, BMI and BMI Z-score), 
endocrine-metabolic assessments and body composition 
at birth, and at 12 and 24 months (see below); and (5) 
written, informed consent in Spanish/Catalan language. 
Exclusion criteria were congenital malformations or 
complications at birth (need for resuscitation or paren-
teral nutrition). Eighty-six per cent of AGA infants were 
exclusively breast fed from 0 to 4 months, versus 59% of 
SGA infants.

Assessments
Infant’s weight and length were measured at birth and 
at age 15 days, as reported,13 and again at 12 and 24 
months. BMI was calculated at each time point, and BMI 
Z-scores were derived from country-specific and sex-
specific references.19

Blood samples were obtained at birth from the umbil-
ical cord (before placental separation)13 and in the 
morning state after an overnight fast at age 12 and 24 
months. Whole blood collected in EDTA tubes was used 
for DNA extraction at age 12 months. Serum samples 
were also obtained at 12 and at 24 months and kept at 
−80°C.

The entire cohort (n=51) completed the first year of 
follow-up including auxological, endocrine-metabolic 
and body composition assessments. In the subsequent 
year, n=7 patients dropped out from the study, so that 
completion of all assessments could only be performed 
in n=44 infants at age 24 months (26 AGA and 18 SGA) 
(online supplemental figure 1, flow chart). The charac-
teristics of the patients lost to follow-up did not differ 
from those who completed the study (data not shown).

Serum glucose was measured by the glucose oxidase 
method. Insulin, IGF-I and lipids were assessed by immu-
nochemiluminiscence (DPC IMMULITE 2500; Siemens, 
Erlangen, Germany); intra-assay and inter-assay coeffi-
cients of variation were <10%. Insulin resistance was esti-
mated with the homeostatic model assessment (fasting 

Significance of this study

How might these results change the focus of research or 
clinical practice?

►► The degree of abnormal methylation of the reported genes may be-
come a novel biomarker for the early identification of those SGA 
infants at high risk for developing metabolic disorders later in life. 
Follow-up of these infants with personalized lifestyle measures will 
possibly prevent a rapid catch-up in body weight that, besides the 
genetic and epigenetic background, seems to be a key driver for the 
development of insulin resistance and diabetes.

https://dx.doi.org/10.1136/bmjdrc-2020-001402
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insulin (mU/L)×fasting glucose (mmol/L)/22.5). HMW 
adiponectin was assessed by ELISA (R&D Systems, Minne-
apolis, MN, USA); intra-assay and inter-assay coefficients 
of variation were <9%.

Body composition was assessed at age 15 days and at 
12 and 24 months, by dual X-ray absorptiometry with 
a Lunar Prodigy coupled to Lunar software (Lunar, 
Madison, WI, USA), adapted for infants. CVs were <3% 
for fat and lean mass.

DNA extraction and bisulfite conversion
DNA was extracted from peripheral blood samples by 
the phenol–chloroform method (Promega, Madison, 
WI, USA), following the manufacturer’s protocol. DNA 
quality and concentration were assessed using a UV–VIS 
spectrophotometer (Nanodrop 1000; Agilent Technolo-
gies, Wilmington, DE, USA). To minimize batch effect, 
samples were randomized per birth weight and sex. Bisul-
fite (BS) conversion of 300 ng DNA was performed using 
the Methylcode Bisulfite Conversion Kit (Invitrogen, 
Carlsbad, CA, USA) following manufacturer’s guidelines. 
Conversion quality control was conducted by quantitative 
PCR (qPCR) and melting curve analysis.

DNA methylation microarray in peripheral blood samples
DNA methylation profiling at age 12 months was 
performed in eight AGA and eight SGA samples with 
the Agilent DNA Methylation array (ID 049738; Agilent 
Technologies), which examines 27,800 highly informa-
tive CpG sites located within the proximal promoter 
regions of 14,475 genes. Nearly 100% of these CpG 
sites were localized within CpG islands. The process for 
isolating methylated DNA from purified DNA samples, 
and labeling and hybridization to Human DNA Meth-
ylation Array, was conducted following the manufactur-
er’s protocol (Agilent Microarray Analysis of Methylated 
DNA Immunoprecipitation V.1.1; Agilent Technologies), 
as previously described.13

Pre-processing and analysis of Agilent DNA methylation 
microarray
Microarray image was scanned using Agilent SureScan 
and raw β values were exported using Agilent’s Feature 
Extraction Software (V.10.7). Raw methylation data 
were preprocessed using Agilent Genomic Workbench v6.5 
BATMAN algorithm (Bayesian Tool for Methylation Anal-
ysis) and normalized to control probes present on the 
array. Outlier features on the arrays were flagged by the 
same software package. Values were log2-transformed and 
logged data were used for principal component analysis 
(PCA) and for statistical analysis. The Welch T-test was 
used for identification of differentially methylated genes. 
An individual probe was considered differentially meth-
ylated if its p value was <0.05 (not corrected for multiple 
testing) and if the effect size (Cohen’s d) of t-tests was 
≥0.25 (range 0.25–0.8). The resulting p values for each 
gene were then adjusted for multiple testing using the 

Benjamini-Hochberg method with a false discovery rate 
threshold of 10%.

GO enrichment and KEGG pathway analysis
The identified differentially methylated CpGs between 
AGA and SGA subgroups were assigned to linked genes 
using the Agilent DNA methylation microarray annota-
tion file. To investigate the biological relevance of these 
genes, we performed a Gene Ontology (GO) analysis 
(http://www.​geneontology.​org). Significantly enriched 
(p<0.01) GO terms in SGA versus AGA infants were 
obtained and subdivided into three categories “Biolog-
ical Processes”, “Molecular functions” and “Cellular 
components”. Gene networks and canonical pathways 
representing key genes were identified using the KEGG 
(Kyoto Encyclopedia of Genes and Genomes) software.

Selection of candidate genes for validation by bisulfite 
pyrosequencing
Genes showing a differential DNA methylation pattern 
between the AGA and SGA subgroups were ranked 
according to their significance level, and those with 
the lowest adjusted p value (≤10−3) that were related to 
energy metabolism were validated in the entire popula-
tion (30 AGA, 21 SGA) by pyrosequencing. Candidate 
genes were GPR120 (G protein–coupled receptor 120), 
NKX6.1 (NKX6 homeodomain 1), IGFBP4 (Insulin-like 
growth factor binding protein 4), FABP5 (Fatty acid 
binding protein 5), CTRP1 (Complement C1q tumor 
necrosis factor–related protein 1), GAS6 (Growth arrest 
specific 6), ONECUT1 (One cut homeobox 1), CHGA 
(Chromogranin A), SLC2A8 (Solute carrier family 2 
member 8), CPT1A (Carnitine palmitoyltransferase 1A), 
SIK2 (Salt inducible kinase 2) and TRAF2 (TNF receptor 
associated factor 2).

Amplification of differentially methylated genes and bisulfite 
pyrosequencing
Specific pyrosequencing primers and pre-designed PCR 
primers flanking all CpG islands from promoter regions 
of the selected genes were used for validation: GPR120 
(PM00044758), chromosome 10, bp 95325316–95327446 
(4 CpG sites); NKX6.1 (PM00019299), chr 4, bp 85417332–
85419573 (5 CpG sites); IGFBP4 (PM00181258), chr 
17, bp 38599248–38601371 (4 CpG sites); FABP5 
(PM00036694), chr 8, bp 82192382–82194533 (5 CpG 
sites); CTRP1 (PM00182245), chr 17, bp 77019096–
77021302 (7 CpG sites); GAS6 (PM00055216), chr 13, 
bp 114534252–114536397 (4 CpG sites); ONECUT1 
(PM00059976), chr 15, bp 53082181–53084445 (5 CpG 
sites); CHGA (PM00056070), chr 14, bp 93388198–
93390313 (4 CpG sites); SLC2A8 (PM00142065), chr 
9, bp 130158218–130160383 (6 CpG sites); CPT1A 
(PM00152285), chr 11, bp 68610165–68612396 (6 CpG 
sites); SIK2 (PM00154672), chr 11, bp 111471855–
111473975 (6 CpG sites); TRAF2 (PM00141302), chr 9, 
bp 139779587–139781726 (5 CpG sites).

http://www.geneontology.org
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Bisulfite-converted DNA (1 µL) was used as template 
for each qPCR in a final volume of 25 µL. Hot-start PCR 
was performed using the PyroMark PCR kit (Qiagen, 
Germantown, USA) and the correct size of the PCR 
product was verified by gel electrophoresis. PCR ampli-
cons were purified and analyzed using the PyroMark Q96 
ID system and evaluated using the PyroMark software 
V.2.5 (Qiagen). The methylation level of each CpG site 
was estimated by the proportion of C (%) in each region. 
The methylation status of each gene was assessed as the 
percentage of average methylation at targeted CpG sites.

Statistics and ethics
Statistical analyses were performed using SPSS software 
V.23.0. Unpaired t-test was used to study differences 
between AGA and SGA subgroups. Correlation and 
stepwise multiple regression analysis were used to study 
the associations between methylation status at age 12 
months, and auxological, endocrine-metabolic and body 
composition parameters. Covariance analysis was used to 
adjust for sex and BMI Z-score. The level of significance 
was set at p <0.05.

The study was approved by the Institutional Review 
Board of Hospital Sant Joan de Déu at Barcelona Univer-
sity; written informed consent was obtained before 
delivery.

RESULTS
Clinical, endocrine-metabolic and body composition variables
Table  1 summarizes the main clinical, endocrine-
metabolic and body composition variables of the studied 
population. At birth, SGA infants displayed lower circu-
lating levels of IGF-I, and less fat, lean mass and abdom-
inal fat, as reported.13 At age 12 months, SGA infants 
normalized their circulating IGF-I levels, as well as their 
lean mass and abdominal fat, although they remained 
lighter.5 The pattern was similar at age 24 months.

DNA methylation patterns in SGA versus AGA infants
We identified a total of 129 genes differentially methyl-
ated in SGA versus AGA infants at age 12 months. Among 
those, 51 were hypermethylated and 78 were hypometh-
ylated (online supplemental tables 1–4). There were no 
differences in methylation profile according to early 
nutrition (breast vs formula feeding 0–4 months), and 
thus the results within each the AGA and SGA subgroups 
were pooled for analysis.

The PCA score plot showed a clear separation between 
the AGA and SGA subgroups, with distinct DNA methyla-
tion profiles aggregating together within the same group 
(figure  1). The three principal components explained 
86.3% of the variance observed between subgroups.

GO functional analysis and KEGG enrichment analysis
To explore potential molecular mechanisms related to 
birth weight, differentially methylated genes (DMG) 
were analyzed using GO functional analysis and KEGG 
enrichment analysis. The enrichment analyses of GO are 

summarized in table 2. A total of 84 biological processes, 
55 molecular functions and 17 cellular components 
were enriched among the DMG. Regarding biological 
processes and molecular function, regulation of meta-
bolic processes and organ development together with 
DNA binding and transcription regulation were the most 
enriched terms in the respective categories.

The top 10 KEGG pathways of the DMG were enriched in 
lipid and glucose metabolism, cell development and func-
tion, cellular signaling, DNA binding, transcription regu-
lation, regulation of immunity, neural differentiation, and 
regulation of apoptosis and potassium channel (table 3).

Validation of methylation status by pyrosequencing in SGA 
versus AGA infants
Bisulfite pyrosequencing confirmed that 10 of the 12 candi-
date genes were differentially methylated in SGA versus 
AGA infants; specifically, GPR120 (cg14582356, cg01272400, 
cg23654127, cg03629447), NKX6.1 (cg22598426, cg07688460, 
cg17444738, cg12076463, cg10457539), CPT1A (cg14073497, 
cg00941258, cg12778395) and IGFBP4 (cg15471812) were 
hypermethylated (all p<0.0001), whereas CHGA (cg13332653, 
cg15480367, cg05700406), FABP5 (cg00696973, cg10563714, 
cg16128701), CTRP1 (cg19231170, cg19472078, cg0164309, 
cg07162665, cg17758081, cg18996910, cg06709009); GAS6 
(N/A), ONECUT1 (cg14217069, cg02061705, cg26158897, 
cg06657050, cg15446043) and SLC2A8 (cg20758474, 
cg19021975, cg11312566, cg12281690, cg04016166, 
cg03804985) were hypomethylated (p=0.002 for FABP5; 
p<0.0001 for the other five genes) in SGA infants (figure 2). 
These differences were maintained after adjusting for sex 
and BMI Z-score. Pyrosequencing did not confirm a differ-
ential methylation pattern in SIK2 and TRAF2.

Correlation analyses
Bivariate correlations between gene methylation levels at 
age 12 months and selected clinical, endocrine-metabolic 
and body composition parameters are summarized in 
online supplemental table 5.

Hypermethylation of GPR120, NKX6.1 and CPT1A, 
as well as hypomethylation of CHGA, CTRP1, GAS6, 
ONECUT1 and SLC2A8 associated with lower BMI 
Z-scores, and with less fat and lean mass at age 12 months.

At age 24 months, methylation status of GPR120, 
NKX6.1, CTRP1 and CPT1A still associated with lower fat 
and lean mass whereas SLC2A8 was positively correlated 
with lean mass. The methylation pattern of all these genes 
(except for CPT1A) together with ONECUT1 associated 
with lower BMI Z-score at 24 months. The changes in fat 
mass between 0–12 and 0–24 months showed a negative 
correlation with GPR120 and NKX6.1 methylation levels.

The methylation profile of GPR120, NKX6.1, CHGA, 
GAS6, ONECUT1, SLC2A8 and FABP5 associated posi-
tively with HOMA-IR at 12 and 24 months, and with 
0–12 month and 0–24 month changes in HOMA-IR and 
IGF-I levels. Hypermethylation of IGFBP4 directly associ-
ated with IGF-I levels at 12 and at 24 months and with 
IGF-I changes between 0 and 24 months.

https://dx.doi.org/10.1136/bmjdrc-2020-001402
https://dx.doi.org/10.1136/bmjdrc-2020-001402
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Circulating levels of LDL-C were associated with the 
methylation pattern of FABP5, GAS6 and CPT1A genes at 
age 24 months.

Multivariate linear models
In linear regression analysis adjusted for sex and BMI 
Z-score, methylation status of NKX6.1 and GPR120 were 
independent predictors of total fat at age 12 months 
and 24 months, respectively (online supplemental table 
6). Lean mass was independently explained by SLC2A8 
methylation at the age of 12 months and by ONECUT1 
methylation at 24 months (online supplemental table 6). 
Moreover, SLC2A8 methylation independently explained 
42% of the 0–24 month changes in BMI Z-score variability 
(online supplemental table 6).

DISCUSSION
Here, we report for the first time a differential DNA 
methylation profile in peripheral blood of SGA infants 
aged 12 months, its association with BMI, body compo-
sition parameters and markers of insulin resistance at 12 

and at 24 months, and its potential contribution to an 
altered fat distribution on postnatal catch-up in weight. 
We identified n=41 differentially methylated CpG sites in 
gene promotor regions; 13 CpG were hypermethylated 
and located in GPR120, NKX6.1, CPT1A, IGFBP4 genes 
and 28 CpG were hypomethylated along the CHGA, 
FABP5, CTRP1, GAS6, ONECUT1 and SLC2A8 genes.

GPR120 is a functional receptor for n−3 fatty acids 
and a key regulator of adipogenesis, as well as of energy 
metabolism, insulin secretion and inflammation.20–22 
GPR120 deficiency leads to obesity, insulin resistance 
and hepatic steatosis in mice fed a high-fat diet.23 In 
contrast, activation of GPR120 increases insulin secre-
tion, protects pancreatic β cells from inflammation,24 
and reduces fat mass and body weight through activation 
of brown adipose tissue (BAT) thermogenesis25; GPR120 
is also required for neonatal adaptive thermogenesis 
in mice.26 We have previously reported that GPR120 is 
hypermethylated in cord blood of SGA infants and that it 
associates with birth weight and reduced fat mass across 

Figure 1  Principal component analysis (PCA) of the methylation profiles from 8 AGA samples (red dots) and 8 SGA samples 
(blue dots). The PCA is based on log2 ratios and the methylation profiles are across all the 27,800 CpG sites in the microarray. 
The first three principal components are plotted. The captured variances of PC1 (first principal component), PC2 (second 
principal component) and PC3 (third principal component) were 60.4%, 15.5% and 10.4%, respectively. AGA, appropiate-for-
gestational-age; SGA, small-for-gestational-age.

https://dx.doi.org/10.1136/bmjdrc-2020-001402
https://dx.doi.org/10.1136/bmjdrc-2020-001402
https://dx.doi.org/10.1136/bmjdrc-2020-001402
https://dx.doi.org/10.1136/bmjdrc-2020-001402
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early infancy, suggesting that GPR120 could be among 
the mediators of early fat mass accretion via modulating 
adipogenesis and lipogenesis.13 Here, we show that this 
methylation pattern is maintained in late infancy, and 
associates with lower BMI Z-scores and less fat mass, and 
with higher HOMA-IR. IGFBP4, which controls adipose 
tissue expansion by suppressing IGF-I signaling and 
angiogenesis promotion,27 was also hypermethylated in 
SGA infants. Overall, the combined abnormal methyla-
tion of GPR120 and IGFBP4 and ensuing deregulation 
could result in an impaired adipogenesis in SGA infants.

NKX6.1 is a transcription factor playing a key role in 
prenatal β-cell differentiation and in postnatal β-cell 
proliferation and function.28 This gene was found to be 
hypermethylated and downregulated in SGA infants at 
birth,13 and here we show that this pattern is still detect-
able at age 12 months. Cells lacking NKX6.1 are unable 
to express PDX1 and MAFA, both transcription factors 
needed for the maintenance of β-cell identity and func-
tion.29 Interestingly, a recent report showed that GPR120 
prevents lipid-induced β-cell damage through regulation 
of PDX1 expression. Moreover, ONECUT1—a hepato-
cyte nuclear factor with a programmed downregulation 
during pancreas development—acts as MAFA suppressor, 
and the inappropriate reactivation of this transcriptional 
regulator occurs in diabetes.30 31 It is thus tempting to 
speculate that the abnormal methylation of GRP120 and 
NKX6.1 in SGA infants, already detectable at birth and 

ongoing at age 12 months, together with the hypometh-
ylation of ONECUT1, may negatively affect β-cell number, 
as suggested by the association between the methylation 
status of these genes and HOMA-IR, fat mass and BMI 
Z-scores. At age 24 months, SGA infants still have normal 
levels of IGF-I and HMW adiponectin, less fat mass and 
are insulin sensitive; however, by age 3 years, SGA children 
develop high IGF-I levels, a thicker carotida and lower 
concentrations of HMW adiponectin,32 supporting the 
notion that the impairment of insulin action may occur 
from age 2 years onwards. This phenotype aligns well with 
the abnormal methylation by age 12 months of several 
genes related to the control of glucose and lipid metabo-
lism. For example, FABP5, which is involved in the regu-
lation of adipose tissue function and inflammation33 34 
was hypomethylated in SGA infants, and transgenic mice 
models have shown that FABP5 overexpression impairs 
glucose tolerance, which is in turn reverted in FABP5 
knockout mice33; FABP5 also plays a role in the develop-
ment of carotid atherosclerosis.35 In addition, CTRP1 was 
also hypomethylated in SGA infants, and is reported to 
increase in obesity, fatty liver disease, atherosclerosis and 
type 2 diabetes, and to be associated with major adverse 
cardiovascular events.36 37

At age 6 years, SGA infants are more insulin resistant 
and have more pre-peritoneal and hepatic fat than AGA 
infants.32 Disruption of lipid homeostasis and reduced 
mitochondrial function are among the mechanisms that 
could contribute to this sequence of events. CPT1A, a key 
regulatory enzyme of β-oxidation required for transport 
of long-chain fatty acids into mitochondria, was hyper-
methylated in SGA infants. A decrease in fat oxidation may 
be followed by fat accumulation; for example, in rodents, 
the inhibition of fat oxidation results in an increase 
in intracellular lipids and a decrease in insulin action, 
whereas in humans an increased respiratory quotient 
(RQ), indicative of decreased fat oxidation, predicts 
weight gain and ectopic fat storage and is associated with 
a deterioration of insulin sensitivity.38 39 Inversely, over-
expression of CPT1A in the liver of obese mice reduces 
inflammation and improves insulin signaling.40 Recently, 
epigenome-wide association studies have disclosed the 
causal role of CPT1A methylation in type 2 diabetes41 and 
the association between intron 1 CPT1A methylation and 
gestational BMI.42

SLC2A8, also known as GLUT8, is a glucose and fruc-
tose transporter highly expressed in oxidative tissues 
and required for the development of fructose-induced 
hepatic steatosis.43 SLC2A8 hypomethylation could addi-
tionally contribute to the higher hepatic fat fraction in 
SGA infants since overexpression of SLC2A8 in hepato-
cytes represses PPARγ and impairs fatty acid metabolism.44

CHGA is a prohormone secreted by neuroendocrine 
tissues serving as precursor of biologically active peptides 
including PST (pancreastatin) that interfere with insulin 
action. PST-treated adipocytes show a decrease in insulin-
stimulated lipogenesis,45 whereas CHGA null mice display 
increased insulin sensitivity,46 even after a diet-induced 

Table 2  Gene Ontology (GO) analysis of differentially 
methylated genes (n=129)

Observed 
genes P value

(a) Biological processes

 � Regulation of metabolic 
processes

39 8.30E−05

 � Glucose metabolism 4 4.70E−05

 � Lipid metabolism 4 3.40E−05

 � Organ development 24 7.70E−04

 � Cellular signaling 3 4.50E−04

 � Regulation of immunity 3 1.30E−04

 � Cell adhesion 5 2.40E−03

 � Cell differentiation 2 1.70E−03

(b) Molecular functions

 � Transcription regulation 23 3.70E−04

 � DNA binding 32 6.30E−03

(c) Cellular components

 � Integral to membrane 
organization

10 1.80E−03

 � Intrinsic to plasma membrane 7 1.50E−03

(a) Biological Processes, (b) Molecular function and (c) Cellular 
components.
Significant enriched components are grouped according to three 
categories.
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Table 3  Differentially methylated genes involved in KEGG pathways

Pathway P value
Methylation 
status Gene symbol

Lipid metabolism 1.80E−05 Hyper
Hypo

GPR120, CPT1A
FABP5, LMF1, CTRP1, TM6SF2, ELOVL5

Cell development and function 3.70E−05 Hyper
Hypo

NKX6.1, SMAD7, GATAD2B, ADAMTS1, NR2F2, POU3F2, TTC30B, RUNX2, 
NPBWR1
IGFBP4, DNAI2, PDZRN3, AFTPH, EFNA5, NPAS3, KCNC3, MICAL2, 
SLC30A9, SLC22A15, NPAS3

Glucose metabolism 4.20E−05 Hyper
Hypo

RAB4B, *SIK2
*TRAF2, GAS6, ONECUT1, MIDN, SLC2A8, CTRP1, GPR4, CHGA

Cellular signaling 4.30E−04 Hyper
Hypo

ITPRIP, DUSP4, CHRM4, ATP2C1
PPP4R4, PCDHB2, ILK, SLC22A15, FGD5, CLSTN1, GNB1, DUSP7, INSRR, 
IL17RD, SLC2A8

DNA binding 5.10E−04 Hyper
Hypo

H2AFY, SMAD7, HIST1H2AJ, XRCC5
ZNF558, ETV3, ZNF141, ZNF7, EN2, ZZZ3, ZNF462, ZNF7

Transcription regulation 8.70E−04 Hyper
Hypo

HLX, BCL6, PATZ1, POU3F2, FOXB1, NR2F2, RUNX2, C1orf113, POU4F1, 
C7orf64, DDX17
JDP2, ETV7, ONECUT1, ZNF132, NPAS3, HBP1, EOMES, NEUROG2, ZFHX4, 
RNF4, HBP1, UTF1, SLC30A9, TAF4

Regulation of immunity 2.10E−03 Hyper
Hypo

TNFAIP8L1, LMBR1
ETV3, SUGT1, UBE2F, LONRF1

Neural differentiation 2.80E−03 Hyper
Hypo

POU3F2, FZD2, RUNX2
NEUROG2

Regulation of apoptosis 4.10E−03 Hypo TRAF2, ROBO4, PPP1R13B, GAS6

Potassium channel 8.80E−03 Hyper
Hypo

KCNC4
KCNC3, TMEM38A, CLIC6

Pathways are arranged (top to bottom) according to p value. The genes in bold (n=12) were selected for pyrosequencing validation in all the study 
subjects (n=30 AGA, n=21 SGA).
*Failed genes in pyrosequencing validation.
AGA, appropiate-for-gestational-age; KEGG, Kyoto Encyclopedia of Genes and Genomes; SGA, small-for-gestational-age.

Figure 2  Methylation levels of validated genes in peripheral blood from infants born appropriate-for-gestational-age (AGA, 
n=30) or small-for-gestational-age (SGA, n=21) at age 12 months. Left panel (A): GPR120, NKX6.1, CPT1A and IGFBP4 were 
hypermethylated in SGA infants. Right panel (B): CHGA, FABP5, CTRP1, GAS6, ONECUT1 and SLC2A8 were hypomethylated 
in SGA infants. *p<0.05; **p<0.01; ***p<0.0001.
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obesity, highlighting the importance of CHGA–PST inter-
action in the development of insulin resistance.47 The 
hypomethylation of CHGA in SGA infants could hamper 
further subcutaneous adipogenesis favoring ectopic fat 
storage on catch-up in weight by inducing adipose tissue 
dysfunction.

The relevance of GAS6 hypomethylation in SGA infants 
remains unclear since its role in cancer, obesity, inflam-
mation and insulin resistance remains controversial.48–50 
GAS6 is a member of the vitamin K–dependent protein 
family that binds to TAM (Tyro3, Axl and Mer) recep-
tors; and high and low levels of GAS6 have been reported, 
respectively, in overweight and obese adolescents,49 and 
in patients with type 2 diabetes.50

The limitations of the present study include the rela-
tively small size of the studied population, the absence 
of gene expression assessments, the lack of methylation 
analysis at age 24 months, the lack of adjustment for 
cell composition in peripheral blood and the absence 
of methylation/expression assessments in insulin-target 
tissues due to ethical restraints. The strengths include the 
strict inclusion criteria, the use of the same methods over 
time and the prospective design of the study, allowing to 
assess the associations of the methylation patterns with 
endocrine-metabolic and body composition markers 
over the first 2 years of life.

Overall, our results strengthen the notion that an 
adverse intrauterine environment can induce long-
term changes in gene expression through epigenetic 
mechanisms, which in turn can predispose to metabolic 
disorders.

In conclusion, we identified altered epigenetic marks in 
peripheral blood of SGA infants in genes involved in the 
control of adipogenesis and energy homeostasis that may 
exert long-term programming effects and thus increase 
the risk for obesity and diabetes in this population.
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